高三数学极限与探索性问题的解题技巧

高三数学极限与探索性问题的解题技巧
高三数学极限与探索性问题的解题技巧

专题九极限与探索性问题的解题技巧

【命题趋向】

综观历届全国各套高考数学试题,我们发现对极限的考查有以下一些知识类型与特点:1.数学归纳法

①客观性试题主要考查学生对数学归纳法的实质的理解,掌握数学归纳法的证题步骤(特别要注意递推步骤中归纳假设的运用和恒等变换的运用).

②解答题大多以考查数学归纳法内容为主,并涉及到函数、方程、数列、不等式等综合性的知识,在解题过程中通常用到等价转化,分类讨论等数学思想方法,是属于中高档难度的题目

③数学归纳法是高考考查的重点内容之一.类比与猜想是应用数学归纳法所体现的比较突出的思想,抽象与概括,从特殊到一般是应用数学归纳法的一种主要思想方法. 在由n=k时命题成立,证明n=k+1命题也成立时,要注意设法化去增加的项,通常要用到拆项、组合、添项、减项、分解、化简等技巧,这一点要高度注意.

2. 数列的极限

①客观性试题主要考查极限的四则运算法则、无穷递缩等比数列所有项和等内容,对基本的计算技能要求比较高,直接运用四则运算法则求极限.

②解答题大多结合数列的计算求极限等,涉及到函数、方程、不等式知识的综合性试题,在解题过程中通常用到等价转化,分类讨论等数学思想方法,是属于中高档难度的题目.

③数列与几何:由同样的方法得到非常有规律的同一类几何图形,通常相关几何量构成等比数列,这是一类新题型.

3.函数的极限

①此部分为新增内容,本章内容在高考中以填空题和解答题为主.应着重在概念的理解,通过考查函数在自变量的某一变化过程中,函数值的变化趋势,说出函数的极限.

②利用极限的运算法则求函数的极限进行简单的运算.

③利用两个重要极限求函数的极限.

④函数的连续性是新教材新增加的内容之一.它把高中的极限知识与大学知识紧密联在一起.在高考中,必将这一块内容溶入到函数内容中去,因而一定成为高考的又一个热点.

4.在一套高考试题中,极限一般分别有1个客观题或1个解答题,分值在5分—12分之间.

5.在高考试题中,极限题多以低档或中档题目为主,一般不会出现较难题,更不会出现难题,

因而极限题是高考中的得分点. 6.注意掌握以下思想方法

①极限思想:在变化中求不变,在运动中求静止的思想;

②数形结合思想,如用导数的几何意义及用导数求单调性、极值等.

此类题大多以解答题的形式出现,这类题主要考查学生的综合应用能力,分析问题和学生解决问题的能力,对运算能力要求较高. 【考点透视】

1.理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题. 2.了解数列极限和函数极限的概念.

3.掌握极限的四则运算法则;会求某些数列与函数的极限.

4.了解函数连续的意义,了解闭区间上连续函数有最大值和最小值的性质. 【例题解析】 考点1 数列的极限

1.数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n }的项a n 无限地趋近于某个常数a (即|a n -a |无限地接近于0),那么就说数列{a n }以a 为极限. 注意:a 不一定是{a n }中的项.

2.几个常用的极限:①∞

→n lim C =C (C 为常数);②∞

→n lim n

1=0;③∞

→n lim q n =0(|q |<1).

3.数列极限的四则运算法则:设数列{a n }、{b n }, 当∞

→n lim a n =a , ∞

→n lim b n =b 时,∞

→n lim (a n ±b n )=a ±b ;

例1. ( 2006年湖南卷)数列{n a }满足:113

a =,且对于任意的正整数m,n 都有m n m n a a a +=?,则

12lim()n n a a a →∞

+++=L ( )

A.12

B.23

C.32

D.2

[考查目的]本题考查无穷递缩等比数列求和公式和公式lim 0(1)n n q q →∞

=< 的应用.

[解答过程]由113

a =和m n m n a a a +=?得23111,,.9273

n n

a a a ==∴=

1211(1)

13

3lim()lim .1213

n n x x a a a →∞→∞-∴++???+==-

故选A.

例2.(2006年安徽卷)设常数0a >

,4

2ax ? ?

展开式中3x 的系数为32,则

2lim()n n a a a →∞

++???+=_____.

[考查目的]本题考查利用二项式定理求出关键数, 再求极限的能力. [解答过程] 14822

14

r r

r

r

r T C a

x

x

---+=,由18232

,2,r r

x

x

x r --==得4431=22

r r C a -由知a=,所以21

2lim()11

12

n n a a a →∞++???+==-,所以为1. 例3. (2007年福建卷理)把21(1)(1)(1)n x x x +++++++L 展开成关于x 的多项式,其各项系数和为n a ,则21lim 1

n n n a a ∞

-+→等于( )

( )

A .14

B .12

C .1

D .2

[考查目的]本题考查无穷递缩等比数列求和公式和公式lim 0(1)n n q q →∞

=< 的应用.

[解答过程] 22121,1(1)(1)(1)122221,12

n

n n n n x a x x x -==+++++++=++++==--L L 当时

1212211211lim lim lim lim 2 2.121122n n n n n n n n n n n

a a +∞∞∞∞----===-=+-+→→→→()∴()() 故选D

例 4. (2007年天津卷理)设等差数列{}n a 的公差d 是2,前n 项的和为n S ,则

2

2lim n n n

a n S →∞-= . 思路启迪:由等差数列{}n a 的公差d 是2,先求出前n 项的和为n S 和通项n a . [解答过程] 221222,,2

n n n n a a n a S na n a n -=+-=-+=+=+-()(n 1)(1)

22

22

2

2

222122lim lim lim 3.1n

n n n n a

a n n a n n n a S n a n n

→∞→∞→∞-+---+-===-+-+

()()∴1(1) 故填3 小结:

1.运用数列极限的运算法则求一些数列的极限时必须注意以下几点:

(1)各数列的极限必须存在;

(2)四则运算只限于有限个数列极限的运算. 2.熟练掌握如下几个常用极限: (1) ∞

→n lim C =C (C 为常数);

(2) ∞

→n lim (n

1)p =0(p >0);

(3) ∞

→n lim d cn b an k k

++=c

a (k ∈N *,a 、

b 、

c 、

d ∈R 且c ≠0);

(4) ∞

→n lim q n =0(|q |<1).

