计算机组成原理实验报告总结寄存器的原理及操作.doc
计算机组成原理实验报告 通用寄存器单元实验

西华大学数学与计算机学院实验报告课程名称:计算机组成原理年级:2011级实验成绩:指导教师:祝昌宇姓名:蒋俊实验名称:通用寄存器单元实验学号:312011*********实验日期:2013-12-15一、目的1.了解通用寄存器的组成和硬件电路2. 利用通用寄存器实现数据的置数、左移、右移等功能二、实验原理(1)寄存器实验构成1、通用寄存器由2片GAL构成8位字长的寄存器单元。
8芯插座RA-IN作为数据输入端,可通过端8芯扁平电缆,把数据数据输入端连接到数据总线上。
2、数据输出由一片74LS244(输出缓冲器)来控制。
用8芯插座RA-OUT作为数据输出端,可通过端8芯扁平电缆,把数据数据输出端连接到数据总线上。
3、判零和进位电路由1片GAL、1片7474和一些常规芯片组成,用2个LED(ZD、CY)发光管分别显示其状态。
(2)通用寄存器单元的工作原理通用寄存器的核心部件为2片GAL,它具有锁存、左移、右移、保存等功能。
各个功能都由X1、X2信号和工作脉冲RACK来决定。
当置ERA=0、X0=1、X1=1,RACK有上升沿时,把总线上的数据打入通用寄存器。
可通过设置X1、X0来指定通用寄存器工作方式,通用寄存器的输出端Q0~Q7接入判零电路。
LED(ZD)亮时,表示当前通用寄存器内数据为0。
输出缓冲器采用74LS244,当控制信号RA-O为低时,74LS244开通,把通用寄存器内容输出到总线;当控制信号RA-O为高时,74LS244的输出为高阻。
图1 通用寄存器原理图三、使用环境计算机组成原理实验箱四、实验步骤(一)数据输入通用寄存器1.把RA-IN(8芯的盒型插座)与CPT-B板上二进制开关单元中的J1插座相连(对应二进制开关H16~H23),把RA-OUT(8芯的盒型插座)与数据总线上的DJ6相连。
2.把RACK连到脉冲单元的PLS1,把ERA、X0、X1、RA-0、M接入二进制拨动开关。
请按下表接线。
计算机组成原理--实验报告

实验一寄存器实验实验目的:了解模型机中各种寄存器结构、工作原理及其控制方法。
实验要求:利用CPTH 实验仪上的K16..K23 开关做为DBUS 的数据,其它开关做为控制信号,将数据写入寄存器,这些寄存器包括累加器A,工作寄存器W,数据寄存器组R0..R3,地址寄存器MAR,堆栈寄存器ST,输出寄存器OUT。
实验电路:寄存器的作用是用于保存数据的CPTH 用74HC574 来构成寄存器。
74HC574 的功能如下:- 1 -实验1:A,W 寄存器实验原理图寄存器A原理图寄存器W 原理图连接线表:- 2 -系统清零和手动状态设定:K23-K16开关置零,按[RST]钮,按[TV/ME]键三次,进入"Hand......"手动状态。
在后面实验中实验模式为手动的操作方法不再详述.将55H写入A寄存器二进制开关K23-K16用于DBUS[7:0]的数据输入,置数据55H置控制信号为:按住STEP脉冲键,CK由高变低,这时寄存器A的黄色选择指示灯亮,表明选择A寄存器。
放开STEP键,CK由低变高,产生一个上升沿,数据55H被写入A寄存器。
将66H写入W寄存器二进制开关K23-K16用于DBUS[7:0]的数据输入,置数据66H- 3 -置控制信号为:按住STEP脉冲键,CK由高变低,这时寄存器W 的黄色选择指示灯亮,表明选择W寄存器。
放开STEP 键,CK 由低变高,产生一个上升沿,数据66H 被写入W 寄存器。
注意观察:1.数据是在放开STEP键后改变的,也就是CK的上升沿数据被打入。
2.WEN,AEN为高时,即使CK有上升沿,寄存器的数据也不会改变。
实验2:R0,R1,R2,R3 寄存器实验连接线表- 4 -将11H、22H、33H、44H写入R0、R1、R2、R3寄存器将二进制开关K23-K16,置数据分别为11H、22H、33H、44H置控制信号为:K11、K10为10,K1、k0分别为00、01、10、11并分别按住STEP 脉冲键,CK 由高变低,这时寄存器R0、R1\R2\R3 的黄色选择指示灯分别亮,放开STEP键,CK由低变高,产生一个上升沿,数据被写入寄存器。
