1第一节微分方程
高等数学一阶微分方程教学

C(x)eP(x)dxQ(x),
积分得 C (x)Q (x)eP(x)dd x xC ,
一阶线性非齐次微分方程的通解为:
ye P (x)d[xQ (x )eP (x)dd x x C ] e P (x )dxQ (x )e P (x )dd x x C P ( e x )dx
非齐次方 程特解
分离变量得
dy P ( x )dx y
两边积分得 dyyP(x)dx,
lnyP(x)dxlnC
齐次方程的通解为
y CeP(x)dx
(8)
22
第六章 常微分方程
说明:
第二节 一阶微分方程
为了书写方便,约定以后不定积分符号只表示被积函
数的一个原函数,如符号 P ( x )dx 是P(x)的一个原函
sinxx2dxC
31
第六章 常微分方程
第二节 一阶微分方程
例12 求微分方程 xy2yx4 满足初始条件
1 y x 1 6 的特解. 解 将原方程变形为 y 2 y x3 P(x)2,Q(x)x3x
x
ye2 xdx( x3e2 xdxdxC)
1 x6 x2 ( 6 C)
x4 6
13
第六章 常微分方程
第二节 一阶微分方程
分离变量后,得
du
1 dx
u ln u x
两边积分,得
ln ln u ln x ln C
即
lnuCx
u eCx
以 u y 代回,得通解 x
y xeCx
14
第六章 常微分方程
第二节 一阶微分方程
例 6 求解微分方程 x2 dy xy y2. dx
dx
方程(7)称为一阶线性非齐次微分方程;
常微分方程第一章课件

第一章一阶微分方程1.1学习目标:1. 理解微分方程有关的基本概念, 如微分方程、方程阶数、解、通解、初始条件、初值问题等的定义和提法. 掌握处理微分方程的三种主要方法: 解析方法, 定性方法和数值方法.2. 掌握变量分离法,用变量替换将某些方程转化为变量分离方程, 掌握一阶线性方程的猜测检验法, 常数变易法和积分因子法, 灵活运用这些方法求解相应方程, 理解和掌握一阶线性方程的通解结构和性质.3. 能够大致描述给定一阶微分方程的斜率场, 通过给定的斜率场描述方程解的定性性质; 理解和掌握欧拉方法, 能够利用欧拉方法做简单的近似计算.4. 理解和掌握一阶微分方程初值问题解的存在唯一性定理, 能够利用存在唯一性定理判别方程解的存在性与唯一性并解决与之相关的问题, 了解解对初值的连续相依性和解对初值的连续性定理, 理解适定性的概念.5. 理解自治方程平衡点, 平衡解, 相线的概念, 能够画出给定自治方程的相线, 判断平衡点类型进而定性分析满足不同初始条件解的渐近行为.6. 理解和掌握一阶单参数微分方程族的分歧概念, 掌握发生分歧的条件, 理解和掌握各种分歧类型和相应的分歧图解, 能够画出给定单参数微分方程族的分歧图解, 利用分歧图解分析解的渐近行为随参数变化的状况.7. 掌握在给定的假设条件下, 建立与实际问题相应的常微分方程模型, 并能够灵活运用本章知识进行模型的各种分析.1.2基本知识: (一) 基本概念1. 什么是微分方程:联系着自变量、未知函数及它们的导数(或微分)间的关系式(一般是 指等式),称之为微分方程. 2. 常微分方程和偏微分方程:(1) 如果在微分方程中,自变量的个数只有一个,则称这种微分方程为常微分方程,例如 )(22t f cy dt dyb dt y d =++, 0)(2=++y dt dy t dt dy . (2) 如果在微分方程中,自变量的个数为两个或两个以上,则称这种微分方程为偏微分方程. 例如 0222222=∂∂+∂∂+∂∂zTy T x T , t T x T ∂∂=∂∂422. 本书在不特别指明的情况下, 所说的方程或微分方程均指常微分方程. 3. 微分方程的阶数: 微分方程中出现的未知函数最高阶导数的阶数. 例如,)(22t f cy dt dyb dty d =++ 是二阶常微分方程; 0222222=∂∂+∂∂+∂∂zTy T x T 与t T x T ∂∂=∂∂422是二阶偏微分方程. 4. n 阶常微分方程的一般形式:(,,,...,)0n n dy d yF t y dt dt=,这里(,,,...,)n n dy d y F t y dt dt 是,,,...,n n dy d y t y dt dt 的已知函数,而且一定含有n n d ydt的项;y 是未知函数,t 是自变量. 5. 线性与非线性:(1) 如果方程(,,,...,)0n n dy d y F t y dt dt =的左端是y 及,...,n n dy d ydt dt的一次有理式,则称(,,,...,)0n n dy d yF t y dt dt=为n 阶线性微分方程. (2) 一般n 阶线性微分方程具有形式:1111()...()()()n n n n n n d y d y dy a t a t a t y f t dt dt dt---++++= 这里1()a t ,…, ()n a t ,()f t 是t 的已知函数.(3)不是线性方程的方程称为非线性方程. (4) 举例:方程)(22t f cy dt dyb dt y d =++是二阶线性微分方程; 方程0sin 22=+φφl gdtd 是二阶非线性微分方程;方程0)(2=++y dtdy t dt dy 是一阶非线性微分方程. 6. 解和隐式解:如果将函数()y t ϕ=代入方程(,,,...,)0n n dy d yF t y dt dt=后,能使它变为恒等式,则称函数()y t ϕ=为方程的解. 如果关系式,0t yΦ=()决定的隐函数()y t ϕ=是方程的解,则称,0t y Φ=()为方程的隐式解. 7. 通解与特解:把含有n 个独立的任意常数n c c c ,...,,21的解 12(,,,...,)n y t c c c ϕ=称为n 阶方程(,,,...,)0n n dy d yF t y dt dt =的通解. 其中解对常数的独立性是指,对ϕ及其 1n -阶导数11,...,n n d d dt dtϕϕ--关于n 个常数 n c c c ,...,,21的雅可比行列式不为0, 即 1212(1)(1)(1)120n n n n n nc c c c c c c c c ϕϕϕϕϕϕϕϕϕ---∂∂∂∂∂∂'''∂∂∂∂∂∂≠∂∂∂∂∂∂.为了确定微分方程一个特定的解,通常给出这个解所必须满足的条件,称为定解条件.常见的定解条件是初始条件, n 阶微分方程(,,,...,)0n n dy d yF t y dt dt =的初始条件是指如下的n 个条件: 1(1)(1)00001,,...,n n n dy d y t t y y y y dt dt---====,,这里(1)(1)0000,,,...,n t y y y -是给定的n+1个常数. 求微分方程满足定解条件的解,就是所谓定解问题. 当定解条件为初始条件时,相应的定解问题称为初值问题. 把满足初始条件的解称为微分方程的特解. 初始条件不同,对应的特解也不同.(二) 解析方法1.变量分离方程 形如()()dyf t y dtϕ=的方程为变量分离方程,其中(),()f t y ϕ分别为,t y 的连续函数.方程解法如下:若()0y ϕ≠,则()()()()dyf t dt y dyf t dt cy ϕϕ==+⎰⎰上式确定方程的隐式通解. 如果存在0y ,使得()00y ϕ=,则0y y =也是方程的解. 2. 可化为变量分离方程的方程(1) 齐次方程形如 ()dy yg dt t=的方程为齐次方程,()g u 为u 的连续函数. 