例5. (2007年重庆卷理)设正数a , b 满足4)(2

2

lim

=-+→b ax x x 则=

++--+∞

→n

n n n n b a ab a 2111

lim ( )

(A )0

(B )41

(C )2

1

(D )1

:

221

lim()4,24,.2

x a x ax b a b b →+-=+-==∵∴4∴1111

11111112lim

lim lim .

1224222

n n n n n n

x x x n n a a a a ab

a b a a b b b b

b --+--→∞→∞→∞--+++====+++[()][()]

则()() 故选B

小结:重视在日常学习过程中运用化归思想. 考点2 函数的极限 1.函数极限的概念:

(1)如果+∞

→x lim f (x )=a 且-∞

→x lim f (x )=a ,那么就说当x 趋向于无穷大时,函数f (x )的极

限是a ,记作∞

→x lim f (x )=a ,也可记作当x →∞时,f (x )→a.

(2)一般地,当自变量x 无限趋近于常数x 0(但x 不等于x 0)时,如果函数f (x )无限趋近于一个常数a ,就说当x 趋近于x 0时,函数f (x )的极限是a ,记作0

lim x x →f (x )=a ,也可记作

当x →x 0时,f (x )→a .

(3)一般地,如果当x 从点x =x 0左侧(即x <x 0=无限趋近于x 0时,函数f (x )无限趋近于常数a ,就说a 是函数f (x )在点x 0处的左极限,记作-→0

lim x x f (x )=a .如果从点x =x 0右侧

(即x >x 0)无限趋近于x 0时,函数f (x )无限趋近于常数a ,就说a 是函数 f (x )在点x 0处的右极限,记作+→0

lim x x f (x )=a .

2.极限的四则运算法则:

如果0

lim x x → f (x )=a , 0

lim x x →g (x )=b ,那么

lim x x →[f (x )±g (x )]=a ±b ; 0

lim x x →[f (x )

·g (x )]=a ·b ; 0

lim x x →)

()

(x g x f =b

a (

b ≠0).

例6.(2007年江西卷理) 1

lim 2

31

--→x x x x =( )

A .等于0

B .等于l

C .等于3

D .不存

[考查目的]本题主要考查利用同解变形求函数极限的能力.

[解答过程] 322

21

1

1

1lim lim lim 1.1

1

x x x x x x x x x x →→→--===--()故选B

例7.(2007年四川卷理) =---→1

21

lim 221x x x n ( )

(A )0

(B )1

(C )2

1

(D )3

2

[考查目的]本题主要考查利用分解因式同解变形求函数极限的能力. [解答过程] 2211111112lim lim lim .

211113

n n n x x x x x x x x x →→→--++===--+-+()()(2)()2

故选D

例8.若f (x )=1

1113

-+-+x x 在点x =0处连续,则f (0)=__________________.

思路启迪:利用逆向思维球解.

解答过程:∵f (x )在点x =0处连续,∴f (0)=0

lim →x f (x ),

lim →x f (x )= 0

lim

→x 1

1113

-+-+x x =

lim

→x 1

111)1(33

2++++++x x x =23.

答案: 2

3

例9.设函数f (x )=ax 2+bx +c 是一个偶函数,且1

lim →x f (x )=0,2

lim -→x f (x )=-3,求这一函

数最大值..

思路启迪:由函数f (x )=ax 2+bx +c 是一个偶函数,利用f (-x )=f (x )构造方程,求出b 的值.

解答过程:∵f (x )=ax 2+bx +c 是一偶函数, ∴f (-x )=f (x ),即ax 2+bx +c =ax 2-bx +c . ∴b =0.∴f (x )=ax 2+c .

又1

lim →x f (x )= 1

lim →x ax 2+c =a +c =0, 2

lim -→x f (x )=2

lim -→x ax 2+c =4a +c =-3,

∴a =-1,c =1.∴f (x )=-x 2+1.∴f (x )max =f (0)=1. ∴f (x )的最大值为1.

例10.设f (x )是x 的三次多项式,已知a

x 2lim →=a

x x f 2)(-=a

x 4lim

→a

x x f 4)(-=1. 求a

x 3lim →a

x x f 3)(-的值(a 为非零常数).

解答过程:由于a

x 2lim

→a

x x f 2)(-=1,可知f (2a )=0. ① 同理f (4a )=0. ②

由①②,可知f (x )必含有(x -2a )与(x -4a )的因式,由于f (x )是x 的三次多项式,故可设f (x )=A (x -2a )(x -4a )(x -C ). 这里A 、C 均为待定的常数. 由a

x 2lim

→a

x x f 2)(-=1,即

a

x 2lim

→a

x C x a x a x A 2))(4)(2(----=a x 2lim →A (x -4a )

(x -C )=1, 得A (2a -4a )(2a -C )=1,

即4a 2A -2aCA =-1. ③ 同理,由于a

x 4lim

→a

x x f 4)(-=1,

得A (4a -2a )(4a -C )=1,

即8a 2A -2aCA =1. ④ 由③④得C =3a ,A =2

21a ,

因而f (x )=2

21a (x -2a )(x -4a )(x -3a ).

∴a

x 3lim

→a x x f 3)(-=a x 3lim →2

21a (x -2a )(x -4a )

=2

21a ·a ·(-a )=-2

1.

例11 a 为常数,若+∞

→x lim (12-x -ax )=0,则a 的值是____________..

思路启迪:先对括号内的的式子变形.

解答过程:∵+∞→x lim (12-x -ax )= +∞

→x lim ax

x x a x +---1122

22=+∞

→x lim ax

x x a +---11)1(222=0,

∴1-a 2=0.∴a =±1.但a =-1时,分母→0,

∴a =1.

考点3.函数的连续性及极限的应用 1.函数的连续性.