计算机寄存器实验报告

一、实验目的1. 理解计算机寄存器的概念、作用和分类;2. 掌握寄存器在计算机系统中的基本操作;3. 熟悉寄存器的控制信号及其工作原理;4. 培养实验操作能力和分析问题能力。
二、实验环境1. 实验设备:计算机组成原理实验箱、计算机、Proteus仿真软件;2. 实验软件:Proteus仿真软件、模型机仿真软件;3. 实验环境:实验室。
三、实验内容1. 寄存器基本概念及分类;2. 寄存器操作实验;3. 寄存器控制信号实验;4. 寄存器在计算机系统中的应用实验。
四、实验步骤1. 寄存器基本概念及分类实验(1)打开Proteus仿真软件,创建一个新的项目;(2)在项目中选择计算机组成原理实验箱中的寄存器模块;(3)观察寄存器的结构,了解寄存器的分类(如累加器、寄存器组、地址寄存器等);(4)总结寄存器的作用,如暂存数据、控制指令等。
2. 寄存器操作实验(1)在Proteus仿真软件中,搭建一个简单的寄存器操作电路;(2)设置输入数据,观察寄存器的输出;(3)通过改变输入数据,验证寄存器的存储功能;(4)总结寄存器操作的基本步骤。
3. 寄存器控制信号实验(1)在Proteus仿真软件中,搭建一个包含控制信号的寄存器电路;(2)观察控制信号对寄存器操作的影响;(3)通过改变控制信号,验证寄存器的读写功能;(4)总结寄存器控制信号的作用和意义。
4. 寄存器在计算机系统中的应用实验(1)在Proteus仿真软件中,搭建一个简单的计算机系统电路;(2)观察寄存器在计算机系统中的操作过程;(3)分析寄存器在计算机系统中的作用,如数据暂存、指令控制等;(4)总结寄存器在计算机系统中的应用。
五、实验结果与分析1. 通过实验,掌握了寄存器的基本概念、作用和分类;2. 熟悉了寄存器的操作过程,包括输入、输出、读写等;3. 了解寄存器控制信号的作用,以及它们对寄存器操作的影响;4. 分析了寄存器在计算机系统中的应用,如数据暂存、指令控制等。
计算机组成原理实验报告实验232寄存器实验

计算机组成原理实验报告实验232寄存器实验实验目的:1.了解寄存器在计算机中的作用和应用;2.掌握寄存器的基本操作和控制方法;3.学习寄存器的工作原理和内部结构。
实验仪器和材料:1.计算机模拟实验平台;2.VHDL语言编程软件;3.FPGA开发板。
实验原理:寄存器是一种用于存储数据的硬件设备,它通常用于暂时保存和传输计算机中的数据。
在计算机系统中,寄存器可用于存储指令、数据或者地址等信息,其快速的读写速度使得计算机能够高效地进行数据处理和运算。
在本次实验中,我们将设计一个4位寄存器,并实现对该寄存器的读写操作。
该寄存器的位数为4位,即可以存储4位的二进制数据。
通过在FPGA开发板上搭建实验电路,连接到计算机模拟实验平台,可以利用VHDL语言编程实现该寄存器的逻辑功能。
实验步骤:1. 使用VHDL编程软件,创建一个新的工程,并添加寄存器的顶层模块。
创建一个四位宽的输入端input_data,并添加一个时钟输入端clk。
2. 在顶层模块中,将input_data输入到四个触发器模块中。
每个触发器模块使用D触发器,其中D输入端连接到input_data,时钟输入端连接到clk。
触发器的输出端连接到对应的输出端。
3. 添加一个使能端enable,并将其连接到所有的触发器的使能输入端。
设置enable为高电平时,寄存器工作;设置enable为低电平时,寄存器不工作。
4. 添加一个读写控制端rw,并将其连接到一个二选一的多路选择器模块。
该模块的两个输入端分别连接到时钟输入端和输出端,而读写控制端rw作为多路选择器的控制输入端。
多路选择器的输出端连接到所有的触发器的时钟输入端。
5. 添加一个四位宽的输出端output_data,并将其连接到四个触发器的输出端,作为寄存器的输出。
实验结果与分析:通过在计算机模拟实验平台上进行仿真与调试,我们得到了寄存器的实际控制和输出结果。
经过多组实验数据的观察与比较,可以发现寄存器能够实现数据的暂存和传输功能。
计算机组成原理堆栈寄存器实验报告

计算机组成原理实验三堆栈寄存器实验一、实验目的:1、熟悉堆栈概念。
2、熟悉堆栈寄存器的组成和硬件电路。