解法如下:做变量替换y u t =,即y ut =,有dy dut u dt dt=+,从而原方程变为 ()du t u g u dt +=,整理有()du g u u dt t-=,此为变量分离方程,可求解. (2) 形如111222a tb yc dy dt a t b y c ++=++的方程, 其中121212,,,,a a b b c c , 为常数. ●111222a b c k a b c ===的情形. 此时方程化为,dyk dt=可解得y kt c =+. ●11220,a b a b =即1122a b k a b ==的情形: 令 22,u a t b y =+ 则有 122222ku c du dya b a b dt dt u c +=+=++ 此为变量分离方程. ●11220a b a b ≠的情形对120c c ==的情况, 直接做变量替换yu t=. 当12,c c 不全为零, 求 11122200a t b y c a t b y c ++=⎧⎨++=⎩的解为t y αβ=⎧⎨=⎩. 令 T t Y y αβ=-⎧⎨=-⎩, 则方程组化为112200a T bY a T b Y +=⎧⎨+=⎩. 原方程化为12()a T bY dY Yg dT a T bY T+==+的齐次方程可求解. 3.一阶线性微分方程(1) 一般形式:()()()0dya tb t yc t dt++=,若()0a t ≠,则可写成()()dyP t y Q t dt=+的形式. (2) 一阶齐次线性微分方程:()dyP t y dt =,通解为(),P t dt ce c ⎰ 为任意常数. (3) 一阶非齐次线性微分方程:()()dyP t y Q t dt=+,()0Q t ≠. (4) 齐次线性微分方程的性质性质1 必有零解 0y =;性质2 通解等于任意常数c 与一个特解的乘积; 性质3 任意两个解的线性组合也是该微分方程的解. (5) 非齐次线性微分方程的性质性质1 没有零解;性质2 非齐次方程的解加上对应齐次方程的解仍为非齐次方程的解; 性质3 任意两个非齐次方程的解的差是相应齐次方程的解. (6) 一阶非齐次线性微分方程的解法:(i) 猜测-检验法对于常系数的情形,即 ()P t 为常数, 此时方程为()dyay Q t dt=+, a 为常数. 对应齐次方程的通解为atce , 只需再求一个特解, 这时根据()Q t 为特定的函数,可猜测不同的形式特解. 事实上, 当()BtQ t Ae =, ,A B 为给定常数, 且B a ≠时可设待定特解为Bt Ce , 而当B a =时, 可设特解形式为BtCte , 后代入方程可确定待定常数C . 当()Q t 为cos ,sin At At 或它们的线性组合时, 其中A 为给定常数. 这时可设待定特解为cos sin B At C At +代入方程后确定,B C 的值. 当()Q t 具有多项式形式1011n n n n a t a t a t a --++++, 其中01,,n a a a 为给定常数且00a ≠, 这时可设待定特解为1011nn n n b t bt b t b --++++代入方程可求得,0,1,,i b i n = 的值. 对于()Q t 有上述几种线性组合的形式, 则可设待定特解是上述形式特解的线性组合. (ii) 常数变易法: 令()()P t dty c t e ⎰=,代入方程,求出()c t 后可求得通解为()()(())P t dtP t dty e Q t e dt c -⎰⎰=+⎰.(iii) 积分因子法: 方程改写为()()dyP t y Q t dt-=, 将()P t dt e μ-⎰=, 乘方程两端得 ()()()()()P t dt P t dtP t dt dy e e P t y Q t e dt---⎰⎰⎰-= 即 ()()()()P t dtP t dt d ye Q t e dt --⎰⎰=, 从而通解为 ()()()P t dt P t dt ye Q t e dt c --⎰⎰ =+⎰,即 ()()(())P t d t P t d ty e Q t ed t c-⎰⎰= +⎰. 注意, 非齐次线性微分方程通解的结构是: 非齐次线性微分方程的通解等于其对应的齐次线性微分方程的通解加上非齐次线性微分方程的一个特解.4. 伯努利(Bernoulli)方程. 形如()()n dyP t y Q t y dt=+的方程, 其中 n 是常数且0,1,(),()n P t Q t ≠ 是连续函数, 称为伯努利方程. 伯努利方程可通过变量替换 1n z y -=化为(1)()(1)()dyn P t z n Q t dt=-+-, 这是关于未知函数z 的线性方程, 可求其通解.(三) 定性方法与数值方法:1. 斜率场:一阶微分方程(,)dyf t y dt =的解()y t ϕ=代表ty 平面上的一条曲线,称之为微分方程的积分曲线. 微分方程(,)dyf t y dt=的通解()y t ϕ=,c 对应于ty 平面上的一族曲线,称之为微分方程的积分曲线族. 满足初始条件00()y t y =的特解就是通过点00(,)t y 的一条积分曲线. 方程(,)dy f t y dt =的积分曲线上的每一点(,)t y 处的切线斜率dydt刚好等于函数(,)f t y 在这点的值. 也就是,积分曲线的每一点(,)t y 以及这点上的切线斜率dydt恒满足方程;反之,如果在一条曲线每点上其切线斜率刚好等于函数(,)f t y 在这点的值,则这一条曲线就是方程的积分曲线. 这样,可以用(,)f t y 在ty 平面的某个区域D 内定义过各点的小线段,其斜率为(,)f t y ,一般称这样的小线段为斜率标记. 而对ty 平面上D 内任一点(,)t y , 有这样一个小线段与之对应, 这样在D 内形成一个方向场, 称为斜率场. 斜率场是几何直观上描述解的常用方法2. 欧拉方法:求微分方程初值问题00(,)()dyf t y dty t y⎧=⎪⎨⎪=⎩ 的解,可以从初始条件00()y t y =出发,按照一定的步长t ∆ 依照某种方法逐步计算微分方程的近似解()n n y y t =, 这里0n t t n t =+∆这样求出的解称为数值解. 利用欧拉公式10(,),n n n n n y y f t y t t t n t +=+∆ =+∆,可求初值问题的近似解,这种方法称为欧拉方法.欧拉方法具有一阶误差精度 .如果我们先用欧拉公式求出近似解,再利用梯形公式进行校正, 得到的近似解将具有2阶误差精度, 具体为 预测: 1(,)n n n n y y f t y t +=+∆, 校正: 11,11[(,)()]2n n n n n n y y f t y f t y t ++ +=++∆, 这种方法称为改进的欧拉方法.(四) 解的存在性、唯一性及解对初值的连续相依性1. 利普希茨(lipschitz )条件: 函数(,)f t y 称为在区域2D ⊆R 内关于y 满足利普希茨条件,是指如果存在常数0L >,使得不等式1212(,)(,)f t y f t y L y y -≤-对于所有的12(,),(,)t y t y D ∈都成立, 其中L 称为利普希茨常数. 2. 基本定理(1) 解的存在性定理: 设(,)f t y 在矩形区域2{(,):,}D t y a t b c y d =∈ << <<R 内连续.如果00(,)t y D ∈, 那么,存在0ε> 和函数()y t , 定义于区间00(,)t t εε-+内,是初值问题00(,)()dyf t y dt y t y⎧=⎪⎨⎪=⎩ 的解. (2) 解的唯一性定理: 设(,)f t y 在矩形区域2{(,):,}D t y a t b c y d =∈ << <<R 内连续且关于y 满足利普希茨条件. 