一般地,函数f (x )在点x =x 0处连续必须满足下面三个条件:

(1)函数f (x )在点x =x 0处有定义;(2)0

lim x x →f (x )存在;(3)0

lim x x →f (x )=f (x 0).如果

函数y =f (x )在点x =x 0处及其附近有定义,而且0

lim x x →f (x )=f (x 0),就说函数f (x )在点

x 0处连续.

2.如果f (x )是闭区间[a ,b ]上的连续函数,那么f (x )在闭区间[a ,b ]上有最大值和最小值.

3.若f (x )、g (x )都在点x 0处连续,则f (x )±g (x ),f (x )·g (x ),)

()(x g x f (g (x )≠0)

也在点x 0处连续.若u (x )在点x 0处连续,且f (u )在u 0=u (x 0)处连续,则复合函数f [u (x )]在点x 0处也连续.

例12..f (x )在x =x 0处连续是f (x )在x =x 0处有定义的_________条件. A.充分不必要 B.必要不充分 C.充要 D.既不充分又不必要 思路启迪:说明问题即可.

解答过程:f (x )在x =x 0处有定义不一定连续. 答案:A

例13.f (x )=x

x

πcos

πcos

的不连续点为( )

A.x =0

B.x =

1

22+k (k =0,±1,±2,…) C.x =0和x =2k π(k =0,±1,±2,…) D.x =0和x =1

22+k (k =0,±1,±2,…)

思路启迪:由条件出发列方程解之.

解答过程:由cos x

π=0,得x

π=k π+2

π(k ∈Z ),∴x =)(1

22Z ∈+k k .

又x =0也不是连续点,故选D 答案:D

例14. 设f (x )=??

?≥+<),

0(),0(e x x

a x x

当a 为________时,函数f (x )是连续的.

最新高一数学听课记录

听 课 记 录 2014 年9月 21 日 授 课 教 师 李金山 学 科 数学 学 校 班 级 忠县中学 高一(3)班 课题 函数定义域,值域,函数值的求法 课型 新授课 教师教学过程记录: 引入新知: 一.函数定义域的求法 (一)简单函数的定义域 例1 求下列函数的定义域:(1)f(x)=1/x-2 (2) f(x)=35+x 求解步骤:由已知x-2≠0--------------------------写条件 x ≠2 ---------------------------解不等式(组) 所以函数的定义域为{x| x ≠2}-------下结论 总结:(1)若f(x)是整式,则定义域为R (2)若f(x)是分式,则分母不能为0 (3)f(x)为偶次根式,则根号下的式子大于或等于0 练习:1.(1)f(x)=3-5-x x (2)f(x)=x x -++21 (3)P19练习 总结:定义域:使每个式子有意义;生活中的实际 2.求下列函数的定义域 (1)y=2x+3 (2)f(x)=11+x (3)x x y -+-=11 (4)112-+=x x y (5) f(x)=11)1(0++-x x (二)复合函数的定义域 例2 已知f(x)的定义域为[0,2],求f(2x-1)的定义域。 练习:1.已知f(2x-1)的定义域为(-1,5],求f(x)的定义域。 2.已知函数f(x)的定义域为[0,2],那么函数g(x)=15)1(++x x f 二.函数值的求解 1.已知f(x)=3x+2,求f(-1),f(a),f(1/a-1),f [f(π)] 2.已知f(x)=?????≥<<--≤+)2(2)21()1(22x x x x x x 求f(3),f(f(-1)) (分段函数) 3.已知f(3x-1)=4x+1,求f(2)=____ 三.求函数的值域(概念的理解,重点) (1)y=1+x (2) 642+-=x x y x ∈[1,5] 理解:2x y = (1)x ∈R 函数值域[0,+∞] 教学点评: 运用实例生动引出集 合元素的概念,为了 解集合含义作铺垫 充分体现了以学生为主体,教师为引导者的教学理念。 结合学生情况,充分调动课堂积极性 同一个f 括号内约束 条件相同;定义域的 概念

求数列通项专题高三数学复习教学设计

假如单以金钱来算,我在香港第六、七名还排不上,我这样说是有事实根据的.但我认为,富有的人要看他是怎么做.照我现在的做法我为自己内心感到富足,这是肯定的. 求数列通项专题高三数学复习教学设计 海南华侨中学邓建书 课题名称 求数列通项(高三数学第二阶段复习总第1课时) 科目 高三数学 年级 高三(5)班 教学时间 2009年4月10日 学习者分析 数列通项是高考的重点内容 必须调动学生的积极让他们掌握! 教学目标 一、情感态度与价值观 1. 培养化归思想、应用意识. 2.通过对数列通项公式的研究 体会从特殊到一般 又到特殊的认识事物规律 培养学生主动探索 勇于发现的求知精神 二、过程与方法 1. 问题教学法------用递推关系法求数列通项公式 2. 讲练结合-----从函数、方程的观点看通项公式 三、知识与技能 1. 培养学生观察分析、猜想归纳、应用公式的能力; 2. 在领会函数与数列关系的前提下 渗透函数、方程的思想 教学重点、难点 1.重点:用递推关系法求数列通项公式 2.难点:(1)递推关系法求数列通项公式(2)由前n项和求数列通项公式时注意检验第一项(首项)是否满足 若不满足必须写成分段函数形式;若满足

则应统一成一个式子. 教学资源 多媒体幻灯 教学过程 教学活动1 复习导入 第一组问题: 数列满足下列条件 求数列的通项公式 (1);(2) 由递推关系知道已知数列是等差或等比数列即可用公式求出通项 第二组问题:[学生讨论变式] 数列满足下列条件 求数列的通项公式 (1);(2); 解题方法:观察递推关系的结构特征 可以利用"累加法"或"累乘法"求出通项 (3) 解题方法:观察递推关系的结构特征 联想到"?=?)" 可以构造一个新的等比数列 从而间接求出通项 教学活动2 变式探究 变式1:数列中 求 思路:设 由待定系数法解出常数