二、实验要求:完成3个堆栈寄存器的数据写入与读出。
三、实验原理:实验中所用的堆栈寄存器数据通路由三片8位字长的LS374组成R0、R1、R2寄存器堆。
三个寄存器的输入/输出已连至BUS总线R0-B、R1-B、R2-B经CBA二进制控制开关译码产生数据输出选通信号(详见下表),LDR0、LDR1、LDR2为数据写入允许信号,由二进制控制开关来模拟,均为高电平有效;T4信号为寄存器数据写入脉冲,上升沿有效。
在手动实验状态(即“H”装态)每按动一次“单步”命令键,产生一个T4信号。
下表为寄存器单元选通真值表:四、实验连接:1.连接实验线路,把位于实验装置左上方的CTR-OUT UNIT (LDR0、LDR1、LDR2、/SW-B)与实验装置右中央的CTR-OUT unit (LDR0、LDR1、LDR2)及实验装置左下方INPUT-UNIT(/SW-B)中的控制信号作对应连接。
2.具体连接信号:/SW-B,/R0-B,/R1-B ,/R2-B ,LDR0,LDR1,LDR2五、实验仪器状态设定:在闪动的“P.”状态下按动“增址”命令键,使LED显示器自左向右第一位显示提示符“H”,表示本装置已进入手动单元实验状态。
五、实验项目:(一)堆栈寄存器的写入拨动二进制数据开关(INPUT-UNIT)向R0和R1寄存器置数(置数灯亮表示它所对应的数据位为“1”、反之为“0”)。
具体操作步骤图示如下:[CBA=001] [LDR0=1] [LDR=1][LDR1=0] [LDR1=1][LDR2=0] [LDR2=0][按“STEP”] [按“STEP”] (二)堆栈寄存器的读出关闭数据输入三态门(CBA=000),分别打开通用寄存器R0、R1、R2输出控制位,当CBA=100时,总线指示灯(BUS-DISP UNIT)显示R0中的数据01H;当CBA=101时,总线指示灯显示R1中的数据80H;当CBA=110时,总线指示灯显示R2中等的数据(随机),可以观察到,显示的随机数为11111111.(六)实验总结通过本次实验的数据和理论分析进行比较、验证,我们熟悉了堆栈概念,熟悉了堆栈寄存器的组成和硬件电路等。
计组实验报告

计算机组成原理实验报告实验一寄存器组成实验一、实验目的(1)熟悉D触发器的功能及使用方法。
(2)掌握寄存器文件的逻辑组成及使用方法。
二、实验内容(1)掌握Quartus II的使用方法,能够进行数字电路的设计及仿真。
(2)验证Quartus II所提供D触发器的功能及使用方法。
(3)设计具有1个读端口、1个写端口的寄存器文件,并进行存取操作仿真/验证。
三、实验原理及方案Quartus II提供了多种类型的触发器模块,如D触发器、T触发器等。
固定特性的触发器模块有不同的型号,参数化的触发器模块有lpm_ff、lpm_dff、lpm_tff等。
D触发器常来构建寄存器。
本次实验我们用Quartus II中提供的8为D触发器模块,实现了一个8×8bits 的寄存器组,因此,操作地址均为3位,数据均为8位。
由于要求读写端口分离,因此,读操作的相关引脚有地址raddr[2..0]、数据输出q[7..0],写操作的相关引脚有地址waddr[2..0]、数据输入data[7..0]、写使能wen。
其中,省略读使能信号可以简化控制,即数据输出不受限制。
寄存器文件通过写地址waddr[2..0]、写使能wen信号来实现触发器的写入控制,通过读地址raddr[2..0]信号来控制触发器的数据输出选择。
其连接电路原理如图所示。
寄存器文件的组成则由此,可在Quartus II中连接原理图:四、实验结果仿真波形如下:五、小结通过此次实验,我们学会了Quartus II的原理图的构造方法,以及仿真方法,并且使用lpm_dff作为三态门,控制数据的输入,并且在输出时,用lpm_mux选择每个寄存器的数据输出。
最后,在本次实验中,我们重新巩固了课堂学习的内容,也对寄存器加深了了解,相信我们会通过实验在计组的学习道路上越走越远。
实验二运算器组成实验一、实验目的(1)熟悉加/减法器的功能及使用方法。
(2)掌握算术逻辑部件(ALU)的功能及其逻辑组成。
计算机组成原理实验报告-寄存器实验

千里之行,始于足下。