如果00(,)t y D ∈并且12(),()y t y t 是初值问题00(,)()dyf t y dty t y⎧=⎪⎨⎪=⎩在区间00(,)t t εε-+内的两个解,那么对任意的00(,)t t t εε∈-+,12()()y t y t =,即解是唯一的.注记1: 存在性定理和唯一性定理结合在一起称为初值问题解的存在唯一性定理,叙述如下:设(,)f t y 在矩形区域2{(,):,}D t y a t b c y d =∈ << <<R 内连续且关于y 满足利普希茨条件. 如果00(,)t y D ∈, 那么,存在0ε> 和函数()y t , 定义于区间00(,)t t εε-+内,是初值问题00(,)()dyf t y dty t y⎧=⎪⎨⎪=⎩ 的唯一解. 因而当我们判断初值问题解的存在唯一性时,要检查(,)f t y 需要满足的条件.注记2: 由于利普希茨条件较难检验,常用(,)f t y 在2{(,):,}D t y a t b c y d =∈ ≤≤ ≤≤R上对y 有连续偏导数来代替. 事实上,如果在D 上y f ∂∂存在且连续,则yf∂∂在D 上有界. 设在D 上L yf≤∂∂, 这时 2121212(,())(,)(,)f t y y y f t y f t y y y yθ∂+--=-∂21y y L -≤, 其中 12(,),(,),01t y t y D θ∈ <<. 但反过来满足利普希茨条件的函数(,)f t y 不一定有偏导数存在. 例如(,)||f t y y = 在任何区域内都满足利普希茨条件,但它在0y =处没有导数.(3) 解对初值的连续相依性定理设(,)f t y 在矩形区域2{(,):,}D t y a t b c y d =∈ << <<R 内连续且关于y 满足利普希茨条件. 如果00(,)t y D ∈,00(,,)y t t y ϕ=是初值问题00(,)()dyf t y dt y t y⎧=⎪⎨⎪=⎩在区间00(,)t h t h -+内的解,其中 0h >,那么,对任意给定的0>ε,必能找到正数(,)0h δδε=>,使得 当2220000t t y y δ-+-<()()时,初值问题00(,)()dyf t y dty t y⎧=⎪⎨⎪=⎩的解00(,,)y t t y ϕ=在区间00(,)t h t h -+内也有定义,并且0000|(,,),,|,t t y x t y ϕϕε-<() 00(,)t t h t h ∈-+. (4) 解对初值的连续性定理设(,)f t y 在矩形区域2{(,):,}D t y a t b c y d =∈ << <<R 内连续且关于y 满足利普希茨条件. 如果00(,)t y D ∈,00(,,)y t t y ϕ=是初值问题00(,)()dyf t y dt y t y⎧=⎪⎨⎪=⎩的解, 那么00(,,)t t y ϕ作为00,,t t y 的三元函数在它存在的范围内是连续的.3. 初值问题的适定性当一个微分方程初值问题的解存在, 唯一并且解连续的依赖于初始条件时, 我们称该问题是适定的. 那么, 对于常微分方程初值问题00(,)()dyf t y dt y t y⎧=⎪⎨⎪=⎩, 只要在00(,)t y 所在的区域内,(,)f t y 连续并且关于y 满足利普希茨条件, 则该初值问题是适定的.(五) 自治方程的平衡点与相线1. 自治方程 当一阶微分方程(,)dy f t y dt =的右端项只是y 的函数而与自变量t 无关, 即()dy f y dt=时, 称为自治方程.2. 平衡解与平衡点 对自治方程()dyf y dt=而言, 若()0f y =有解0y y =, 则称 0()y t y ≡ 是方程的平衡解, 而点0y 称为方程的一个平衡点. 3. 相线相线是仅仅对自治方程()dyf y dt=而言的一种简化的斜率场. 自治方程的斜率场在水平直线上的斜率标记是一样的, 这样只要知道一条竖直直线上的斜率标记, 我们就可以知道整个斜率场. 因而, 在一个竖直的直线上, 我们用向上的箭头表示正的导数, 用向下的箭头表示负的导数. 对于导数为零的点, 用实心圆点来标记它, 则形成该自治方程的相线. 4. 画相线的基本步骤 (1) 画出y -线(竖直线),(2) 找到并在y -线上标记平衡点,不连续点或定义域外的点 (3) 找到()0f y >的区间, 在这些区间上画上向上的箭头, (4) 找到()0f y < 的区间, 在这些区间上画上向下的箭头.5. 初值问题0(),(0)dyf y y y dt= =解的渐近行为 (1) 趋向于平衡点, 如01()(1),2f y y y y =- =;(2) 在无限时间内趋于无穷, 如0(),1f y y y = =; (3) 在有限时间内趋于无穷(爆破), 如20(),1f y y y = =; (4) 在有限时间内停止(导数趋于无穷), 如 01(),1f y y y=- =. 6. 平衡点的分类对于自治方程()dyf y dt=, 如果()f y 在(,)-∞+∞ 内连续, 那么它的解当t 增加时要么(在有限或无限时间里)趋于+∞或-∞, 要么渐近趋于平衡点. 因而,平衡点在自治方程的研究中起着重要的作用. (1) 汇对于初值接近0y 的解, 当t 增加时, 都渐近趋于0y . 对于这样的平衡点0y , 我们称之为汇, 它是稳定的. (2) 源对于初值接近0y 的解, 当t 增加时, 都远离0y . 对于这样的平衡点0y , 我们称之为源,它是不稳定的. (3) 结点既不是源也不是汇的平衡点, 我们称之为结点,它也是不稳定的. 7. 判断平衡点类型的线性化方法 1. 如果0y 是自治方程()dyf y dt=的一个平衡点, 即0()0f y =, 那么 (1) 0y 是源当且仅当()f y 在0y 附近严格单调增加; (2) 0y 是汇当且仅当()f y 在0y 附近严格单调递减. 2. (线性化定理) 如果0y 是自治方程()dyf y dt=的一个平衡点, 即0()0f y =, 并且()f y 是连续可微的, 那么 (1) 若0()0f y '> 则0y 是源; (2) 若0()0f y '<, 则0y 是汇;(3) 若0()0f y '=, 则需要进一步的信息决定其类型.(六) 分歧一阶微分方程解的渐近行为随参数变化发生了类型的变化, 我们称之为分歧现象(或分支, 分叉).1. 分歧发生的条件 对于单参数微分方程族()(,)dy f y f y dtμμ==, 0μμ=是一个分歧值的必要条件是: 存在平衡点0y , 使得 0000(,)(,)0f f y y yμμ∂==∂. 这样我们要找分歧点可以通过求解方程组 (,)0(,)0f y f y y μμ=⎧⎪∂⎨=⎪∂⎩, 得到解 00(,)y μ,0μ为可能的分歧值, 而0y 是可能发生分歧的平衡点. 2. 分歧图解与分歧类型分歧图解是y μ 平面上方程在分歧值附近的所有相线的图, 用以强调当参数经过分歧值时相线所经历的变化.(1) 鞍结点分歧在分歧图解(图1-1)中, 当μ从左到右经过分歧值0μ时, 方程的平衡点从两个变为一个再变为不存在, 这种分歧一般称之为鞍结点分歧. 这类分歧图解在分歧值附近是抛物线的形状(2) 在分歧图解(图1-2)中,当μ从右到左经过分歧值0μ=时, 方程的平衡点由三个变为一个, 这种分歧一般称之为音叉分歧.图 1-1 鞍结点分歧 图 1-2 音叉分歧图 1-3 跨越分歧 图 1-4 复合分歧(3) 在分歧图解(图1-3)中, 当0μ= 时, 方程有一个平衡点; 当0μ≠ 时, 方程有两个平衡点. 0μ=是一个分歧值. 