高中数学知识点专题复习-极限的概念

极 限 的 概 念(4月27日) 教学目的:理解数列和函数极限的概念; 教学重点:会判断一些简单数列和函数的极限; 教学难点:数列和函数极限的理解 教学过程: 一、实例引入: 例:战国时代哲学家庄周所著的《庄子·天下篇》引用过一句话:“一尺之棰,日取其半,万世不竭。”也就是说一根长为一尺的木棒,每天截去一半,这样的过程可以无限制地进行下去。(1)求第n 天剩余的木棒长度n a (尺),并分析变化趋势;(2)求前n 天截下的木棒的总长度n b (尺),并分析变化趋势。 观察以上两个数列都具有这样的特点:当项数n 无限增大时,数列的项n a 无限趋近于某个常数A (即A a n -无限趋近于0)。n a 无限趋近于常数A ,意指“n a 可以任意地靠近A ,希望它有多近就有多近,只要n 充分大,就能达到我们所希望的那么近。”即“动点n a 到A 的距离A a n -可以任意小。 二、新课讲授 1、数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于.....某个常数A (即A a n -无限趋近于0) ,那么就说数列}{n a 的极限是A ,记作 A a n n =∞ →lim 注:①上式读作“当n 趋向于无穷大时,n a 的极限等于A ”。“n →∞”表示“n 趋向于无穷大”,即n 无限增大的意思。A a n n =∞ →lim 有时也记作当n →∞时,n a →A ②引例中的两个数列的极限可分别表示为_____________________,____________________ ③思考:是否所有的无穷数列都有极限? 例1:判断下列数列是否有极限,若有,写出极限;若没有,说明理由 (1)1,21,31,…,n 1,… ;(2)21,32,43,…,1 +n n ,…;

高考数学考试的答题技巧和方法_答题技巧

高考数学考试的答题技巧和方法_答题技巧 一、答题和时间的关系 整体而言,高考数学要想考好,必须要有扎实的基础知识和一定量的习题练习,在此基础上辅以一些做题方法和考试技巧。往年考试中总有许多考生抱怨考试时间不够用,导致自己会做的题最后没时间做,觉得很“亏”。 高考考的是个人能力,要求考生不但会做题还要准确快速地解答出来,只有这样才能在规定的时间内做完并能取得较高的分数。因此,对于大部分高考生来说,养成快速而准确的解题习惯并熟练掌握解题技巧是非常有必要的。 二、快与准的关系 在目前题量大、时间紧的情况下,“准”字则尤为重要。只有“准”才能得分,只有“准”你才可不必考虑再花时间检查,而“快”是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。如去年第21题应用题,此题列出分段函数解析式并不难,但是相当多的考生在匆忙中把二次函数甚至一次函数都算错,尽管后继部分解题思路正确又花时间去算,也几乎得不到分,这与考生的实际水平是不相符的。适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。 三、审题与解题的关系 有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。只有耐心仔细地审题,准确地把握题目中的关键词与量(如“至少”,“a0”,自变量的取值范围等等),从中获取尽可能多的信息,才能迅速找准解题方向。 四、“会做”与“得分”的关系 要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现“会而不对”“对而不全”的情况,考生自己的估分与实际得分差之甚远。如立体几何论证中的“跳步”,使很多人丢失1/3以上得分,代数论证中“以图代证”,尽管解题思路正确甚至很巧妙,但是由于不善于把“图形语言”准确地转译为“文字语言”,得分少得可怜;再如去年理17题三角函数图像变换,许多考生“心中有数”却说不清楚,扣分者也不在少数。只有重视解题过程的语言表述,“会做”的题才能“得分”,高中生物。 五、难题与容易题的关系 拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的顺序作答。近年来考题的顺序并不完全是难易的顺序,如去年理19题就比理20、理21要难,因此在答题时要合理安排时间,不要在某个卡住的题上打“持久战”,那样既耗费时间又拿不到分,会做的题又被耽误了。这几年,数学试题已从“一题把关”转为“多题把关”,因此解答题都设置了层次分明的“台阶”,入口宽,入手易,但是深入难,解到底难,因此看似容易的题也会有“咬手”的关卡,看似难做的题也有可得分之处。所以考试中看到“容易”题不可掉以轻心,看到新面孔的“难”题不要胆怯,冷静思考、仔细分析,定能得到应有的分数。 选择题绝大部分是低中档题,所以必须争取多得分或得满分。选择题的答法审题要慢,答题要快。因此对选择题除直接求解外,还要做到不择手段,即小题要小做,小题要尽量巧做。答选择题常用的方法还有:数形结合法(根据题意做出草图,结合图象解决问题);特例检验法(利用特殊情况代替题设中的普遍条件,得出结论);筛选法(根据各选项的不同,从选项中选特殊情况检验是否符合题意);等价转化法(化陌生为熟悉);构造法(如立几中的“割补”思想)。另外,答选择题不要恋战,要学会暂时放弃。

高中数学听课记录范例

高中数学听课记录范例 听课有利于青年教师学习优秀教师的先进教学经验,兴城良好的教学风气。那么高中数学听课记录怎么写呢? 一、实例导入课题: 日常生活中,我们有过这样的体验:从阶梯教室前向后走,逐步上升,从阶梯教室后向前走,逐步下降,上下楼梯也是一样。(板书课题:函数的单调性) 二、推出新课: (一)、函数的单调性: 1、观察非典时期每日新增病例的变化统计图,对函数的单调性有感性的认识。 2、学生思考一次函数y=kx+b中,当k>0时,y的值随x的值的变化情况。总结该函数图像中点的坐标规律。 3、单调增(减)函数的定义: 一般地,设函数的定义域为I,区间AI,如果对于区间A内的任意两个值,当时都有,那么就说在这个区间上是单调增(减)函数。 (让学生思考交流之后,说出增、减函数定义中的关键词) (二)、单调函数、单调区间的概念:(教师板书,引导学生理解。) (三)、函数单调性的判断与证明 1、讲解例1:画出的图像,判断它的单调性,并加以证明。分析:画出图形,让学生归纳,并利用定义证明,教师板书。