计算机组成原理实验报告-寄存器实验计算机组成原理实验报告-寄存器实验》一、实验目的本次实验旨在通过设计和实现一个基本的寄存器,加深对计算机组成原理中寄存器的理解,并掌握寄存器在计算机中的应用。
二、实验设备及软件1. 实验设备:计算机2. 实验软件:模拟器软件Mars3. 实验材料:电路图、线缆、元器件三、实验原理寄存器是计算机的一种重要组成部分,用于存储数据和指令。
一个基本的寄存器通常由一组触发器组成,可以存储多个位的信息。
本实验中,我们需要设计一个16位的寄存器。
四、实验步骤1. 确定寄存器的结构和位数:根据实验要求,我们需要设计一个16位的寄存器。
根据设计要求,选择合适的触发器和其他元器件。
2. 组装寄存器电路:根据电路图,将选择好的元器件按照电路图连接起来。
3. 连接电路与计算机:使用线缆将寄存器电路连接到计算机的相应接口上。
4. 编写程序:打开Mars模拟器软件,编写程序来测试寄存器的功能。
可以编写一段简单的程序,将数据写入寄存器并读取出来,以验证寄存器的正确性。
5. 运行程序并测试:将编写好的程序加载到Mars模拟器中,并运行程序,观察寄存器的输出和模拟器的运行结果。
第1页/共3页锲而不舍,金石可镂。
五、实验结果在本次实验中,我们成功设计和实现了一个16位的寄存器,并进行了相关测试。
经过多次测试,寄存器的功能和性能良好,能够准确地存储和读取数据。
六、实验心得通过本次实验,我对寄存器的结构和工作原理有了更深入的了解。
寄存器作为计算机的一种重要组成部分,起着存储和传输数据的作用。
通过实际操作和测试,我更加清楚了寄存器在计算机中的应用和重要性。
在实验过程中,我遇到了一些问题,如电路连接不稳定、程序错误等,但通过仔细检查和调试,最终解决了这些问题。
这次实验也让我深刻体会到了学习计算机组成原理的重要性,只有深入理解原理并通过实践运用,才能真正掌握计算机的工作原理和能力。
通过这个实验,我有了更深入的认识和理解,对计算机组成原理的学习也更加系统和完整。
寄存器实验实验报告

寄存器实验实验报告在学习计算机组成原理的过程中,寄存器可是个至关重要的概念。
为了更深入地理解它,咱进行了一场有趣的寄存器实验。
实验开始前,看着那一堆实验设备和线路,心里还真有点小紧张。
毕竟这可不是闹着玩的,一个不小心接错线,可能整个实验就泡汤了。
不过,咱还是鼓起勇气,准备大干一场!实验中用到的主要设备有数字逻辑实验箱、导线、示波器等等。
我们的任务是通过连接线路,实现对寄存器的读写操作,并观察数据的变化。
先来说说寄存器的基本原理吧。
寄存器就像是计算机里的一个个小抽屉,专门用来存放数据。
它具有快速存储和读取数据的能力,是计算机运行的重要组成部分。
开始动手连接线路啦!这可真是个细致活儿。
我小心翼翼地拿着导线,眼睛紧紧盯着实验箱上的插孔,生怕插错了地方。
每插一根线,都感觉像是在完成一项艰巨的任务。
好不容易把线路连接好了,接下来就是输入数据进行测试。
当我按下第一个数据输入按钮时,心里别提多期待了。
眼睛一直盯着示波器的屏幕,盼着能看到正确的数据显示。
哎呀!没想到第一次居然出错了。
数据显示得乱七八糟,完全不是我想要的结果。
这可把我急坏了,赶紧检查线路,看是不是哪里接错了。
经过一番仔细的排查,终于发现原来是有一根导线接触不良。
重新接好后,再次输入数据,这次终于成功啦!看着示波器上显示出正确的数据,那种成就感简直爆棚。
在实验过程中,我还发现了一个有趣的现象。
当连续输入多个数据时,寄存器会按照先后顺序依次存储,就像排队一样,整整齐齐。
而且读取数据的时候,也是按照存储的顺序一个一个来,可听话了。
通过这次实验,我对寄存器有了更直观、更深刻的理解。
以前在书本上看到的那些抽象的概念,现在都变得清晰起来。
我明白了寄存器的工作原理,知道了它是如何存储和读取数据的,也更加体会到了计算机内部运行的神奇之处。
回想起刚开始面对实验设备时的紧张和迷茫,再看看现在成功完成实验后的喜悦和满足,真的是感慨万千。
这次实验不仅让我学到了知识,还锻炼了我的动手能力和解决问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成绩:实验报告
课程名称:计算机组成原理
实验项目:寄存器的原理及操作
姓名:
专业:计算机科学与技术
班级:
学号:
计算机科学与技术学院
实验教学中心
20 16年6月20日
实验项目名称:寄存器的原理及操作
一、实验目的
1.了解模型机中 A, W 寄存器结构、工作原理及其控制方法。
2.了解模型机中寄存器组 R0..R3 结构、工作原理及其控制方法。
3.了解模型机中地址寄存器 MAR,堆栈寄存器 ST,输出寄存器 OUT寄存器结构、工作原理及其控
制方法。
二、实验内容
1、A、W寄存器:利用 COP2000实验仪上的K16..K23 开关做为DBUS的数据,其它开关做为控制信号,
将数据写入寄存器A, W。
2、R0、R1、R2、R3 寄存器实验:利用COP2000实验仪上的K16..K23 开关做为DBUS的数据,其它开
关做为控制信号,对数据寄存器组R0..R3 进行读写。
3、MAR、ST、OUT寄存器:利用COP2000实验仪上的K16..K23 开关做为DBUS的数据,其它开关做为
控制信号,将数据写入地址寄存器MAR,堆栈寄存器ST,输出寄存器OUT。
三、实验用设备仪器及材料
伟福 COP2000 系列计算机组成原理实验系统
四、实验原理及接线
实验 1:A,W 寄存器实验
实验 2 :R0,R1, R2,R3寄存器实验
MAR为存储器地址寄存器,其功能是存储操作数在内存中的地址,信号MAREN的功能是将数据总线DBUS上数据 MAR,信号 MAROE的功能是将MAR的值送到地址总线ABUS上
ST 堆栈寄存器的作用,是出现中断或子程序调用时,保存断点处PC 的值,以便中断或子程序结束时,
能继续执行原程序。
图中,信号STEN的作用是将数据总线DBUS上数据存入堆栈寄存器ST 中
五、实验操作步骤
实验 1:A,W 寄存器实验
将 55H写入 A 寄存器
二进制开关 K23-K16 用于 DBUS[7:0] 的数据输入,置数据55H
按住 CLOCK脉冲键, CLOCK由高变低,这时寄存器 A 的黄色选择指示灯亮,表明选择 A 寄存器。
放开 CLOCK键, CLOCK由低变高,产生一个上升沿,数据55H被写入 A 寄存器。
将 66H写入 W寄存器
二进制开关 K23-K16 用于 DBUS[7:0] 的数据输入,置数据66H
按住CLOCK脉冲键,CLOCK由高变低,这时寄存器W的黄色选择指示灯亮,表明选择W 寄存器。
放开CLOCK 键,CLOCK由低变高,产生一个上升沿,数据66H 被写入W 寄存器。
实验 2 :R0,R1, R2,R3寄存器实验
将11H写入 R0 寄存器
3
v1.0可编辑可修改置控制信号为:
按住 CLOCK脉冲键, CLOCK由高变低,这时寄存器R0 的黄色选择指示灯亮,表明选
择 R0 寄存器。
放开 CLOCK键, CLOCK由低变高,产生一个上升沿,数据 11H被写入 R0 寄存器。
将22H写入 R1 寄存器
二进制开关 K23-K16 用于 DBUS[7:0] 的数据输入,置数据22H
置控制信号为:
按住 CLOCK脉冲键, CLOCK由高变低,这时寄存器R1 的黄色选择指示灯亮,表明选
择 R1 寄存器。
放开 CLOCK键, CLOCK由低变高,产生一个上升沿,数据 22H被写入 R1 寄存器。
将33H写入 R2 寄存器
二进制开关 K23-K16 用于 DBUS[7:0] 的数据输入,置数据33H
置控制信号为:
按住 CLOCK脉冲键, CLOCK由高变低,这时寄存器R2 的黄色选择指示灯亮,表明选
择 R2 寄存器。
放开 CLOCK键, CLOCK由低变高,产生一个上升沿,数据 33H被写入 R2 寄存器。
将44H写入 R3 寄存器
二进制开关 K23-K16 用于 DBUS[7:0] 的数据输入,置数据44H
置控制信号为:
按住 CLOCK脉冲键, CLOCK由高变低,这时寄存器R3 的黄色选择指示灯亮,表明选
择 R3 寄存器。
放开 CLOCK键, CLOCK由低变高,产生一个上升沿,数据 44H被写入 R3 寄存器。
读R0 寄存器置
控制信号为:
这时寄存器 R0 的红色输出指示灯亮, R0 寄存器的数据送上数据总线。
此时液晶显示DBUS: 11 00010001.将K11(RRD)置为1,关闭R0寄存器输出.