虽然在分歧值的两侧方程都有两个平衡点,但平衡点的稳定性会改变. 当0μ> 时, 0y =是一个汇,它是稳定的; 当0μ<时, 0y =是一个源,它 是不稳定的. 这类分歧一般称为跨越分歧.(4) 在分歧图解(图1-4)中, 当 μ从左到右变化时,相应的方程平衡点依次由一个变为两个,三个,两个再变回一个, 这种分歧一般称之为复合分歧.(七) 一阶微分方程的应用1. 增长和衰减问题设 ()S t 为正在增长或衰减的某研究对象的总量. 如果假设它随时间的变化率dS dt与当前数目成正比, 其比例系数为 k , 则有 dS kS dt =, 或 0dS kS dt-=. 设()S t 可微, 因而是连续函数. Malthus 人口模型满足上述微分方程, 虽然对人口问题, ()S t 是离散的, 只能取整数值, 但该模型系统在一定情况下提供了很好的近似对某一生物种群进行研究时, 该生物种群的增长往往受资源和环境的限制, 引进参量N , 称为最大承载量, 用以表示自然资源和环境条件所能容纳的最大数量, 并且假定 (1)当基数很小时,增长率与当前数成正比;(2)当基数很大,达到资源和环境不能承受的时候,数量开始减少,即增长率为负的. 此时方程可改写为(1)dS S k S dt N=-, 称为具有增长率k 和最大承载量N 的Logistic 模型,该模型最早由荷兰生物学家 Verhulst在1838年提出.2. 温度问题牛顿冷却定律(亦适应于加热的情况)说明物体的温度随时间的变化率与物体所处的周围环境的温差成正比, 设 T 是物体的温度, T 是所处环境的温度, 那么物体温度随时间的变化率为dT dt, 牛顿冷却定律可表示为 ()dT k T T dt=--, 其中k 是正的比例系数, 而负号表示在冷却过程中, 物体温度 T 大于周围环境温度T , 变化率0dT dt <. 在加热过程中0dT dt>, 此时T T <. 3. 稀释问题一容器最初容纳0V 升盐水溶液, 其中含盐 a 克. 每升含盐 b 克的盐水溶液以e 升/分的速度注入,同时, 搅拌均匀的溶液以f 升/分的速度流出, 问在任何时刻 t , 容器中的含盐量.设Q 为任何时刻容器中的含盐量. Q 的变化率dQ dt等于盐的注入率减去流出率. 盐的注入率是 be 克/分. 要决定流出率, 首先计算在时刻t , 容器中的溶液的体积, 它等于最初的体积0V 加上注入的体积 et 后减去流出的体积ft . 因此, 在任一时刻t , 盐水的体积是 0V et ft +-. 在任何时刻的浓度是 0Q V et ft +-, 由此得流出率为 0Qf V et ft+-/分. 于是得到微分方程 0dQ Qf be dt V et ft =-+-, 即 0dQ f Q be dt V et ft+=+-, 这是一个一阶线性方程.4. 电路一个简单的 RC 回路是包含有电阻R (欧姆), 电容C (法拉)和电源V (伏特),如图1-5.图1-5 RC 电路 图1-6 RL 电路由电路学知识,C 的电压()v t 与电阻R 的电压之和应为电源的电压()V t . 电路中的电流I (安培)为 ()dQ dCv t dv I C dt dt dt ===, 其中 Q 为电量从而R 处的电压为 dv RI RC dt=, 由此我们可以建立RC 电路的模型如下:()dv RC v V t dt +=, 即 ()dv V t v dt RC-=. 对于一个包含有电阻R (欧姆), 电感L (亨利)和电源V (伏特)的RL 回路,如图1-6. 电路中的电流应满足的基本方程为 dI R V I dt L L +=.(八) 种群生态学中的模型设()y t 表示一个生物种群的数量, t 为时间, 最简单的种群模型是 Malthus 模型dy ky dt=. Malthus 模型的解()(0)kt y t y e =预测了种群数量的指数增长.由于种群数量大的时候,对资源的竞争加剧,因此单位增长率会随种群数目增大而减小,因此更为合理的假设是()dy yf y dt= (*) 这里()f y 是单位增长率,因为dy dt 为增长率,y 是种群数量, 而()/dy f y y dt =. 当考虑种群数量的变化时.对()f y 而言, 其代数形式并不重要, 而关键是其单调性, 凸凹性, 这样我们可以对其进行大致分类:(1) 若()f y 在[0,)+∞上是递减的,称(*)为 Logistic 型;(2) 若()f y 在[0,)+∞上是先增后减的,称(*)为 Allee 效应型;(3) 若()f y 在[0,)+∞上是递减再递增最后递减的,称(*)为 Hysteresis 型.1.3典型例题:例1 考虑微分方程 3220dy y y y dt=--, 问 (1) y 为何值时, ()y t 将保持不变?(2) y 为何值时, ()y t 将增加?(3) y 为何值时, ()y t 将减少?解: 因为当0dy dt =时, ()y t 将保持不变; 当0dy dt >时, ()y t 将增加; 当0dy dt<时, ()y t 将减少. 由3220dy y y y dt=--知, (1) 当32200y y y --=, 即0,4,5y y y = =-=时, ()y t 将保持不变.(2) 当32200y y y -->, 即40y -<< 或5y > 时, ()y t 将增加.(3) 当32200y y y --<, 即4y <- 或05y << 时, ()y t 将减少.例2 假定在鄱阳湖中一种鱼类的数量()S t 随时间的变化按Logistic 模型增长, 增长率为k , 最大承载量为N , 即有 (1)dS S k S dt N=-. 如果每年要从湖中捕获一定量的鱼, 试按下述不同情形对模型做适当修改,(1) 每年捕获10吨?(2) 每年捕获总量的三分之一?(3) 捕获量与总量的平方根成正比?解: (1)(1)10dS S k S dt N=--. (2) 1(1)3dS S k S S dt N =--. (3) (1)dS S k S l S dt N =--, 其中 l 是捕获量与总量平方根的比例系数. 例3 求解方程dy t dt y=- 解:变量分离得 ydt tdy =-.两边积分 22222y t c =-+. 通解为 22t y c +=, c 为任意正常数.例4 求解方程231dy y dx xy x y+=+ 解:变量分离得221(1)ydy dx y x x =++, 两边积分 2221()1(1)1ydy dx x dx y x x x x ==-+++⎰⎰⎰.即 22111ln(1)ln ||ln(1)22y x x c +=-++, 1c 为任意常数, 整理得222(1)(1)y x cx ++=, 12c c e =为任意正的常数.例5 求解方程tan dy y xy dx x-=. 解: 将方程改写为 tan dy y y dx x x=+, 这是齐次方程, 做变量替换y u x =,即y ux =,有dy du x u dx dx=+,从而原方程变为 tan du x u u u dx +=+ 即tan du u dx x= 利用分离变量法求得 s i n u c x =, 代回原变量得通解为sin y cx x=, c 为任意常数 例6 求解方程22dy x y x y dx=+-. 解: 方程改写为2s g n 1()d y y y x d x x x =+⋅- 令u =y x ,则y u x =,从而2sgn 1du x u u x u dx+=+⋅- 当210u -≠时,2sgn 1dux dx xu =-, arcsin sgn ln u x x c =⋅+, 即 arcsin sgn ln y x x c x=⋅+, c 为任意常数.