例题中的注意点:(1)、解题格式;(2)、防止循环论证;(3)、作差同“0”比较。 2、师生共同归纳用定义法证明函数单调的一般步骤: (1)、取值;(2)、作差与变形;(3)、判断;(4)、结论。 3、讲解例2:求证:函数在区间上是单调增函数。 (学生小组讨论,集体思考证明过程,请完成的小组上黑板板演,其他小组分析纠错,教师做好点拨。) 三、课堂练习:1、P39页1、2、3题。 四、课堂小结:(学生总结知识点,教师补充。) 五、布置作业:1、P39页2、4、5题。 评价与建议 1、教学环节设计合理,思路清晰。 2、对概念的讲解很细致,教学作用点找的很好。 3、讲解、合作讨论、学生板演、核心指导相结合,防止学生疲劳而影响课堂效果。 4、教学中善于表扬学生、鼓励学生。 5、教学中要更多地深入学生之中,关注学生的实际学习情况,提高课堂效率。 6、这节课的知识比较抽象,学生能搞懂基本概念的来龙去脉,但更重要的是引导学生从具体实例抽象出数学概念的过程,在运用中逐步理解概念的本质需要加强。

高三数学数列专题复习题含答案

高三数学数列专题复习题含答案 一、选择题 1.等比数列{}n a 中,12a =,8a =4,函数 ()128()()()f x x x a x a x a =---L ,则()'0f =( ) A .62 B. 92 C. 122 D. 152 【答案】C 【解析】考查多项式函数的导数公式,重点考查学生创新意识,综合与灵活地应用所学的数学知识、思想和方法。考虑到求导中,含有x 项均取0,则()' 0f 只与函数()f x 的一次项 有关;得:412 123818()2a a a a a a ??==L 。 2、在等比数列{}n a 中,11a =,公比1q ≠.若12345m a a a a a a =,则m= (A )9 (B )10 (C )11 (D )12 【答案】C 3、已知{}n a 是首项为1的等比数列,n s 是{}n a 的前n 项和,且369s s =,则数列1n a ?? ???? 的前5项和为 (A ) 158或5 (B )3116或5 (C )3116 (D )15 8 【答案】C 【解析】本题主要考查等比数列前n 项和公式及等比数列的性质,属于中等题。 显然q ≠1,所以3639(1q )1-=121-q 1q q q q -?+?=-,所以1{}n a 是首项为1,公比为1 2 的等比数列, 前5项和5 51 1()31211612 T -= =-. 4、已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456a a a = (A) 【答案】A

【解析】由等比数列的性质知31231322()5a a a a a a a ===g ,3 7897988()a a a a a a a ===g 10,所以 13 2850a a =, 所以13 3 3 64564655 28()()(50)52a a a a a a a a a =====g 5.已知等比数列{m a }中,各项都是正数,且1a , 321 ,22 a a 成等差数列,则91078a a a a +=+ A.12+ B. 12- C. 322+ D 322- 6、设{}n a 是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为,,X Y Z ,则下列等式中恒成立的是 A 、2X Z Y += B 、()()Y Y X Z Z X -=- C 、2 Y XZ = D 、()()Y Y X X Z X -=- 【答案】 D 【分析】取等比数列1,2,4,令1n =得1,3,7X Y Z ===代入验算,只有选项D 满足。 8、设等差数列{}n a 的前n 项和为n S ,若111a =-,466a a +=-,则当n S 取最小值时,n 等于 A .6 B .7 C .8 D .9 【答案】A 【解析】设该数列的公差为d ,则461282(11)86a a a d d +=+=?-+=-,解得2d =, 所以22(1) 11212(6)362 n n n S n n n n -=-+ ?=-=--,所以当6n =时,n S 取最小值。 9、已知等比数列{}n a 满足0,1,2,n a n >=L ,且25252(3)n n a a n -?=≥,则当1n ≥时, 2123221log log log n a a a -+++=L A. (21)n n - B. 2 (1)n + C. 2n D. 2 (1)n -

高中数学解题方法大全

第一章 高中数学解题基本方法 一、 配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy 项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a +b) =a +2ab +b ,将这个公式灵活运用,可得到各种基本配方形式,如: a 2 + b 2=(a +b)2 -2ab =(a -b)2 +2ab ; a 2 +a b +b 2 =(a +b)2 -ab =(a -b)2 +3ab ; a 2 + b 2 + c 2 +ab +bc +ca = 2 1[(a +b)2 +(b +c) 2+(c +a) 2] a 2+b 2+c 2=(a +b +c) 2-2(ab +bc +ca)=(a +b -c)2 -2(ab -bc -ca)=… 结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sin αcos α=(sin α+cos α) ; x + =(x + ) -2=(x - ) +2 ;…… 等等。 Ⅰ、再现性题组: 1. 在正项等比数列{a }中,a ?a +2a ?a +a ?a =25,则 a +a =_______。 2. 方程x +y -4kx -2y +5k =0表示圆的充要条件是_____。 A. 1 C. k ∈R D. k = 或k =1 3. 已知sin α+cos α=1,则sin α+cos α的值为______。