读R1 寄存器置
控制信号为:
0 1 0 1
这时寄存器 R1 的红色输出指示灯亮, R1 寄存器的数据送上数据总线。
此时液晶显示DBUS: 22 00100010.将K11(RRD)置为1,关闭R1寄存器输出.
读 R2 寄存器
置控制信号为:
这时寄存器 R2 的红色输出指示灯亮, R2 寄存器的数据送上数据总线。
此时液晶显示DBUS: 33 00110011.将K11(RRD)置为1,关闭R2寄存器输出.
读R3 寄存器置
控制信号为:
这时寄存器 R3 的红色输出指示灯亮, R3 寄存器的数据送上数据总线。
此时液晶显
示 DBUS: 44 01000100.将K11(RRD)置为1,关闭R3寄存器输出.
实验 3 :MAR地址寄存器, ST 堆栈寄存器, OUT输出寄存器
将12H写入 MAR寄存器
二进制开关 K23-K16 用于 DBUS[7:0] 的数据输入,置数据12H
置控制信号为:
按住 CLOCK脉冲键, CLOCK由高变低,这时寄存器MAR的黄色选择指示灯亮,表明选择 MAR寄存器。
放开CLOCK键, CLOCK由低变高,产生一个上升沿,数据12H 被写入MAR寄存器。
K14(MAROE)为 0, MAR 寄存器中的地址输出 . MAR 红色输出指示灯亮 .
将 K14(MAROE)置为 1.关闭MAR输出.
v1.0可编辑可修改将34H写入 ST 寄存器
二进制开关 K23-K16 用于 DBUS[7:0] 的数据输入,置数据34H
置控制信号为:
按住 CLOCK脉冲键, CLOCK由高变低,这时寄存器ST 的黄色选择指示灯亮,表明选
择ST 寄存器。
放开 CLOCK键, CLOCK由低变高,产生一个上升沿,数据 34H 被写入 ST 寄存器。
将56H写入 OUT寄存器
二进制开关 K23-K16 用于 DBUS[7:0] 的数据输入,置数据56H
置控制信号为:
按住 CLOCK脉冲键, CLOCK由高变低,这时寄存器 OUT 的黄色选择指示灯亮,表明选择 OUT 寄存器。
放开 CLOCK键,CLOCK由低变高,产生一个上升沿,数据 56H 被写入 OUT 寄存器。
六、实验结果分析
寄存器的作用是用于保存数据的,因为我们的模型机是8 位的,因此在本模型机中大部寄存器是8 位的,标志位寄存器(Cy, Z)是二位的。
COP2000用 74HC574来构成寄存器。
74HC574的功能如下:
7
v1.0可编辑可修改
说明:
1. 在 CLK的上升沿将输入端的数据打入到8 个触发器中
2. 当 OC = 1 时触发器的输出被关闭,当OC=0时触发器的输出数据
将 55H 写入 A 寄存器
(1) 二进制开关K23-K16DBUS[7:0],用于数据输入
( 2)在AEN=0
CLK上升沿数据送送入A寄存器WEN=1
将11H 写入 R0 寄存器
(1) 二进制开关K23-K16DBUS[7:0],用于数据输入
(2) RRD=1
RWR=0 CLK上升沿
SB=0R0寄存器
SA=0
将22H 写入 R1 寄存器
(1) 二进制开关K23-K16DBUS[7:0],用于数据输入
(2) RRD=1
RWR=0 CLK上升沿
SB=1R0寄存器
SA=0
8
v1.0可编辑可修改将11H 用 R0 寄存器读出
RRD=0
RWR=1
SB=0数据送到数据总线(液晶显示)
SA=0
将55H 写入 MAR寄存器
(1) 二进制开关K23-K16DBUS[7:0],用于数据输入
(2)MAROE=0(K14)
MAREN=0(K15) CLK上升沿
STEN=1(K12)MAR寄存器
OUTEN=1(K13)
9。