此外,还有解210u -=,即22y x =.例7 求解方程 13dy x y dx x y -+=+- 解: 解方程组 1030x y x y -+=⎧⎨+-=⎩的解 为 12x y =⎧⎨=⎩. 令 12X x Y y =-⎧⎨=-⎩ , 则原方程化为 dY X Y dX X Y -=+.令 Y u X = ,则可化为变量分离方程 21,12dX u du X u u +=-- 解得 222Y XY X c --=, 代回原变量 有22262y xy x y x c +---=, c 为任意常数.例8 求解方程 2()dy y b t dt-=, 其中 (1) 2()1b t t t =++,(2) 4()t b t e =(3) 2()3t b t e =(4) ()cos3b t t =(5) 422()3cos31t t b t e e t t t =+++++解: 对应齐次方程的通解为 2t y ce =, 下面用猜测-检验法求特解(1) 设 21y At Bt C =++ 代入 221dy y t t dt-=++, 有 2222()1At B At Bt C t t +-++=++解得 1,1,12A B C =- =- =-, 从而21112y t t =---, 原方程的通解为 22112ty ce t t =---, c 为任意常数. (2) 设 42t y Ae = 代入 42t dy y e dt -=, 有 44442t t t Ae Ae e -=解得 12A =, 从而4212t y e =, 原方程的通解为 2412t t y ce e =+, c 为任意常数. (3) 不能设2t Ae 形式的特解, 因为它是相应齐次方程的解,不可能是非齐次方程的解, 设 23t y Ate = 代入 22t dy y e dt-=, 有 2222223t t t t Ate Ae Ate e +-=解得 3A =, 从而233t y te =, 原方程的通解为2223(3)t t t y ce te c t e =+=+, c 为任意常数.(4) 设 4cos3sin3y A t B t =+ 代入 2cos3dy y t dt-=, 有 3sin33cos32(cos3sin3)cos3A t B t A t B t t -+-+=有 2310320A B A B -+-=⎧⎨ --=⎩, 解得 23,1313A B =- =, 从而423cos3sin 31313y t t =-+, 原方程的通解为 223cos3sin 31313t y ce t t =-+, c 为任意常数.(5) 根据叠加原理, 由前面4个小题知方程有特解422512313cos3sin 31213132t t y e te t t t t =+-+--- 原方程的通解为242212313cos3sin 31213132t t t y ce e te t t t t =++-+---,c 为任意常数. 例9 求方程22dy y dx x y =-的通解. 解: 将方程改写为222dx x y x y dy y y-==-. 求齐次线性微分方程 2dx x dy y=, 得通解为2x cy =. (常数变易法) 令 2()x c y y =代入原方程 得()1,()ln ||dc y c y y c dy y=- =-+, 从而可得原方程的通解为2(ln ||)x y y c =-+, c 为任意常数.例10 求方程26dy y ty dt t=-的通解. 解: 此为 2n =的伯努利方程. 令 1z y -=可得6dz z t dt t =-+,此为线性方程可求通解为 268c t z t =-+, 代回原变量得 2618c t y t =-+, 即 688t t c y -=, c 为任意常数. 此外, 原方程还有解0y =.例11 用积分因子法求解方程 32(1)1dy y t dt t =+++. 解: 方程改写为 32(1)1dy y t dt t -=++, 积分因子为 221()(1)dt t t e t μ- -+⎰==+, 乘方程两端得 23(1)2(1)1dy t t y t dt--+-+=+, 即 2(1)1d t y t dt-+=+, 有 421(1)(1)2y t c t =+++, c 为任意常数.例12 若()f t 连续且0()()10t f t f s ds t = , ≠⎰, 试求函数()f t 的一般表达式. 解: 设0()()tF t f s ds =⎰, 则()F t 可导且()()F t f t '=, 这样有1,dF FFdF dt dt = =, 得 2()2,()2F t t c F t t c =+ =±+, 又(0)0F =, 得0c =. 从而 ()2F t t =±, 进而 1()()2f t F t t'==±. 例13 求具有性质 ()()()1()()y t y s y t s y t y s ++=- 的函数 ()y t , 已知(0)y '存在. 解: 首先令 0s =, 由已知可得 ()(0)()1()(0)y t y y t y t y +=-, 化简有 2(0)(1())0y y t +=, 知 (0)0y =. 由函数的导数定义00202002()()()lim()()()1()()lim ()(1())lim (1()())()1()lim lim 1()()(0)(1())s s s s s y t s y t y t sy t y s y t y t y s sy s y t s y t y s y s y t s y t y s y y t →→→→→+-'=+-- =+ =-+ = -' = + 变形为 2(0)1()dy y dt y t '=+, 积分得 arctan ()(0)y t y t c ' = +, 由(0)0y =, 知 0c =, 所以满足条件的函数为 ()tan (0))y t y t '= (.例14 下面给定8个微分方程和4个斜率场, 请选出斜率场相应的微分方程, 并说明理由. (1) 2dy t dt =- (2) 24dy y dt =- (3) 2dy y t dt=- (4) 2dy t dt =- (5) 24dy y dt =- (6) 2dy y dt =- (7) dy yt t dt =+ (8) 2dy y t dt=+图1-7 图1-8图1-9 图1-10解: 图1-7对应于(4),图1-8对应于(3),图1-9对应于(2),图1-10对应于(7). 这是因为图1-7的斜率场竖直方向上的斜率标记一样, 知方程的右端项仅是自变量t 的函数()f t , 且当 2t >, ()0f t <, 当2t <时, ()0f t >, 只有(4)满足要求. 图1-8的斜率场知方程右端项为(,)f t y 是 ,t y 的函数, 且当 0y <时,(,)0f t y <, 只有(3)满足.图1-9的斜率场知方程为自治方程有平衡点 2,2y y ==-, 且在 22y -<<时,()0f y <, 知只有(2)满足要求.图1-10的斜率场知方程右端项为(,)f t y 是 ,t y 的函数, 且有平衡解 1y =-, 只有(7)满足要求.例15 利用欧拉方法和改进的欧拉方法, 对步长 0.1t ∆=, 在区间[0,1]上求初值问题21,(0)0dyy y dt=+ =的近似解. 解: 这里 200(,)1,0,0f t y y t y =+==. 