高中数学等比数列听课记录

听 课 记 录 一、导入(由教材例题直接引入,PPT 展示) 1. (必修5P 55习题2(1)改编)设S n 是等比数列{a n }的前n 项和,若a 1=1,a 6=32,则S 3=________. 2. (必修5P 49习题1改编) {a n }为等比数列,a 2=6,a 5=162,则{a n }的通项公式a n =________. 3. (必修5P 49习题6改编)等比数列{a n }中,a 1>0,a 2a 4+2a 3a 5+a 4a 6=36,则a 3+a 5=________. 4. (必修5P 49习题7(2)改编)已知两个数k +9和6-k 的等比中项是2k ,则k =________. 5. (必修5P 51例2改编)等比数列{a n }中,S 3=7,S 6=63,则a n =________. 二、知识点回顾 1.等比数列相关概念 2.等比数列相关性质 三、典例分析 题型1 等比数列的基本运算 例1 等比数列{a n }的前n 项和为S n ,已知S 1,S 3,S 2成等差数列. (1) 求{a n }的公比q ;(2) 若a 1-a 3=3,求S n . 解:(1) ∵ S 1,S 3,S 2成等差数列,∴ 2S 3=S 1+S 2,即2(a 1+a 2+a 3)=a 1+a 1+a 2, ∴ 2a 3=-a 2,∴ q =a 3a 2=-12. (2) a 3=a 1q 2=14a 1,∴ a 1-14a 1=3,∴ a 1=4,∴ S n =4????1-()-12n 1+12=83-83() -12n . 变式训练 已知数列{a n }的前n 项和为S n ,a 1=1,且2a n +1=S n +2(n ∈N ). (1) 求a 2,a 3的值,并求数列{a n }的通项公式; (2) 求解S n (n ∈N ). 题型2 等比数列的判定与证明 例2 已知数列{a n }的前n 项和为S n ,3S n =a n -1(n ∈N ). (1) 求a 1,a 2; (2) 求证:数列{a n }是等比数列; (3) 求a n 和S n . (1) 解:由3S 1=a 1-1,得3a 1=a 1-1,∴ a 1=-12.又3S 2=a 2-1,即3a 1+3a 2=a 2-1,得a 2=14. (2) 证明:当n ≥2时,a n =S n -S n -1=13(a n -1)-13(a n -1-1),得a n a n -1=-12,所以{a n }是首项为-12,公比为-12的等比数列. (3) 解:由(2)可得a n =????-12n ,S n =????-12????1-????-12n 1-????-12=-13????1-????-12n .

(完整版)高三文科数学数列专题.doc

高三文科数学数列专题 高三文科数学复习资料 ——《数列》专题 1. 等差数列{ a n}的前n项和记为S n,已知a1030, a2050 . ( 1)求通项a n; ( 2)若S n242 ,求 n ; ( 3)若b n a n20 ,求数列 { b n } 的前 n 项和 T n的最小值. 2. 等差数列{ a n}中,S n为前n项和,已知S77, S1575 . ( 1)求数列{ a n}的通项公式; ( 2)若b n S n,求数列 {b n } 的前 n 项和 T n. n 3. 已知数列{ a n}满足a1 1 a n 1 ( n 1) ,记 b n 1 , a n . 1 2a n 1 a n (1)求证 : 数列{ b n}为等差数列; (2)求数列{ a n}的通项公式 . 4. 在数列a n 中, a n 0 , a1 1 ,且当 n 2 时,a n 2S n S n 1 0 . 2 ( 1)求证数列1 为等差数列;S n ( 2)求数列a n的通项 a n; ( 3)当n 2时,设b n n 1 a n,求证: 1 2 (b2 b3 b n ) 1 . n 2(n 1) n 1 n 5. 等差数列{ a n}中,a18, a4 2 . ( 1)求数列{ a n}的通项公式; ( 2)设S n| a1 | | a2 || a n |,求 S n;

1 (n N *) , T n b1 b2 b n (n N *) ,是否存在最大的整数m 使得对任( 3)设b n n(12 a n ) 意 n N * ,均有T n m m 的值,若不存在,请说明理由. 成立,若存在,求出 32 6. 已知数列{log2(a n1)} 为等差数列,且a13, a39 . ( 1)求{ a n}的通项公式; ( 2)证明: 1 1 ... 1 1. a2 a1 a3 a2 a n 1 a n 7. 数列{ a n}满足a129, a n a n 12n 1(n 2, n N * ) . ( 1)求数列{ a n}的通项公式; ( 2)设b n a n,则 n 为何值时, { b n } 的项取得最小值,最小值为多少?n 8. 已知等差数列{ a n}的公差d大于0 , 且a2,a5是方程x2 12 x 27 0 的两根,数列 { b n } 的前 n 项和 为 T n,且 T n 1 1 b n. 2 ( 1)求数列{ a n} , { b n}的通项公式; ( 2)记c n a n b n,求证:对一切 n N 2 , 有c n. 3 9. 数列{ a n}的前n项和S n满足S n2a n 3n . (1)求数列{ a n}的通项公式a n; (2)数列{ a n}中是否存在三项,它们可以构成等差数列?若存在,请求出一组适合条件的项;若不存在,请说明理由 . 10. 已知数列{ a n}的前n项和为S n,设a n是S n与 2 的等差中项,数列{ b n} 中, b1 1,点 P(b n , b n 1 ) 在 直线 y x 2 上. ( 1)求数列{ a n} , { b n}的通项公式

高中数学50个解题小技巧

高中数学50个解题小技巧 XX:__________ 指导:__________ 日期:__________

1 . 适用条件 [直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。x为分离比,必须大于1。 注:上述公式适合一切圆锥曲线。如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。 2 . 函数的周期性问题(记忆三个) (1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。 注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。 c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。 3 . 关于对称问题(无数人搞不懂的问题)总结如下 (1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a, b)中心对称 4 . 函数奇偶性 (1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空 5 . 数列爆强定律 (1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:

S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n+m)=S(m)+q2mS(n)可以迅速求q 6 . 数列的终极利器,特征根方程 首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p2(n-1)+x,这是一阶特征根方程的运用。 二阶有点麻烦,且不常用。所以不赘述。希望同学们牢记上述公式。当然这种类型的数列可以构造(两边同时加数) 7 . 函数详解补充 1、复合函数奇偶性:内偶则偶,内奇同外 2、复合函数单调性:同增异减 3、重点知识关于三次函数:恐怕没有多少人知道三次函数曲线其实是中心对称图形。它有一个对称中心,求法为二阶导后导数为0,根x即为中心横坐标,纵坐标可以用x带入原函数界定。另外,必有唯一一条过该中心的直线与两旁相切。 8 . 常用数列bn=n×(22n)求和Sn=(n-1)×(22(n+1))+2记忆方法 前面减去一个1,后面加一个,再整体加一个2 9 . 适用于标准方程(焦点在x轴)爆强公式 k椭=-{(b2)xo}/{(a2)yo}k双={(b2)xo}/{(a2)yo}k抛=p/yo 注:(xo,yo)均为直线过圆锥曲线所截段的中点。 10 . 强烈推荐一个两直线垂直或平行的必杀技 已知直线L1:a1x+b1y+c1=0直线L2:a2x+b2y+c2=0若它们垂直:(充要条件)a1a2+b1b2=0;若它们平行:(充要条件)a1b2=a2b1且a1c2≠a2c1[这个条件为了

高考数学压轴专题最新备战高考《数列》难题汇编附答案

新数学《数列》期末复习知识要点 一、选择题 1.在数列{}n a 中,若10a =,12n n a a n +-=,则23111 n a a a +++L 的值 A . 1 n n - B . 1 n n + C . 1 1n n -+ D . 1 n n + 【答案】A 【解析】 分析:由叠加法求得数列的通项公式(1)n a n n =-,进而即可求解23111 n a a a +++L 的和. 详解:由题意,数列{}n a 中,110,2n n a a a n +=-=, 则112211()()()2[12(1)](1)n n n n n a a a a a a a a n n n ---=-+-++-+=+++-=-L L , 所以 1111 (1)1n a n n n n ==--- 所以 231111111111(1)()()12231n n a a a n n n n -+++=-+-++-=-=-L L ,故选A. 点睛:本题主要考查了数列的综合问题,其中解答中涉及到利用叠加法求解数列的通项公式和利用裂项法求解数列的和,正确选择方法和准确运算是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力. 2.已知等比数列{}n a 满足13a =,13521a a a ++=,则357a a a ++=( ) A .21 B .42 C .63 D .84 【答案】B 【解析】 由a 1+a 3+a 5=21得24242 1(1)21172a q q q q q ++=∴++=∴=∴ a 3+a 5+a 7=2 135()22142q a a a ++=?=,选B. 3.设数列{}n a 是等差数列,1356a a a ++=,76a =.则这个数列的前7项和等于( ) A .12 B .21 C .24 D .36 【答案】B 【解析】 【分析】 根据等差数列的性质可得3a ,由等差数列求和公式可得结果. 【详解】 因为数列{}n a 是等差数列,1356a a a ++=,

高考数学一轮复习数列的极限知识点

17年高考数学一轮复习数列的极限知识点 极限是微积分中的基础概念,下面是整理的数列的极限知识点,希望考生可以认真学习。 1、连续、间断点以及间断点的分类:判断间断点类型的基础是求函数在间断点处的左右极限; 2、可导和可微,分段函数在分段点处的导数或可导性,一律通过导数定义直接计算或检验存在的定义是极限存在; 3、渐近线,(垂直、水平或斜渐近线); 4、多元函数积分学,二重极限的讨论计算难度较大,常考查证明极限不存在. 下面我们重点讲一下数列极限的典型方法. 重要题型及点拨 1.求数列极限 求数列极限可以归纳为以下三种形式. ★抽象数列求极限 这类题一般以选择题的形式出现, 因此可以通过举反例来排除. 此外,也可以按照定义、基本性质及运算法则直接验证. ★求具体数列的极限,可以参考以下几种方法: a.利用单调有界必收敛准则求数列极限. 首先,用数学归纳法或不等式的放缩法判断数列的单调性和有界性,进而确定极限存在性;其次,通过递推关系中取极

限,解方程, 从而得到数列的极限值. b.利用函数极限求数列极限 如果数列极限能看成某函数极限的特例,形如,则利用函数极限和数列极限的关系转化为求函数极限,此时再用洛必达法则求解. ★求项和或项积数列的极限,主要有以下几种方法: a.利用特殊级数求和法 如果所求的项和式极限中通项可以通过错位相消或可以转化为极限已知的一些形式,那么通过整理可以直接得出极限结果. l b.利用幂级数求和法 若可以找到这个级数所对应的幂级数,则可以利用幂级数函数的方法把它所对应的和函数求出,再根据这个极限的形式代入相应的变量求出函数值. c.利用定积分定义求极限 若数列每一项都可以提出一个因子,剩余的项可用一个通项表示, 则可以考虑用定积分定义求解数列极限. d.利用夹逼定理求极限 若数列每一项都可以提出一个因子,剩余的项不能用一个通项表示,但是其余项是按递增或递减排列的,则可以考虑用夹逼定理求解. e.求项数列的积的极限,一般先取对数化为项和的形式,然

高中数学知识点以及解题方法大全

前言 (2) 第一章高中数学解题基本方法 (3) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 第二章高中数学常用的数学思想 (35) 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第三章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案…………………………………… 前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去 法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、 归纳和演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化 归)思想等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化( 第一章高中数学解题基本方法 一、配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a+b) 2 =a 2 +2ab+b 2 ,将这个公式灵活运用,可得到各种基本配方形式,如: a 2 +b 2 =(a+b) 2 -2ab=(a-b) 2 +2ab; a 2 +ab+b 2 =(a+b) 2 -ab=(a-b) 2 +3ab=(a+ b 2) 2 +( 3 2b) 2 ; a 2 +b 2 +c 2 +ab+bc+ca= 1 2[(a+b) 2 +(b+c) 2 +(c+a) 2 ] a 2 +b 2 +c 2 =(a+b+c) 2 -2(ab+bc+ca)=(a+b-c) 2 -2(ab-bc-ca)=… 结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sinαcosα=(sinα+cosα) 2 ; x 2 + 1 2 x=(x+ 1 x) 2 -2=(x- 1 x) 2 +2 ;……等等。 Ⅰ、再现性题组: 1. 在正项等比数列{a n}中,a1?a5+2a3?a5+a3?a7=25,则 a3+a5=_______。 2. 方程x 2 +y 2 -4kx-2y+5k=0表示圆的充要条件是_____。 A. 1 41 C. k∈R D. k= 1 4或k=1 3. 已知sin 4 α+cos 4 α=1,则sinα+cosα的值为______。 A. 1 B. -1 C. 1或-1 D. 0 4. 函数y=log1 2 (-2x 2 +5x+3)的单调递增区间是_____。 A. (-∞, 5 4] B. [ 5 4,+∞) C. (- 1 2, 5 4] D. [ 5 4,3) 5. 已知方程x 2 +(a-2)x+a-1=0的两根x1、x2,则点P(x1,x2)在圆x 2 +y 2 =4上,则实数a=_____。 【简解】 1小题:利用等比数列性质a m p -a m p +=a m 2 ,将已知等式左边后配方(a3+a5) 2 易求。答案是:5。 2小题:配方成圆的标准方程形式(x-a) 2 +(y-b) 2 =r 2 ,解r 2 >0即可,选B。 3小题:已知等式经配方成(sin 2 α+cos 2 α) 2 -2sin 2 αcos 2 α=1,求出sinαcosα,然后求出所求式的平方值,再开方求解。选C。 4小题:配方后得到对称轴,结合定义域和对数函数及复合函数的单调性求解。选D。 5小题:答案3-11。 Ⅱ、示范性题组: 例1.已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为_____。 A. 23 B. 14 C. 5 D. 6 【分析】先转换为数学表达式:设长方体长宽高分别为x,y,z,则211 424 () () xy yz xz x y z ++= ++= ? ? ? ,而欲求对角线长x y z 222 ++,将其配凑成两已知式的组合形式可得。