利用欧拉公式10(,),n n n n n y y f t y t t t n t +=+∆ =+∆,和 改进的欧拉方法,预测: 1(,)n n n n y y f t y t +=+∆, 校正: 11,11[(,)()]2n n n n n n y y f t y f t y t ++ +=++∆,分别计算如下表:欧拉方法改进的欧拉方法n n tn y(,)n n f t y 预测的n y校正的n y 真 解tan y t =0 010 0 1 0.1 0.1000 1.0100 0.1000 0.1005 0.1003 2 0.2 0.2010 1.0404 0.2015 0.2030 0.2027 3 0.3 0.3050 1.0930 0.3072 0.3098 0.3093 4 0.4 0.4143 1.1716 0.4194 0.4234 0.4228 5 0.5 0.5315 1.2825 0.5413 0.5470 0.5463 6 0.6 0.6598 1.4353 0.6769 0.6849 0.6841 7 0.7 0.8033 1.6453 0.8318 0.8429 0.8423 8 0.8 0.9678 1.9366 1.0140 1.0299 1.0296 9 0.9 1.1615 2.34911.2360 1.2592 1.2602 10 11.39642.94991.51791.55371.5574例16 讨论微分方程 233dyy dt=在怎样的区域内满足存在唯一性定理的条件,并求通过点(0, 0) 的一切解.解: 由 23(,)3f t y y =, 知它在全平面内连续, 又由于13(,)2f t y y y-∂=∂, 在除去0y =的区域内连续, 从而在除去0y =的有界闭区域内有界, 进而满足利普希茨条件, 知方程满足初始条件00()0y t y =≠的解在充分小的邻域内存在并且唯一. 当 0y =时, 函数0y =是方程过 (0,0) 的解.当0y ≠时, 方程可变形为 2313y dy dt - =, 积分得 3()y t c =+, c 为任意常数.当0c =时, 得特解 3y t = 是过 (0,0) 的另一个解, 其实, 除零解外, 过(0,0)的所有解可以表示为3111(),0,t c t c y t c ⎧- <=⎨ ≥⎩,3222(),0,t c t c y t c ⎧- >=⎨ ≤⎩, 31132212(),(),0,t c t c y t c t c c t c ⎧- <⎪=- >⎨⎪≤≤⎩,其中12,c c 是满足10c ≤,20c ≥的任意常数, 这些解的定义区间为(,)-∞ +∞, 但本质上在充分小的邻域 (,)εε-内方程所确定的过(0,0)的解只有四个,即 函数30,y y t = =, 3,00,t t y t εε⎧ -<<=⎨ 0≤<⎩及30,0,t y t t εε -<<⎧=⎨ 0≤<⎩.例17 举例说明一阶微分方程初值问题00(,)()dyf t y dt y t y⎧=⎪⎨⎪=⎩解的存在唯一性定理中, 关于(,)f t y 在矩形区域2{(,):,}D t y a t b c y d =∈ << <<R 内连续,关于y 满足利普希茨条件是保证解的存在唯一的非必要条件.解: (1) 当连续条件不满足时, 解也可能是存在唯一的. 如方程1,(,)0,y t dyf t y y t dt =⎧==⎨≠⎩, 显然, (,)f t y 在以原点为心的任何矩形区域内不连续, 间断点为直线y t =, 但过原点的解存在唯一, 这个解就是y t =.(2) 当利普希茨条件不满足时, 解也可能是唯一的. 如ln ||,0(,)0,y y y dyf t y y t dt ≠⎧==⎨=⎩, 由于 11111|(,)(,0)||ln ||0||ln ||||0|f t y f t y y y y -=-=⋅-,当 110,ln ||y y → →-∞无界, 因而(,)f t y 在以原点为心的任何矩形领域内不满足利普希茨条件. 然而方程的所有解为 xce y e =±,c 为任意常数, 及 0y =.过原点(0,0)有唯一解 ()0y t =. 例18 对微分方程(2)(5)dyy y y dt=--而言, 利用存在唯一性定理, 说明满足下列初始条件的解是否存在, 如果存在你能否知道这个解或有关这个解的一些性质.(1) (0)6y =, (2) (0)5y =, (3) (0)1y =, (4) (0)1y =-.解: 由方程的右端项为 ()(2)(5)f y y y y =--仅为 y 的函数在全平面上连续可微,从而由存在唯一性定理, 给定初始条件的解是存在并且是唯一的. 首先由()(2)(5)f y y y y =--知方程有()0,()2,()5y t y t y t = = =三个平衡解.(1) 初始条件为 (0)6y =, 初值位于()5y t =的上方, 由唯一性, 满足这个初始。
常微分方程1

常微分方程1第一章绪论[教学目标]1.理解常微分方程及其解的概念,能判别方程的阶数、线性与非线性。
2.掌握将实际问题建立成常微分方程模型的一般步骤。
3.理解积分曲线和方向场的概念。
[教学重难点] 重点微分方程的基本概念,难点是积分曲线和方向场。
[教学方法] 讲授,实践。
[教学时间] 4学时[教学内容] 常微分方程(偏微分方程)的概念,微分方程的阶,隐式方程,显式方程,线性(非线性)常微分方程;常微分方程的通解,特解,隐式解,初值问题,定解问题,积分曲线和方向场;建立常微分方程模型的具体方法。
[考核目标] 常微分方程及其解的概念,会建立常微分方程模型。
§1 微分方程模型1、微分方程的产生和发展常微分方程有着深刻而生动的实际背景,它从生产实践与科学技术中产生,又成为现代科学技术分析问题与解决问题的强有力工具。
该课程是与微积分一起成长起来的学科,是学习泛函分析、数理方程、微分几何的必要准备,本身也在工程力学、流体力学、天体力学、电路振荡分析、工业自动控制以及化学、生物、经济等领域有广泛的应用。
300多年前,Newton与Leibniz奠定微积分基本思想的同时,就正式提出了微分方程的概念.17世纪末到18世纪,常微分方程研究的中心问题是如何求出通解的表达式.19世纪末到20世纪处,主要研究解的定性理论与稳定性问题.20世纪进入新的阶段,定性上升到理论,进一步发展分为解析法、几何方法、数值方法.解析方法:是把微分方程的解看作是依靠这个方程来定义的自变量的函数.几何方法:(或定性方法)把微分方程的解看作是充满平面或空间或其局部的曲线族.数值方法:求微分方程满足一定初始条件(或边界)条件的解的近似值的各种方法.微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解。
牛顿在建立微积分的同时,对简单的微分方程用级数来求解。
后来瑞士数学家雅各布·贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论。
第十二章 微分方程一、二、三节

含有未知函数的导数(或微分)的关系式。
3
常微分方程的发展历史
常微分方程已有悠久的历史,而且继续保持着 进一步发展的活力,其主要原因是它扎根于各种实 际问题之中。
牛顿最早采用数学方法研究天体问题,其中需 要求解的运动方程是常微分方程。他以非凡的积分 技巧解决了它,从而在理论上证实了地球绕太阳的 运动轨道是一个椭圆,澄清了当时关于地球将坠毁 于太阳的一种悲观论点。另外,莱布尼兹也经常与 牛顿在通信中互相提出求解微分方程的挑战。
12
s 9.8 s(0) h, s(0) 0 2 (6) 的通解为 s( t ) 4.9t c1t c2 s( 0) h c 2 h ,
s(0) 0 9.8t c1 t 0 0 c1 0 .