高一数学听课记录

高一数学听课记录 记录xx 年9月21 日授课教师李金山学科数学学校班级忠县中学高一(3)班课题函数定义域,值域,函数值的求法课型新授课教师教学过程记录:引入新知: 1、函数定义域的求法(1)简单函数的定义域例1 求下列函数的定义域:(1)f(x)=1/x-2 (2) f(x)=求解步骤:由已知x-2≠0--------------------------写条件x≠2-------------------------解不等式(组)所以函数的定义域为{x| x≠2}-------下结论总结:(1)若f(x)是整式,则定义域为R (2)若f(x)是分式,则分母不能为0 (3)f(x)为偶次根式,则根号下的式子大于或等于0练习: 1、(1)f(x)= (2)f(x)= (3)P19练习总结:定义域:使每个式子有意义;生活中的实际 2、求下列函数的定义域(1)y=2x+3 (2)f(x)= (3) (4)(5) f(x)=(二)复合函数的定义域例2 已知f(x)的定义域为[0,2],求f(2x-1)的定义域。练习: 1、已知f(2x-1)的定义域为(-1,5],求f(x)的定义域。 2、已知函数f(x)的定义域为[0,2],那么函数g(x)= 2、函数值的求解 1、已知f(x)=3x+2,求f(-1),f(a),f(1/a-1),f[f()]

2、已知f(x)=求f(3),f(f(-1)) (分段函数) 3、已知f(3x-1)=4x+1,求f(2)=____ 3、求函数的值域(概念的理解,重点)(1) y= (2) x[1,5] 理解: (1)xR 函数值域[0,+] (2)x[-1,1] 函数的值域[0,1] (3)x[1,3] 函数的值域[1,9]求函数值的方法:画图;截图;确定取值范围(y轴)练习:,在x[1,8]的值域_____课堂总结教学点评:运用实例生动引出集合元素的概念,为了解集合含义作铺垫充分体现了以学生为主体,教师为引导者的教学理念。结合学生情况,充分调动课堂积极性同一个f括号内约束条件相同;定义域的概念整体代换思想一个表达式中的x相同运用简单例子帮助理解:函数解析式相同,值域取决于定义域老师精炼的总结,系统的巩固知识。并且充分调动课堂气氛听课随感:学生对知识主动探索,并在老师的点播下逐渐修正,进而都得出正确结论,富有趣味以及创造性,既培养了学生对知识的兴趣,又防止学生思维僵化。在课业压力较大的的高三,充分做到了效率和时间有机结合,能力和容量相兼容。给予学生自主探索的时间和空间,让学生在自主探索中,获得知识,体验知识的形成过程,获得学习的主动权。在课堂中,教师花了充足的时间让学生多次进行合作学习,在合作探索中得出结论。

高考数学数列题型专题汇总

高考数学数列题型专题 汇总 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

高考数学数列题型专题汇总 一、选择题 1、已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞ →lim .下列 条件中,使得()*∈q a (B )6.07.0,01-<<-q a (D )7.08.0,01-<<-

A .{}n S 是等差数列 B .2{}n S 是等差数列 C .{}n d 是等差数列 D .2{}n d 是等差数列 【答案】A 二、填空题 1、已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则 6=S _______.. 【答案】6 2、无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意 *∈N n ,{}3,2∈n S ,则k 的最大值为________. 【答案】4 3、设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2a n 的最大值 为 . 【答案】64 4、设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则 a 1= ,S 5= . 【答案】1 121

高三数学教案:数列极限的运算法则

数列极限的运算法则(5月3日) 教学目标:掌握数列极限的运算法则,并会求简单的数列极限的极限。 教学重点:运用数列极限的运算法则求极限 教学难点:数列极限法则的运用 教学过程: 一、复习引入: 函数极限的运算法则:如果,)(lim ,)(lim 0 B x g A x f x x x x ==→→则[]=±→) ()(lim 0 x g x f x x ___ []=→)().(lim 0 x g x f x x ____,=→) () (lim x g x f x x ____(B 0≠) 二、新授课: 数列极限的运算法则与函数极限的运算法则类似: 如果,lim ,lim B b A a n n n n ==∞ →∞ →那么 B A b a n n n +=+∞ →)(lim B A b a n n n -=-∞ →)(lim B A b a n n n .).(lim =∞ → )0(lim ≠=∞→B B A b a n n n 推广:上面法则可以推广到有限.. 多个数列的情况。例如,若{}n a ,{}n b ,{}n c 有极限, 则:n n n n n n n n n n c b a c b a ∞ →∞ →∞ →∞ →++=++lim lim lim )(lim 特别地,如果C 是常数,那么CA a C a C n n n n n ==∞ →∞ →∞ →lim .lim ).(lim 二.例题: 例1.已知,5lim =∞ →n n a 3lim =∞ →n n b ,求).43(lim n n n b a -∞ → 例2.求下列极限: (1))45(lim n n + ∞ →; (2)2)11 (lim -∞→n n 例3.求下列有限: (1)1312lim ++∞→n n n (2)1 lim 2-∞→n n n 分析:(1)(2)当n 无限增大时,分式的分子、分母都无限增大,分子、分母都没有极限, 上面的极限运算法则不能直接运用。

相关文档
最新文档