( 6) (7)
5
尤其是地球椭圆轨道的计算、海王星的发现、 弹道轨道的定位、大型机械振动的分析、自动控 制的设计、气象数值预报、按龄人口增长宏观预 测等等, 微分方程为之提供了关键技术支撑。反 过来这些高新技术也推动了微分方程理论走向纵 深, 从过去对平衡点、周期轨道等的定性研究到 今天对非局部分岔、高余维分岔的分析判定, 微 分方程在理论和方法上正经历着一个新的跨越。
x2ddxy?应满足条件应满足条件此外函数此外函数xxyyy?y1微分方程1721??xxy积分得x式两边关于1将cxxxy????32d223得代入将21?c故所求的曲线方程为12??xy初始条件通解特解积分曲线解的几何意义常微分方程解的几何图形称为它的积分曲线
第十二章 微分方程
已知 y f ( x ) , 求 y — 积分问题
的切线的斜率为 2 x,求此曲线 L 的方程.
设曲线的方程为 y y( x),则有 dy (1) 2 x. dx 此外,函数y y(x) 应满足条件
《微分方程 》课件

需要选择合适的代换变量。
详细描述
在使用变量代换法时,需要选择合适的代换变量,使得微 分方程能够被转化为更简单的形式。这个过程需要一定的 技巧和经验。
积分因子法
总结词
通过寻找积分因子,将微分方程转化为积分方程。
详细描述
积分因子法是通过寻找积分因子,将微分方程转化为积 分方程,从而简化求解过程。这种方法适用于具有特定 形式的一阶非线性微分方程。
总结词
通过引入新的变量代换,简化微分方程的形式。
详细描述
变量代换法是通过引入新的变量代换,将微分方程转化为 更简单的形式,从而简化求解过程。这种方法适用于具有 特定形式的高阶微分方程。
总结词
适用于高阶微分方程。
详细描述
变量代换法主要适用于高阶微分方程,通过引入新的变量 代换,可以将高阶微分方程转化为更简单的形式,从而简 化求解过程。
解法
通常需要使用迭代法、级数法或摄动法等非线性 求解方法。
3
特例
当 p(x,y,y') = 0, q(x,y,y') = a(常数)时,方程 简化为 y'' + ay = f(x),其解法与二阶线性微分 方程类似。
二阶常系数线性微分方程
定义
形如 y'' + ay' + by = f(x) 的微分方程称为二阶常系数线性 微分方程。
《微分方程》PPT课件
目 录
• 微分方程简介 • 一阶微分方程 • 二阶微分方程 • 高阶微分方程 • 微分方程的解法 • 微分方程的应用实例
01
微分方程简介
微分方程的定义
总结词
微分方程是描述数学模型中变量之间 动态关系的方程,通过微分来描述函 数的变化率。
微分方程_高等教育-微积分

微分方程引例1:设曲线通过点(1,2),且在该曲线上任一点M (x ,y )处切线的斜率为2X ,求此曲线方程。
解:设曲线 )(x f y = x y 2='x dxdy 2= x d xdy 2= c xy +=2一、基本概念:1、微分方程:含有未知函数的导数(或微分)的方程叫微分方程。
⎩⎨⎧偏微分方程常微分方程2、常微分方程:未知函数是一元函数的微分方程,称为常微分方程。
3、偏微分方程:未知函数是多元函数的微分方程,称为偏微分方程。
一般形式:0......,,=')()(n y y y x F4、微分方程的阶:方程中求未知函数导数的最高阶数。
5、微分方程的解:如果函数)(x f y = 满足一个微分方程,则称它是该微分方程的解。
通解:)(x f y =包含任意常数的个数与微分方程的阶数相同。
特解:在通解里把任意常数确定,这种解称为特解。
6、解的几何意义:一阶0),,='y y x F ( 通解),(c x y y = 含有一个参数C 的一族曲线。
00,y y x x == 特解是过),(00y x 的一条曲线。
二阶0),,,='''y y y x F ( 通解),,(21c c x y y =含有二个参数的一族曲线。
00,,y y y y x x '='==特解是过),(00y x 的一条曲线,在),(00y x 处的斜率为0y ' 7、初始条件:在通解里,用某一种条件来确定特解,这种条件称为初始条件(用来确定任意常数)。
例2:验证kt c kt c x sin cos 21+= 是方程0222=+x k dtx d 的通解。
解:首先验证是解:kt k c kt k c dtdx cos sin 21+-=kt kc kt kc dtx d sin cos 222122--=)cos sin (212kt c kt c k +-=x k 2-=又在解中,阶数与常数的个数相同,所以是通解。
第一节 系统微分方程

机械工程控制基础
第三章 系统数学模型
1、什么是控制系统的数学模型 描述系统输入、输出物理量,以及内部物理 量之间关系的数学表达式。 2、线性系统与非线性系统: 系统的数学模型能用线性微分方程描述的系统 称为线性系统。否则为非线性系统
机械工程控制基础
第三章 系统数学模型
机械工程控制基础
第三章 系统数学模型
机械工程控制基础
第三章 系统数学模型
消去中间i变量,则得
d uC duC LC RC uC ur 2 dt 或写作 dt
d 2uc duc TLTC TC uc u r 2 dt dt
(3—1)
2
L 式中, TL , TC RC . R 式(3-1)就是图3-1所示电路的数学模型,它描 述了该电路在 ur 作用下电容两端电压 uc 的变化规律。
机械工程控制基础
第三章 系统数学模型
例3-2 已知一R-C网络如图所示,试写出该网 络输入与输出之间的微分方程。
图3-2 两级R-C电路
解 当后级的输入阻抗很大,即对前级网络的影响可以 忽略不计时,由基尔霍夫电流定律写出下列的方程组
机械工程控制基础
1 C1 1 C2 1 C2
第三章 系统数学模型
机械工程控制基础
第三章 系统数学模型
二、 列写系统微分方程式的一般方法 • 系统微分方程(differential equation)是描述控制系 统动态性能的一种数学模型。
• 为使所建立的数学模型即简单又具有足够的精度, 在推演系统的数学模型时,必须对系统作全面深 入考察,以求能把那些对系统性能影响较小的一 些次要因数略去。 • 用解析法推演系统的数学模型的前提是对系统的 作用原理和系统中个元件的物理属性有着深入的 了解。
微分方程ppt

100W优质文档免费下 载
VIP有效期内的用户可以免费下载VIP免费文档,不消耗下载特权,非会员用户需要消耗下载券/积分获取。
部分付费文档八折起 VIP用户在购买精选付费文档时可享受8折优惠,省上加省;参与折扣的付费文档均会在阅读页标识出折扣价格。
服务特 权
共享文档下载特权
VIP用户有效期内可使用共享文档下载特权下载任意下载券标价的文档(不含付费文档和VIP专享文档),每下载一篇共享文
档消耗一个共享文档下载特权。
年VIP
月VIP
连续包月VIP
享受100次共享文档下载特权,一次 发放,全年内有效
赠每的送次VI的发P类共放型享的决文特定档权。下有载效特期权为自1个VI月P,生发效起放每数量月发由放您一购次买,赠 V不 我I送 清 的P生每 零 设效月 。 置起自 随1每5动 时次月续 取共发费 消享放, 。文一前档次往下,我载持的特续账权有号,效-自
服务特 权
共享文档下载特权
VIP用户有效期内可使用共享文档下载特权下载任意下载券标价的文档(不含付费文档和VIP专享文档),每下载一篇共享文
档消耗一个共享文档下载特权。
年VIP
月VIP
连续包月VIP
享受100次共享文档下载特权,一次 发放,全年内有效
赠每的送次VI的发P类共放型享的决文特定档权。下有载效特期权为自1个V月IP,生发效放起数每量月由发您放购一买次,赠 V不 我IP送 清的生每 零设效月 。置起1自随每5次动时月共续取发享费消放文,。一档前次下往,载我持特的续权账有,号效自-
分 方 程
z z xy z2 x y
zx 5z4 0
常微分方程
偏微分方程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我们注意到例2-1和例2-2的微分方程形式是完全 一样的。
这是因为:若令 q idt (电荷),则例2-1①式的结果变
为:
L
d 2q dt 2
R
dq dt
1 C
q
ui
可见,同一物理系统有不同形式的数学模型,而不同类型的系
统也可以有相同形式的数学模型。
[定义] 具有相同的数学模型的不同物理系统称为相似系统。
在经典控制领域,主要研究的是线性定常控制系统。 如果描述系统的数学模型是线性常系数的微分方程,则称 该系统 为线性定常系统,其最重要的特性便是可以应用线 性叠加原理,即系统的总输出可以由若干个输入引起的输 出叠加得到。
若描述系统的数学模型是非线性(微分)方程,则相应 的系统称为非线性系统,这种系统不能用线性叠加原理。在 经典控制领域对非线性环节的处理能力是很小的。但在工程 应用中,除了含有强非线性环节或系统参数随时间变化较大 的情况,一般采用近似的线性化方法。对于非线性方程,可 在工作点附近用泰勒级数展开,取前面的线性项。可以得到 等效的线性环节。
[线性定常系统和线性时变系统] 可以用线性定常(常系数)微 分方程描述的系统称为线性定常系统。如果描述系统的微分方 程的系数是时间的函数,则这类系统为线性时变系统。
宇宙飞船控制系统就是时变控制的一个例子(宇宙飞船的 质量随着燃料的消耗而变化)。
Wednesday, June 10, 2020
4
概述
[非线性系统] 如果系统不能满足叠加原理,则系统是非线性的。
下面是非线性系统的一些例子:
d2x dt 2
( dx)2 dt
x
Asin t,
d2x dt 2
(x2
1)
dx dt
x
0,
d2x dt 2
dx dt
x
x3
0
典型非线性环节:
饱和、滞环、间隙、 干摩擦等
经典控制理论中(我们正在学习的),采用的是单输入单输 出描述方法。主要是针对线性定常系统,对此有一套完整的理 论和方法。但对于非线性系统和时变系统,解决问题的能力是 极其有限的,可以在一定的近似条件下简化为线性系统。
例2-1和例2-2称为力-电荷相似系统,在此系统中,x, F, m, f , k
分别与q, ui,L, R, 1C 为相似量。
[作用] 利用相似系统的概念可以用一个易于实现的系统来模 拟相对复杂的系统,实现仿真研究。
Wednesday, June 10, 2020
9
非线性环节微分方程的线性化
2、非线性元件(环节)微分方程的线性化
RC
duo dt
uo
ui
这是一个线性定常二阶微分方程。
Wednesday, June 10, 2020
7
控制系统的微分方程
例2-2 求弹簧-阻尼-质量的机械位移系统的微分方程。输 入量为外力F,输出量为位移x。
Fk
F kx
m
m
f x fx mx
[解]:图1和图2分别为系统 原理结构图和质量块受力分 析图。图中,m为质量,f为 粘性阻尼系数,k为弹性系 数。
[数学模型] 描述控制系统变量(物理量)之间动态关系的数 学表达式。常用的数学模型有微分方程、传递函数、结构图、 信号流图、频率特性以及状态空间描述等。
例如对一个微分方程,若已知初值和输入值,对微分方程 求解,就可以得出输出量的时域表达式。据此可对系统进行 分析。所以建立控制系统的数学模型是对系统进行分析的第 一步也是最重要的一步。
第二章 自动控制系统的数学模型
Wednesday, June 10, 2020
1
本章的主要内容
控制系统的微分方程-建立和求解 控制系统的传递函数 控制系统的结构图-等效变换 控制系统的信号流图-梅逊公式 脉冲响应函数 各种数学模型的相互转换
Wednesday, June 10, 2020
2
概述
概述
x0 x0 x x
Wednesday, June 10, 2020
11
非线性环节微分方程的线性化
设f(x)在 A(x0, y0 )点连续可微,
y
则将函数在该点展开为泰勒级
数,得:y
f
(x0 )
df (x) dx
| x x0
y0
(x x0 )
y0
y0
1 df 2(x) 2! dx2
Wednesday, June 10, 2020
5
控制系统的微分方程
第一节 控制系统的微分方程
微分方程的编写应根据组成系统各元件工作过程中 所遵循的物理定理来进行。例如:电路中的基尔霍夫电 路定理,力学中的牛顿定理,热力学中的热力学定理等, 这种方法称为用分析法建立系统的数学模型。
另外一种方法是实验法。即人为地给系统施加某种 测试信号,记录其输出响应,并用适当地数学模型逼近, 这种方法又称为系统辨识,现在成为一门独立学科分支。
Wednesday, June 10, 2020
10
非线性环节微分方程的线性化
设具有连续变化的非线性函数为:y=f(x), y
若的取某一平。衡A点状附态A(近为x0,有工y0点作) 点,如右图中y0
为 B(x x, y y) ,当x 很小时,
y0
y0
AB段可近似看做线性的。
0
B y f (x) A
控制系统如按照数学模型分类的话,可以分为线性和非线 性系统,定常系统和时变系统。
Wednesday, June 10, 2020
3
概述
[线性系统] 如果系统满足叠加原理,则称其为线性系统。叠加 原理说明,两个不同的作用函数同时作用于系统的响应,等于 两个作用函数单独作用的响应之和。
线性系统对几个输入量同时作用的响应可以一个一个地处 理,然后对每一个输入量响应的结果进行叠加。
本节讨论用分析法建立系统的数学模型。
Wednesday, June 10, 2020
6
例2-1 写出RLC串联电路的微分方程。
ui
L
R
i
C
uo
ui 输入
uo 输出
[解]:根据电路定理:
L
di dt
Ri
1 C
idt
ui
①
1
u d,uo代入①得: dt
LC
d 2uo dt 2
图1
图2
根据牛顿定理,可列出质量块的力平衡方程如下:
mx fx kx F
这也是一个二阶定常微分方程。x为输出量,F为输入量。
在国际单位制中,m,f和k的单位分别为:kg, N.s / m, N / m
Wednesday, June 10, 2020
8
相似系统和相似量
[需要讨论的几个问题]
1、相似系统和相似量: