中考数学—分式和二次根式专题训练
2022年中考数学专题练——专题三 分式、二次根式

专题三分式、二次根式一、单选题1.已知y=+-3,则2xy的值为( )A. -15B. 15C. -D.2.(2019·江川模拟)实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是( )A. ﹣2a-bB. 2a﹣bC. ﹣b D. b3.(2022九下·重庆月考)如果2x-y= ,那么代数式的值为()A. -B. C. 2D. -24.(2019·北京模拟)如果a+b=2,那么代数式的值是()A. B. 1 C.D. 25.若x<2,化简+|3-x|的正确结果是()A. -1B. 1C. 2x-5 D. 5-2x6.乐陵市某中学八年级教师为鼓励学生合作学习设计了一个接力游戏——用合作的方式完成分式化简.规则是:每人只能看到前一人给的式子,并进行下一步计算,再将结果传递给下一人,最后完成化简,过程如图所示:接力中,自己负责的一步出现错误的情况是()A. 只有甲出错B. 甲和乙C. 乙和丙 D. 丙和丁7.(2019·东台模拟)使有意义的x的取值范围是()A. x>B. x>-C. x≥D. x≥-8.(2022·长春模拟)若使有意义,由x的取值范围是()A. x>3B. x>-3C. x≥3.D. x≥-39.(2019·双柏模拟)下列运算正确的是()A. 4a2÷2a2=2B. ﹣a2•a3=a6 C. D.10.(2022九上·郑州期末)下列计算正确的是()A. 2007 =0B. 5 =﹣15C. a ÷a =aD. ﹣8x y ÷4xy =﹣2xy11.一个三角形的三边长分别为1,k,4,化简|2k-5|-的结果是( )A. 3k-11B. k+1 C. 1 D. 11-3k12.(2022·百色模拟)成人每天维生素D的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为()A. 46×10﹣7B. 4.6×10﹣7C. 4.6×10﹣6 D. 0.46×10﹣513.把代数式(a-1) 的a-1移到根号内,那么这个代数式等于()A. -B. C.D. -14.下列计算错误的有()①(-)-3=8;②( -π)0=1;③39÷3-3=3-3;④9a-3·4a5=36a2;⑤5x2÷(3x)×=5x2.A. ①③④B. ②③④C. ①②③ D. ①③⑤15.(2017·大理模拟)下列运算正确的是()A. sin60°=B. a6÷a2=a3C. (﹣2)0=2 D. (2a2b)3=8a6b316.(2022·北京模拟)已知:,,,则A. B. C.D.17.下列运算正确的是()A. (2x3y)2=4x6y2B. =×C. a6÷a3=a2 D. a4+a2=a618.(2019·蒙自模拟)下列各式中,运算正确的是()A. a6÷a3=a2 B. C. D.19.(2019·上海模拟)方程的解为()A. x=4B. x=7C. x=8 D. x=10.20.已知a+=,则a-的值为()A. ±2B. 8C.D. ±二、填空题21.(2019·乌鲁木齐模拟)式子在实数范围内有意义,则x的取值范围是________.22.(2018九上·恩阳期中)最简二次根式与可以合并,则的值是________23.(2022九下·下陆月考)函数中自变量x的取值范围是________.24.(2017·莱芜)(﹣)﹣3﹣2cos45°+(3.14﹣π)0+ =________.25.(2022九上·郑州期末)要使分式有意义,则x的取值范围是________.26.(2019·五华模拟)工匠绝技,精益求精,中国船舶重工的钳工顾秋亮凭着精到丝级的手艺,为海底探索者7000米级潜水器“蛟龙号”安装观察窗玻璃,成功地将玻璃与金属窗座之间的缝隙控制在0.2丝米以下已知1丝米=0.0001,0.2丝米=0.00002米,则用科学记数表示数据0.00002为________.27.(2019·青浦模拟)方程的根是________.28.若+=+|2c-6|,则b c+a的值为________.29.(2022·北京模拟)当________时,分式的值为0.30.(2019·黄陂模拟)如果,那么代数式的值是________.三、解答题31.(2019·朝阳模拟)先化简:;再在不等式组的整数解中选取一个合适的解作为a的取值,代入求值.32.(2022九下·镇平月考)先化简,再求值:,其中整数x与2、3构成△ABC的三条边长.33.化简,并求值,其中a与2,3构成△ABC的三边,且a为整数.34.(2019九上·新蔡期中)如图,面积为48cm2的正方形,四个角是面积为3cm2的小正方形,现将四个角剪掉,制作一个无盖的长方体盒子,求这个长方体盒子的体积.35.(2022·玉林模拟)化简分式,并选取一个你认为合适的整数a代入求值.36.(2019九上·灌云月考)已知9+ 与9﹣的小数部分分别为a和b,求ab﹣3a+4b+10的值.37.(2022·郑州模拟)先化简,再求值:÷(﹣x+1),其中x=sin30°+2﹣1+ .38.(2019九下·宁都期中)(1)计算:﹣14﹣2×(﹣3)2+ ÷(﹣)(2)如图,小林将矩形纸片ABCD沿折痕EF翻折,使点C、D分别落在点M、N的位置,发现∠EFM=2∠BFM,求∠EFC的度数.39.(2019·红塔模拟)观察下面的变形规律:;;;….解答下面的问题:(1)若n为正整数,请你猜想=________;(2)证明你猜想的结论;(3)求和:+ + +…+ .40.(2019九上·海门期末)(1)计算:;(2)先化简,再求代数式的值:,其中.41.(2019·增城模拟)已知.(1)化简;(2)如果、是方程的两个根,求的值.42.(2019·朝阳模拟)某学生在化简求值:,其中x=时出现不符合题意,解答过程如下,原式=(第一步)=(第二步)=(第三步)当x=是,原式=(第四步)(1)该学生解答过程从第________步开始出错的,其不符合题意原因是________.(2)写出此题的符合题意解答过程.43.(2019·盘龙模拟)设M=(1)化简M;(2)当a=1时,记此时M的值为f(1)=;当a=2时,记此时M的值为f(2)=;当a=3时,记此时M的值为f(3)=……当a=n时,记此时M的值为f(n)=________;则f(1)+f(2)+…+f(n)=________;(3)解关于x的不等式组:≤f(1)+f(2)+f(3)并将解集在数轴上表示出来.44.(2019·越秀模拟)已知(1)化简T;(2)若x满足,求T的值.45.(2019·南京模拟)定义:如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,则称这个分式为“和谐分式”.如:,则是“和谐分式”.(1)下列分式中,属于“和谐分式”的是________(填序号);①;②;③;④;(2)将“和谐分式”化成一个整式与一个分子为常数的分式的和的形式为:=________(要写出变形过程);(3)应用:先化简,并求x取什么整数时,该式的值为整数.答案解析部分一、单选题1. A【解答】解:由题意可得:,解得x=,将x=代入方程y=+-3得出y=-3,∴2xy=2×=-15.故答案为:A.【分析】根据二次根式有意义的条件列出不等式组,求解得出x的值,将x的值代入方程即可算出y的值,从而即可解决问题.2. A【解答】解:由图可知:,∴,∴.故答案为:A.【分析】观察数轴可知a<0<b,|a|>|b|,由此可得到a+b<0,然后利用二次根式的性质及绝对值的意义进行化简。
初中中考数学专题03 分式与二次根式(原卷版)

2024年中考数学真题专题分类精选汇编(2025年中考复习全国通用)专题03 分式与二次根式一、选择题1.(2024甘肃威武)计算:4222a b a b a b -=--( ) A. 2B. 2a b -C. 22a b -D. 2a b a b -- 2. (2024天津市)计算3311x x x ---的结果等于( ) A. 3 B. x C. 1x x - D. 231x - 3. (2024河北省)已知A 为整式,若计算22A y xy y x xy -++的结果为x y xy -,则A =( ) A. x B. y C. x y + D. x y -4. (2024黑龙江绥化)m 的取值范围是( ) A. 23m ≤ B. 32m ≥- C. 32m ≥ D. 23m ≤-5. (2024四川乐山)已知12x <<2x -的结果为( ) A. 1- B. 1 C. 23x - D. 32x -6. (2024湖南省) )A. B. C. 14 D.7. (2024江苏盐城),设其面积为2cm S ,则S 在哪两个连续整数之间( )A. 1和2B. 2和3C. 3和4D. 4和58. (2024重庆市B )的值应在( ) A. 8和9之间 B. 9和10之间C. 10和11之间D. 11和12之间9. (2024重庆市A )已知m =m 的范围是( ) A. 23m <<B. 34m <<C. 45m <<D. 56m << 二、填空题1. (2024吉林省)当分式11x +的值为正数时,写出一个满足条件的x 的值为______.2. (2024北京市)x 的取值范围是_________.3. (2024黑龙江齐齐哈尔)在函数12y x =++中,自变量x 的取值范围是______. 4. (2024湖北省)计算:111m m m +=++______.5. (2024四川德阳)__________.6. (2024贵州省)________.7. (2024山东威海)=________.8. (2024天津市)计算)11的结果为___.9. (2024上海市)1=,则x =___________.10. (2024山东威海)计算:2422x x x+=--________. 11. (2024黑龙江绥化)计算:22x y xy y x x x ⎛⎫--÷-= ⎪⎝⎭_________. 三、解答题1. (2024江苏连云港)下面是某同学计算21211m m ---的解题过程: 解:2121211(1)(1)(1)(1)m m m m m m m +-=---+-+-① (1)2m =+-②1m =-③上述解题过程从第几步开始出现错误?请写出完整的正确解题过程.2. (2024甘肃威武).3. (2024北京市)已知10a b --=,求代数式()223232a b ba ab b -+-+值. 4. (2024甘肃临夏)化简:21111a a a a a +⎛⎫++÷ ⎪--⎝⎭. 5. (2024江苏苏州) 先化简,再求值:2212124x x x x x +-⎛⎫+÷ ⎪--⎝⎭.其中3x =-. 6. (2024四川达州)先化简:22224x x x x x x x +⎛⎫-÷ ⎪-+-⎝⎭,再从2-,1-,0,1,2之中选择一个合适的数作为x 的值代入求值.7. (2024湖南省)先化简,再求值:22432x x x x x -⋅++,其中3x =. 8. (2024深圳)先化简,再求值: 2221111a a a a -+⎛⎫-÷ ⎪++⎝⎭,其中 21a =+ 9. (2024山东烟台)利用课本上的计算器进行计算,按键顺序如下:,若m 是其显示结果的平方根,先化简:27442393m m m m m m --⎛⎫+÷ ⎪--+⎝⎭,再求值.。
初中数学 中考复习二次根式专题练习(含答案)

二次根式复习一、知识归纳 (一)二次根式定义1注意:(12,(2)被开方数是非负数2、二次根式在实数范围内有意义的条件是 a ≥0 。
(二)二次根式的性质1、二次根式的双重非负性≥0,a ≥0a ≥0)表示非负数a 的算术平方根,≥0,2、)2=a (a ≥0)(0)0(0)(0)a a a a a a ⎧⎪===⎨⎪-⎩><(三)、最简二次根式和同类二次根式 1、最简二次根式的两个条件:(1)被开方数不含 ;(2)被开方数不含 的因数或因式。
满足:(1)根号内不含有分母,有分母的先通分,再将分母开出来 (2)根号内每个因式或因数的指数都小于根指数2,如果根号内含有因式或因数的指数大于根指数2,就利用,将每个因式或因数的指数都小于根指数2(3)分母内不含有根式,如果分母内含有根号,则利用分母有理化,将根号划去。
(1)判断一个二次根式是否是最简二次根式,要紧扣最简二次根式的特点: ①被开方数不含分母;②被开方数不能含开得尽方的因数或因式.即把每一个因数或因式都写成底数较小、乘方的形式后,因数或因式的指数小于2.③若被开方数是和(或差)的形式,则先把被开放方数写成积的形式,再作判定,若无法写成积(或一个数)的形式,则为最简二次根式.=简二次根式.=,且因式2和22()x y +的指数都是1,是最简二次根式.22a b +无法变成一个数(或因式)式.(2)化简二次根式一般例如为两步:一如果被开方数是分数或分式,利用分母有理化化简;二化去被开方数中的分母之后,再将被开方数分解成几个数相乘的形式或分解因式,然后利用积的算术平方根的性质把能开得尽方的因数或因式开出来.若被开方数中不含分母,则只需第二步.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式.同类二次根式与同类项类似. 对同类二次根式的理解应注意以下几点:(1)判断几个二次根式是否是同类二次根式时,首先将二次根式化为最简二次根式,其次看被开方数是否相同.(2)几个二次根式是否是同类二次根式,只与被开方数和根指数有关,与根号外的系数无关. 将同类二次根式的系数相加减,根指数与被开方数保持不变.(1)二次根式的系数就是这个二次根式根号外的因式(或因数),它包含前面的符号.(2)当二次根式的系数为带分数时,必须将其化为假分数.(3)不是同类二次根式,千万不要合并.(四)二次根式的运算0)=≥,≥0a b=≥,>00)a b≥,≥0a b0)=≥,>00)a b二次根式的加减实质上就是合并同类二次根式.4、二次根式加减的步骤:(1)先将二次根式化成。
专题03 分式与二次根式(题型归纳)(原卷版)

专题03 分式与二次根式1.(2021·浙江·温州市第二中学三模)使分式34x x --有意义的字母x 的取值范围是( ) A .x ≠0B .x ≠3C .x ≠4D .x ≠3且x ≠42.(2022·甘肃定西·模拟预测)函数32y x=-中,自变量x 的取值范围是( ) A .2x ≠-B .2x ≠C .0x ≠D .2x <3.(2022·江苏淮安·一模)若分式2xx +有意义,则x 的取值范围是( ) A .0x ≠B .2x ≠-C .2x >-D .2x ≥-4.(2022·贵州遵义·模拟预测)函数12x y x +=-的自变量x 的取值范围是( ) A .1x ≠-B .2x ≠C .1x ≥或2x ≠D .1x ≥-且2x ≠5.(2022·浙江·三模)若要使得分式211x -有意义,则x 的取值范围为_______.6.(2022·江苏·南通市海门区东洲国际学校模拟预测)当x =_____时,分式225x x -+无意义. 题型一 分式有意义、无意义的条件题型演练题型归纳7.(2022·江苏南京·二模)下列代数式的值总不为0的是( ) A .2x +B .22x -C .12x + D .()22x +8.(2022·贵州毕节·一模)关于分式254x x x a--+,有下列说法,错误的有( )个:(1)当x 取1时,这个分式有意义,则a ≠3; (2)当x =5时,分式的值一定为零; (3)若这个分式的值为零,则a ≠﹣5;(4)当x 取任何值时,这个分式一定有意义,则二次函数y =x 2﹣4x +a 与x 轴没有交点. A .0B .1C .2D .39.(2022·浙江温州·一模)若分式23x x --的值为0,则x 的值为( ) A .3-B .2-C .0D .210.(2021·浙江温州·三模)分式31x x +-的值为0,则x 的值是( ) A .﹣3B .0C .1D .311.(2022·浙江丽水·一模)若分式12x x+-的值为0,则x =_____. 12.(2022·江苏盐城·二模)当x 为_______时,分式245x x +-的值为0.13.(2022·四川·眉山市东坡区苏洵初级中学模拟预测)下列各式x 、2x 、1x、22x +、2x +中,值一定是正数的有( ) A .1个B .2个C .3个D .4个14.(2021·浙江温州·三模)若a b=12,则a b b +的值是( )A .3B .23C .32D .215.(2022·江苏宿迁·三模)已知两个不等于0的实数a 、b 满足0a b +=,则b aa b+等于( )A .2-B .1-C .1D .216.(2021·安徽安庆·一模)已知2x y=,则+-x yx y 的值为( )A .﹣3B .3C .13D .13-17.(2022·江苏镇江·二模)已知:a 与b 互为相反数,且12a b -=,则21a ab b a ab -+=++______. 18.(2022·黑龙江大庆·二模)已知非零实数x ,y 满足1xy x =+,则2x xy y xy --=__________.19.若分式2231xx -+的值是负数,则x 的取值范围是( ) A .x >32B .x >23C .x <32D .x <2320.下列关于分式2x x+的说法,错误的是( ) A .当x>-2时,分式的值一定为负数 B .当x=0时,分式没有意义 C .当x<-2时,分式的值一定为正数 D .当x=-2时,分式的值为0 21.已知分式24x x +的值是正数,那么x 的取值范围是( ) A .x >0 B .x >-4 C .x ≠0 D .x >-4且x ≠022.若分式2213x x -+的值为正数,则x 需满足的条件是( ) A .x 为任意实数 B .12x < C .12x >D .12x >-23.若分式32xx -的值为正数,x 的取值范围是__. 24.若分式22xx +的值为正,则实数x 的取值范围是__________________.25.(2022·河北·一模)如果要使分式23aa b-的值保持不变,那么分式应( ) A .a 扩大2倍,b 扩大3倍 B .a ,b 同时扩大3倍 C .a 扩大2倍,b 缩小3倍D .a 缩小2倍,b 缩小3倍26.(2022·山东临沂·二模)下列运算正确的是( ) A 2= B .33a ab b-=- C .221a a -=D .(a ﹣12)2=a 2﹣a -1427.(2022·湖南永州·二模)如果分式xyx y+中的x ,y 都扩大为原来的2倍,那么所得分式的值( ) A .不变B .缩小为原来的12C .扩大为原来的2倍D .不确定28.(2022·河北保定·一模)不改变分式的值,将分式0.020.50.004x yx y++中的分子、分母的系数化为整数,其结果为( ) A .2050010004x y x y++B .205001004x y x y++C .25010004x y x y ++D .254x y x y++29.(2022·湖北襄阳·一模)已知114y x-=,则分式2322x xy yx xy y +---的值为______.30.(2020·宁夏·银川市第九中学二模)若0234x y z==≠,则x y z 2y +-=_______.31.(2020·河北·模拟预测)下列分式中,属于最简分式的是 ( ) A .42xB .211x x -- C .221xx + D .11xx -- 32.(2022·四川绵阳·二模)下列分式属于最简分式的是( ) A .265xy xB .x y y x --C .22x y x y ++D .2293x y x y-+33.(2021·江西·一模)下列运算正确的是( ) A B .33xy xy -= C .22a b a b a b+=++ D .()3263a b a b =34.(2022·广东·九年级专题练习)分式22a b a b ++,22a ba b +-,312x y ,2a b a b++中,最简分式有( )A .1个B .2个C .3个D .4个35.(2022·江苏连云港·九年级期末)已知23a b =,则aa b +的值为 _____.36.在分式22222223,,,,332+-++-+-+--b a b m n x xy a b ca ab m n xc a b中,最简分式有______.37.(2022·广西梧州·二模)下列计算正确的是( ) A .5a -3a =2B .3624233a b a b ab=C .()222a b a b +=+D .256323-÷⨯=38.(2022·山西吕梁·一模)解分式方程3732124x x x-=+-时,去分母这一步方程两边不能同时乘以( ) A .()()2124x x +-B .()()22121x x +-C .()()22121x x -+-D .22(21)x -39.(2022·云南昆明·模拟预测)若20m n =≠,则222m n mn m --的值为______.40.(2022·上海·位育中学模拟预测)化简:2132x x x -=-+________. 41.(2021·内蒙古呼和浩特·二模)分式2211,1a a a -++的最简公分母是________,22111a a a+-++ =__________42.(2021·江苏·宜兴市实验中学二模)分式22m m n -和3nm n-的最简公分母为_____.43.(2022·辽宁沈阳·二模)化简:()224xx x ⋅+=-( ) A .2x x- B .x C .2x x - D .2x -44.(2022·山东滨州·二模)下列运算正确的是( ) A .()333a b a b +=+ B .()21303xy xy y y÷=≠ C 2=D .3a -4a =-a45.(2022·山东· 模拟预测)计算225x xy y xy y x-⋅-的结果是( ) A .31y B .31y -C .41y D .41y -46.(2022·湖北武汉·二模)计算:221688164x x x x -÷=+++_____. 47.(2022·山西晋中·二模)计算:()2222aa aba b a b +÷=--______. 48.(2022·甘肃陇南·模拟预测)计算:21211x x x +÷--=________. 49.(2022·广东·珠海市文园中学三模)化简111x x x --+的结果是( ) A .1B .1x +C .1x -D .2211x x +-50.(2022·贵州贵阳·三模)计算222m m m ---的结果是( ) A .2B .-2C .1D .-151.(2021·湖南·长沙市华益中学三模)计算222164a a a ---的结果是 _____. 52.(2022·湖南怀化·模拟预测)计算52x x ++﹣32x +=_____. 53.(2022·陕西·交大附中分校模拟预测)化简:(113m +-)÷2269m m m --+ 54.(2022·安徽·模拟预测)先化简,再求值:22321242a a a a a-+++---,其中1a =-. 55.(2022·上海普陀·二模)先化简,再求值:223112-⎛⎫-÷⎪++⎝⎭a a a a,其中a = 56.(2022·甘肃嘉峪关·三模)先化简,再求值:2222222a b a b a ab b b a a ab ⎛⎫-+÷ ⎪-+--⎝⎭,其中a ,b满足0b =.57.(2022·广东·东莞市光明中学一模)下列实数中等于2的是( ) A .02BC D .1(2)--58.(2022·上海杨浦·二模)下列各式中,运算结果是分数的是( ) A .sin30︒B .02π⎛⎫⎪⎝⎭C .112-⎛⎫ ⎪⎝⎭D 59.(2022·黑龙江牡丹江·模拟预测)下列计算正确的是( ) A .2a a a +=B .23a a a ⋅=C .()426a a =D .312a a a -÷=60.(2021·重庆市綦江区赶水中学三模)101()(1)3π---=______.61.(2022·重庆·模拟预测)计算0112)()3-+-=________ .62.(2022·湖南娄底·a 的取值范围是( ) A .a ≠0B .a >﹣2且 a ≠0C .a >﹣2或 a ≠0D .a ≥﹣2且 a ≠063.(2022·浙江杭州·x 的取值范围是( ) A .2x >B .2x ≥C .2x <D .2x ≤64.(2022·黑龙江牡丹江·模拟预测)函数y =x 的取值范围是( ) A .2x -≤B .2x ≥-C .2x ≤D .2x ≥65.(2022·安徽合肥·x 的取值范围是___________. 66.(2022·贵州黔东南·一模)函数y 11x -中自变量x 的取值范围是_____.67.(2022·河北·顺平县腰山镇第一初级中学一模)下列各式正确的是( ) A ±4B 3C 8D .468.(2022·广东· )A .3B .﹣3C .±3D .969.(2022·湖南怀化·模拟预测)下列计算正确的是( ) A .(2a 2)3=6a 6 B .a 8÷a 2=a 4 C 2D .(x ﹣y )2=x 2﹣y 270.(2021·四川乐山·______.71.(2022·山西·=_______.72.下列运算正确的是( ) A .()4312x x -= B .23644x x x --⋅= CD 1073.(2022·河南·平顶山市第十六中学模拟预测)下列计算正确的是( ) A =B .326236a a a ⋅=C .235a a a +=D .3=74.(2022·河北·石家庄市第四十一中学模拟预测)下列等式不成立的是( ) A =B =C 273= D =75.(2022·广西贺州·二模)下列计算正确的是( ) A .2=B =C.2=D376.(2022·安徽宿州·模拟预测)计算:212-⎛⎫⎪⎝⎭_______.77.(2022·山东青岛·÷___.78.(2022·上海虹口·二模)下列二次根式中,属于最简二次根式的是()A B C D79.(2022·上海金山·二模)在下列二次根式中,最简二次根式的是()A B C D80.(2022·湖南·长沙市南雅中学二模)下列二次根式中,属于最简二次根式的是()A B C D81.(2022·河南南阳·二模)写出一个实数x是最简二次根式,则x可以是______.82.(2022·湖北襄阳·a=______.83.(2022·上海奉贤·)A.2 B.3 C D.84.(2022·青海西宁·一模)下列各式中,正确的是()A3±B C D85.(2022·黑龙江·哈尔滨市风华中学校三模)计算______.86.(2022·江苏南京·二模)计算的结果是______.87.(2021·四川泸州·二模)先化简,再求值:(22211xx x+++-)÷1xx-,其中x1.88.(2022·上海松江·二模)计算:1112-⎛⎫-⎪⎝⎭89.(2022·安徽·二模)的倒数是 ( ) A.B. C.D.90.(2022·广西河池·三模)下列选项错误..的是( ) A2=±BC .()362328a b a b =D .34a a a ÷=91.(2022·黑龙江·哈尔滨市萧红中学校模拟预测)计算____________. 92.(2022·黑龙江·哈尔滨工业大学附属中学校模拟预测)化简:=______. 93.(2022·浙江宁波·一模)计算:(1)2(2)(22)94.(2021·山东淄博·一模)已知:m ,n ﹣1 ) A .±3B .﹣3C .3D 95.(2021·河南省淮滨县第一中学一模)已知44220,24,180x y x y >+=+=、.则xy=( )A .8B .9C .10D .1196.(2022·广东番禺中学三模)已知x 2=2x +15,则代数式22((x x +--=__________. 97.(2022·江苏·江阴市敔山湾实验学校一模)设x =,则代数式x (x +1)(x +2)(x +3)的值为__________.98.(2022·四川广元·一模)先化简,再求值:222a ab b a ba ba b ab ⎛⎫---÷⎪--⎝⎭,其中3a =3b = 99.(2021·江西赣州·模拟预测)先化简,再求值:a 2﹣b (a ﹣b )﹣(a ﹣b )2,其中a =﹣2b 2.100.(2021·辽宁锦州·一模)先化简,再求值:21111x x x ⎛⎫+÷ ⎪--⎝⎭,其中3x =.。
中考《分式与二次根式》经典例题及解析

分式与二次根式一、分式 1.分式的定义(1)一般地,整式A 除以整式B ,可以表示成A B 的形式,如果除式B 中含有字母,那么称AB为分式. (2)分式AB中,A 叫做分子,B 叫做分母. 【注】①若B ≠0,则A B 有意义;②若B =0,则A B 无意义;③若A =0且B ≠0,则AB=0.2.分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变. 用式子表示为(0)A A C C B B C ⋅=≠⋅或(0)A A C C B B C÷=≠÷,其中A ,B ,C 均为整式. 3.约分及约分法则(1)约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.(2)约分法则:把一个分式约分,如果分子和分母都是几个因式乘积的形式,约去分子和分母中相同因式的最低次幂;分子与分母的系数,约去它们的最大公约数.如果分式的分子、分母是多项式,先分解因式,然后约分. 【注】约分的根据是分式的基本性质.约分的关键是找出分子和分母的公因式.4.最简分式分子、分母没有公因式的分式叫做最简分式.【注】约分一般是将一个分式化为最简分式,分式约分所得的结果有时可能成为整式. 5.通分及通分法则(1)通分:根据分式的基本性质,把几个异分母的分式分别化为与原来的分式相等的同分母的分式,这一过程称为分式的通分. (2)通分法则把两个或者几个分式通分:①先求各个分式的最简公分母(即各分母系数的最小公倍数、相同因式的最高次幂和所有不同因式的积); ②再用分式的基本性质,用最简公分母除以原来各分母所得的商分别去乘原来分式的分子、分母,使每个分式变为与原分式的值相等,而且以最简公分母为分母的分式; ③若分母是多项式,则先分解因式,再通分.【注】通分的根据是分式的基本性质.通分的关键是确定几个分式的最简公分母.6.最简公分母:几个分式通分时,通常取各分母系数的最小公倍数与所有字母因式的最高次幂的积作为公分母,这样的分母叫做最简公分母. 7.分式的运算(1)分式的加减 ①同分母的分式相加减②异分母的分式相加减法则:先通分,变为用式子表示为:a c ad bcb d bd bd ±=±=(2)分式的乘法乘法法则:分式乘分式,用分子的积作为积(3)分式的除法除法法则:分式除以分式,把除式的分子用式子表示为:a c a d a db d bc b⋅÷=⋅=⋅.(4)分式的乘方乘方法则:分式的乘方,把分子、分母分别(5)分式的混合运算含有分式的乘方、乘除、加减的多种运算叫混合运算顺序:先算乘方,再算乘除,最后二、二次根式1.二次根式的有关概念 (1)二次根式的概念形如)0(≥a a 的式子叫做二次根式.其中【注】被开方数a 只能是非负数.即要使二(2)最简二次根式:被开方数所含因数是简二次根式.(3)同类二次根式: 化成最简二次根式后2.二次根式的性质(1)a ≥ 0(a ≥0);(2))(2=a(40,0)a b =≥≥3.二次根式的运算 (1)二次根式的加减合并同类二次根式:在二次根式的加减运算类二次根式合并成一个二次根式.相加减法则:分母不变,分子相加减.用式子表示为变为同分母的分式,然后再加减. ad bcbd±. 作为积的分子,分母的积作为积的分母.用式子表示分子、分母颠倒位置后与被除式相乘. c母分别乘方.用式子表示为:()(nn n a a n b b=为正整数运算叫做分式的混合运算.最后算加减.有括号的,先算括号里的. ”叫做二次根号,二次根号下的数要使二次根式a 有意义,则a ≥0.因数是整数,因式是整式,不含能开得尽方的因数或根式后,被开方数相同的几个二次根式,叫做同类二)0(≥a a ; (3(0)0(0)(0)a a a a a a >⎧⎪===⎨⎪-<⎩;;(50,0)a b ≥>. 减运算中,把几个二次根式化为最简二次根式后,表示为:a c a cb b b±±=. 子表示为:a c a cb d b d⋅⋅=⋅. 正整数,0)b ≠.下的数叫做被开方数.因数或因式的二次根式,叫做最同类二次根式. ,若有同类二次根式,可把同(2)二次根式的乘除0,0)a b =≥≥0,0)a b ≥>. (3)二次根式的混合运算二次根式的混合运算顺序与实数的运算顺序一样,先乘方,后乘除,最后加减,有括号的先算括号内的. 在运算过程中,乘法公式和有理数的运算律在二次根式的运算中仍然适用.经典例题 分式的有关概念1.若式子111x --在实数范围内有意义,则x 的取值范围是__________. 【答案】1x ≠【分析】由分式有意义的条件可得答案.【解析】解:由题意得:10,x -≠ 1,x ∴≠ 故答案为:1x ≠【点睛】本题考查的是分式有意义的条件,掌握分式有意义的条件是解题的关键. 2.若分式11x +的值不存在,则x =__________. 【答案】-1【分析】根据分式无意义的条件列出关于x 的方程,求出x 的值即可. 【解析】∵分式11x +的值不存在,∴x+1=0,解得:x=-1,故答案为:-1. 【点睛】本题考查的是分式无意义的条件,熟知分式无意义的条件是分母等于零是解答此题的关键. 3.分式52x x +-的值是零,则x 的值为( ) A .5 B .2 C .-2 D .-5【答案】D【分析】分式的值为零:分子等于零,且分母不等于零.【解析】解:依题意,得x+5=0,且x-2≠0,解得,x=-5,且x≠2,即答案为x=-5.故选:D .【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.1.要使分式11x -有意义,则x 的取值范围是( ) A .1x > B .1x ≠C .1x =D .0x ≠【答案】B【分析】根据分式有意义的条件即可解答.【解析】根据题意可知,10x -≠,即1x ≠.故选:B .【点睛】本题考查了分式有意义的条件,熟知分式有意义,分母不为0是解决问题的关键.2.当1x =时,下列分式没有意义的是( ) A .1x x+ B .1x x - C .1x x- D .1x x + 【答案】B【分析】由分式有意义的条件分母不能为零判断即可. 【解析】1xx -,当x=1时,分母为零,分式无意义.故选B. 【点睛】本题考查分式有意义的条件,关键在于牢记有意义条件. 3.方程3101x +=-的解为__________. 【答案】x=-2【分析】先用异分母分式加法法则运算,然后利用分式为零的条件解答即可.【解析】解:3101x +=- 31011x x x -+=-- 201x x +=- 则:2010x x +=⎧⎨-≠⎩,解得x=-2. 故答案为x=-2.【点睛】本题考查了异分母分式加法法则和分式为零的条件,掌握分式为零的条件是解答本题的关键.经典例题 分式的基本性质1.若a b ¹,则下列分式化简正确的是( )A .22a ab b+=+ B .22a a b b -=-C .22a a b b=D .1212aa b b = 【答案】D【分析】根据a ≠b ,可以判断各个选项中的式子是否正确,从而可以解答本题. 【解析】∵a ≠b ,∴22a a b b +≠+,选项A 错误;22a ab b-≠-,选项B 错误; 22a a b b ≠,选项C 错误;1212a ab b =,选项D 正确;故选:D . 【点睛】本题考查分式的性质,解答本题的关键是明确分式的性质.1.分式13-x可变形为( ) A .13x + B .-13x+ C .31-x D .1-3x - 【答案】D【分析】根据分式的基本性质逐项进行判断即可. 【解析】A.13x +≠13-x ,故A 选项错误;B. -13x +=13-x -≠13-x,故B 选项错误;C. 65x ==-13-x ,故C 选项错误;D. 1-3x -=1x-3)-(=13-x ,故D 选项正确,故选D. 【点睛】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为0的整式,分式的值不变.经典例题 分式的约分与通分1. 关于分式的约分或通分,下列哪个说法正确 A .211x x +-约分的结果是1x B .分式211x -与11x -的最简公分母是x -1C .22x x 约分的结果是1D .化简221x x --211x -的结果是1【答案】D 【解析】A 、211x x +-=11x -,故本选项错误; B 、分式211x -与11x -的最简公分母是x 2-1,故本选项错误; C 、22x x =2x ,故本选项错误;D 、221x x --211x -=1,故本选项正确,故选D . 【点睛】本题主要考查分式的通分和约分,这是分式的重要知识点,应当熟练掌握.2.下列分式中,最简分式是( )A .2211x x -+B .211x x +-C .2222x xy y x xy-+- D .236212x x -+【答案】A【解析】选项A 为最简分式;选项B 化简可得原式==;选项C 化简可得原式==;选项D 化简可得原式==,故答案选A. 考点:最简分式.1.分式22x x -与282x x -的最简公分母是_______,方程228122-=--x x x x的解是____________. 【答案】()2x x - x=-4【分析】根据最简公分母的定义得出结果,再解分式方程,检验,得解. 【解析】解:∵()222x x x x -=-,∴分式22x x -与282x x-的最简公分母是()2x x -, 方程228122-=--x x x x,去分母得:()2282x x x -=-,去括号得:22282x x x -=-, 移项合并得:2280x x +-=,变形得:()()240x x -+=,解得:x=2或-4,∵当x=2时,()2x x -=0,当x=-4时,()2x x -≠0,∴x=2是增根,∴方程的解为:x=-4. 【点睛】本题考查了最简公分母和解分式方程,解题的关键是掌握分式方程的解法. 2.化简:2121x x x +++=_____. 【答案】11x + 【分析】先将分母因式分解,再根据分式的基本性质约分即可. 【解析】2121x x x +++=21(1)x x ++=11x +.故答案为:11x +. 【点睛】本题考查了分式的除法以及利用完全平方公式因式分解,解答本题的关键是掌握分式的基本性质以及因式分解的方法.经典例题 分式的运算1. 下面是小彬同学进行分式化简的过程,请认真阅读并完成相应任务.229216926x x x x x -+-+++ 2(3)(3)21(3)2(3)x x x x x +-+=-++ 第一步32132(3)x x x x -+=-++ 第二步 2(3)212(3)2(3)x x x x -+=-++ 第三步26(21)2(3)x x x --+=+ 第四步26212(3)x x x --+=+ 第五步526x =-+ 第六步任务一:填空:①以上化简步骤中,第_____步是进行分式的通分,通分的依据是____________________或填为_____________________________;②第_____步开始出现错误,这一步错误的原因是_____________________________________; 任务二:请直接写出该分式化简后的正确结果;任务三:除纠正上述错误外,请你根据平时的学习经验,就分式化简时还需要注意的事项给其他同学提一条建议. 【答案】任务一:①三;分式的基本性质;分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变;②五;括号前是“-”号,去掉括号后,括号里的第二项没有变号;任务二:726x -+;任务三:最后结果应化为最简分式或整式,答案不唯一,详见解析.【分析】先把能够分解因式的分子或分母分解因式,化简第一个分式,再通分化为同分母分式,按照同分母分式的加减法进行运算,注意最后的结果必为最简分式或整式.【解析】任务一:①三;分式的基本性质;分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变;故答案为:三;分式的基本性质;分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变;②五;括号前是“-”号,去掉括号后,括号里的第二项没有变号;故答案为:五;括号前是“-”号,去掉括号后,括号里的第二项没有变号;任务二:解;229216926x x x x x -+-+++2(3)(3)21(3)2(3)x x x x x +-+=-++ 32132(3)x x x x -+=-++ 2(3)212(3)2(3)x x x x -+=-++26(21)2(3)x x x --+=+26212(3)x x x ---=+ 726x =-+.任务三:解:答案不唯一,如:最后结果应化为最简分式或整式;约分,通分时,应根据分式的基本性质进行变形;分式化简不能与解分式方程混淆,等.【点睛】本题考查的是有理数的混合运算,分式的化简,掌握以上两种以上是解题的关键.2.先化简,(22444x x x ++-﹣x ﹣2)÷22x x +-,然后从﹣2≤x ≤2范围内选取一个合适的整数作为x 的值代入求值.【答案】﹣x +3,2【分析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x 的值代入计算可得.【解析】解:原式=()()()()2222-2x x x x ⎡⎤+-+⎢⎥+⎢⎥⎣⎦×22x x -+=2242222x x x x x x ⎛⎫+---⨯⎪--+⎝⎭ =26222x x x x x -++-⨯-+ =()()23222x x x x x +---⨯-+=﹣(x -3)=﹣x+3∵x ≠ ±2,∴可取x =1,则原式=﹣1+3=2.【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及分式有意义的条件.1.计算:212(111a aa a a +-+÷++ 【答案】2a a + 【分析】先把括号里通分,再把除法转化为乘法,然后约分化简即可.【解析】解:212(1)11a a a a a +-+÷++2(1)(1)1112a a a a a a -+++=⋅++211(2)a a a a a +=⋅++2a a =+. 【点睛】分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式. 2.先化简:2124244x x x x x x x -+-⎛⎫-÷⎪--+⎝⎭,然后选择一个合适的x 值代入求值. 【答案】化简结果是:2x x-,选择x =1时代入求值为-1. 【分析】先根据分式混合运算的法则把原式进行化简,再选出合适的x 的值代入进行计算即可【解析】解:原式2124244x x x x x x x -+-⎛⎫⎛⎫=-÷ ⎪ ⎪--+⎝⎭⎝⎭2(1)(2)(2)4(2)(2)(2)x x x x x x x x x x ⎡⎤-+--=-÷⎢⎥---⎣⎦ 2224(2)(2)4x x x x x x x --+-=⋅--24(2)(2)4x x x x x--=⋅--2x x -=. 当x=1时代入,原式=1211-==-.故答案为:化简结果是2x x-,选择x =1时代入求值为-1. 【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键,最后在选择合适的x 求值时要保证选取的x 不能使得分母为0.经典例题 二次根式的概念与性质1.在实数范围内有意义,则x 的取值范围是( ) A .2x ≠ B .2x ≥C .2x ≤D .2x ≠-【答案】C【分析】根据二次根式里面被开方数420x -≥即可求解.【解析】解:由题意知:被开方数420x -≥,解得:2x ≤,故选:C . 【点睛】本题考查了二次根式有意义的条件,必须保证被开方数大于等于0.2.已知3y =+-,则2xy 的值为( )A .15-B .15C .152-D .152【答案】A【解析】由3y =-,得250{520x x -≥-≥,解得 2.5{3x y ==-.2xy (=2×2.5×-)3=-,故选.15A 【点睛】本题考查的是二次根式有意义的条件,一元一次不等式组的解法,以及有理数的乘法运算,掌握以上知识是解题的关键.1.在实数范围内有意义,则x 的取值范围是( ) A .2x ≠ B .2x ≥C .2x ≤D .2x ≠-【答案】B【分析】根据二次根式里面被开方数240x -≥即可求解.【解析】解:由题意知:被开方数240x -≥,解得:2x ≥,故选:B . 【点睛】本题考查了二次根式有意义的条件,必须保证被开方数大于等于0.2.函数13y x =+-的自变量x 的取值范围是( ) A .2x ≥,且3x ≠ B .2x ≥ C .3x ≠D .2x >,且3x ≠【答案】A【分析】根据分式与二次根式的性质即可求解.【解析】依题意可得x-3≠0,x-2≥0解得2x ≥,且3x ≠故选A .【点睛】此题主要考查函数的自变量取值,解题的关键是熟知分式与二次根式的性质.经典例题1.下列各式是最简二次根式的是( )A BC D 【答案】A【分析】根据最简二次根式的定义即可求出答案.【解析】解:A B =C a =,不是最简二次根式,故选项错误;D =故选A.【点睛】本题考查最简二次根式,解题的关1.下列二次根式是最简二次根式的是AB【答案】D【分析】根据最简二次根式的概念逐一进行【解析】A.=,故A 选项不符合C.=,故C 选项不符合题意;【点睛】本题考查最简二次根式的识别,经典例题1.实数a 、b 在数轴上的位置如图所示A .2- B .0【答案】A【分析】根据实数a 和b 在数轴上的位置得【解析】由数轴可知-2<a <-1,1<b+-=【点睛】此题主要考查了实数与数轴之间的判断数的符号以及绝对值的大小,再根据运1.已知实数a 在数轴上的对应点位置如图A .32a -B .1-【答案】D【分析】根据数轴上a 点的位置,判断出【解析】解:由图知:1<a <2,∴a−1原式=a−1-2a -=a−1+(a−2)=题的关键是正确理解最简二次根式的定义,本题属于( ) CD一进行判断即可. 不符合题意;B. =,故B 选项不符合题意;D. 是最简二次根式,符合题意,故选D. ,熟练掌握二次根式的化简以及最简二次根式的概+-的结果是C .2a -D .2b位置得出其取值范围,再利用二次根式的性质和绝对<2,∴a+1<0,b-1>0,a-b <0, 11a b a b ++---=()()(11a b a b -++-+-之间的对应关系,以及二次根式的性质,要求学生正根据运算法则进行判断.置如图所示,则化简|1|a -的结果是(C .1D .23a -断出(a−1)和(a−2)的符号,再根据非负数的性质>0,a−2<0, 2a−3.故选D.题属于基础题型.合题意; 式的概念是解题的关键.结果是( ). 和绝对值的性质即可求出答案. )=-2故选A.学生正确根据数在数轴上的位置( )的性质进行化简.【点睛】此题主要考查了二次根式的性质与化简,正确得出a−1>0,a−2<0是解题关键. 经典例题 二次根式的运算1.下列计算中,正确的是( )A =B .2+=C =D .2= 【答案】C【分析】根据同类二次根式的概念与二次根式的乘法逐一判断可得答案.【解析】解:A 不是同类二次根式,不能合并,此选项计算错误;B .2不是同类二次根式,不能合并,此选项错误;C ==,此选项计算正确;D .2不是同类二次根式,不能合并,此选项错误;故选:C .【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的乘法法则与同类二次根式的概念.2. “分母有理化”7==+,设x =->,故0x >,由22332x ==-=,解得x =,即= )A .5+B .5+C .5D .5-【答案】D和2323+-进行化简,然后再进行合并即可.【解析】设x =<∴0x <,∴266x =--++,∴212236x =-⨯=,∴x =,5=-,∴原式5=-5=-D . 【点睛】本题考查了二次根式的混合运算,涉及了分母有理化等方法,弄清题意,理解和掌握题中介绍的方法是解题的关键.1.计算:2+-=______.【分析】先将乘方展开,然后用平方差公式计算即可.【解析】解:2=+=22⎡⎤-⎢⎥⎣⎦.【点睛】本题考查了二次根式的混合运算以及平方差公式的应用,掌握二次根式混合运算的运算法则和平方差公式是解答本题的关键.2.下列等式成立的是( )A.3+=B=C= D3= 【答案】D【分析】根据二次根式的运算法则即可逐一判断.【解析】解:A 、3和A 错误;B=B 错误; C===,故C 错误;D3=,正确;故选:D . 【点睛】本题考查了二次根式的运算,解题的关键是掌握基本的运算法则.经典例题1.设2a =+,则( )A .23a <<B .34a <<C .45a <<D .56a << 【答案】C的范围,再得出a 的范围即可.【解析】解:∵4<7<9,∴23<<,∴425<<,即45a <<,故选C.【点睛】本题考查了无理数的估算,解题的关键是掌握无理数的估算方法.2-【答案】<【分析】利用分子有理化即可比较大小.【解析】=-+==-=++<故答案为:<.【点睛】此题考查的是实数的比较大小,掌握利用分子有理化比较大小是解决此题的关键.1.的值在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间【答案】B【分析】因为224225<<在4到5之间,由此可得出答案.【解析】解:∵224225<<,∴45<<.故选:B【点睛】本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.2. 下列各数中,比3大比4小的无理数是( )A.3.14 B.103CD【答案】C【分析】根据无理数的定义找出无理数,再估算无理数的范围即可求解.【解析】,而17>42,32<12<42>4,3<4∴选项中比3大比4.故选:C.【点睛】此题主要考查了无理数的定义和估算,解题时注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.。
中考一轮复习 数学专题03 分式及二次根式(老师版)

专题03 分式及二次根式一、单选题1.(2022年山东青岛)计算 )A B .1 C D .3【答案】B【解析】【分析】再合并即可. 【详解】解:94321故选:B .【点睛】本题考查的是二次根式的乘法运算,掌握“二次根式的乘法运算法则”是解本题的关键.2.(2020年湖北黄石)函数13y x =-x 的取值范围是( ) A .2x ≥,且3x ≠B .2x ≥C .3x ≠D .2x >,且3x ≠ 【答案】A【解析】【分析】根据分式与二次根式的性质即可求解.【详解】依题意可得x -3≠0,x -2≥0解得2x ≥,且3x ≠故选A .【点睛】此题主要考查函数的自变量取值,解题的关键是熟知分式与二次根式的性质. 3.(2020年山东淄博)化简222a b ab a b b a ++--的结果是( )A .a +bB .a ﹣bC .2()a b a b +-D .2()a b a b-+ 【答案】B【解析】【分析】 根据同分母分式相加减的运算法则计算即可.同分母分式相加减,分母不变,分子相加减.【详解】 解:原式222a b ab a b a b+=--- 222a b ab a b+-=- 2()a b a b-=- a b =-.故选:B .【点睛】本题主要考查了分式的加减,解题的关键是熟记运算法则.4.(2021年黑龙江绥化)定义一种新的运算:如果0a ≠.则有2||a b a ab b -=++-▲,那么1()22-▲的值是( )A .3-B .5C .34-D .32【答案】B【解析】【分析】根据题意列出算式,求解即可【详解】2||a b a ab b -=++-▲ 2111()2=()()2|2|222-∴--+-⨯+-▲ 412=-+=5.故选B .【点睛】本题考查了新定义运算、负指数幂的运算,绝对值的计算,解决本题的关键是牢记公式与定义,本题虽属于基础题,但其计算中容易出现符号错误,因此应加强符号运算意识,提高运算能力与技巧等. 本号资料皆来源于@微信:数#学5.(2021年广西桂林)若分式23x x -+的值等于0,则x 的值是( ) A .2B .﹣2C .3D .﹣3【答案】A【解析】【分析】 根据分式的值为0的条件:分子为0,分母不为0性质即可求解.【详解】由题意可得:20x -=且30x +≠,解得2,3x x =≠-.故选A .【点睛】此题主要考查分式为零的条件,解题的关键是熟知分式的性质.6.(2022年福建福州)函数y =x 的取值范围是( ) A .2x <B .2x >C .2x ≥D .2x ≠ 【答案】B【解析】【分析】 使函数y =20x -≥且20x -≠, 然后解不等组即可. 【详解】解:根据题意得:20x -≥且20x -≠,解得x > 2.故选B .【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1) 当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负. 7.(2022年天津市)计算1122a a a ++++的结果是( )A .1B .22a +C .2a +D .2a a + 【答案】A【解析】【分析】 利用同分母分式的加法法则计算,约分得到结果即可.【详解】 解:1121222a a a a a +++==+++. 故选:A .【点睛】本题主要考查了分式的加减,解题的关键是掌握分式加减运算顺序和运算法则.8.(2022年山西)化简21639a a ---的结果是( ) A .13a + B .3a -C .3a +D .13a - 【答案】A【解析】【分析】先利用平方差公式通分,再约分化简即可.【详解】 解:()()()()21636313933333a a a a a a a a a +---===---+-++, 故选A .【点睛】本题考查分式的化简及平方差公式,属于基础题,掌握通分、约分等基本步骤是解题的关键.9.(2022a 的取值范围是( )A .1a >B .1a ≥C .1a <D .1a ≤【答案】B【解析】【分析】根据二次根式中的被开方数是非负数求解可得.【详解】a-≥0,根据题意知1a≥,解得1故选:B.【点睛】本题主要考查二次根式有意义的条件,解题的关键是掌握二次根式的双重非负性.10.(2021)C.D.A.6B.【答案】D【解析】【分析】由题意化简为最简二次根式后依据二次根式的乘法运算法则进行运算即可得出答案.【详解】故选:D.【点睛】本题考查二次根式的乘法运算,熟练掌握二次根式的乘法运算法则是解题的关键.11.(2021)A B C.D2【答案】D【解析】【分析】根据二次根式的化简方法即可得.【详解】解:原式==故选:D.【点睛】本题考查了二次根式的化简,熟练掌握化简方法是解题关键.12.(2020x的取值范围是()A.x≤-3B.x>3C.x≥3D.x=3【答案】C【解析】【分析】根据二次根式有意义的条件:被开方数≥0,即可求出结论.【详解】x-≥解:由题意可得260x≥解得:3故选C.【点睛】此题考查的是二次根式有意义的条件,掌握二次根式有意义的条件:被开方数≥0,是解题关键.x应满足的条件为()13.(2022A.1x≠-B.1x>-C.1x<-D.x≤-1【答案】B【解析】【分析】根据分式分母不为0及二次根式中被开方数大于等于0即可求解.【详解】x+>,解:由题意可知:10∴1x>-,故选:B.【点睛】本题考察了分式及二次根式有意义的条件,属于基础题.本号资料*皆来源于微信:数学14.(2022广东广州)下列运算正确的是( )A 2=B .11a a a a +-=(0a ≠)C D .235a a a ⋅= 【答案】D【解析】【分析】根据求一个数的立方根,分式的加减,二次根式的加法,同底数幂的乘法运算,逐项分析判断即可求解.【详解】A.2=-,故该选项不正确,不符合题意; B.111a a a +-=(0a ≠),故该选项不正确,不符合题意;C. =D.235a a a ⋅=,故该选项正确,符合题意;故选D【点睛】本题考查了求一个数的立方根,分式的加减,二次根式的加法,同底数幂的乘法运算,正确的计算是解题的关键.15.(2022年内蒙古呼和浩特)下列运算正确的是( )A 2=±B .222()m n m n +=+C .1211-=--x x xD .2229332-÷=-y x xy x y【答案】D【解析】【分析】分别根据二次根式乘法法则,完全平方公式,异分母分式加减法法则以及分式除法法则计算出各项结果后,再进行判断即可.【详解】解:A. 2=,故此计算错误,不符合题意; B. 222()2m n m mn n +=++,故此计算错误,不符合题意; C. 1221(1)x x x x x --=---,故此计算错误,不符合题意; D. 22223933322y x x xy xy =x y y-÷=--,计算正确,符合题意, 故选:D .【点睛】本题主要考查了二次根式乘法,完全平方公式,异分母分式加减法以及分式除法,熟练掌握相关运算法则是解答本题的关键.16.(2022年湖北恩施)函数y 的自变量x 的取值范围是( ) A .3x ≠B .3x ≥C .1x ≥-且3x ≠D .1x ≥-【答案】C【解析】【分析】根据分式有意义的条件与二次根式有意义的条件得出不等式组,解不等式组即可求解.【详解】解: ∴10,30x x +≥-≠,解得1x ≥-且3x ≠,故选C .【点睛】本题考查了求函数自变量的取值范围,掌握分式有意义的条件与二次根式有意义的条件是解题的关键. 17.(2022年山东威海)试卷上一个正确的式子(11a b a b ++-)÷★=2a b +被小颖同学不小心滴上墨汁.被墨汁遮住部分的代数式为( )A .a a b -B .a b a -C .a a b +D .224a a b - 【答案】A【解析】【分析】根据分式的混合运算法则先计算括号内的,然后计算除法即可.【详解】 解:11a b a b ⎛⎫+÷ ⎪+-⎝⎭∴=2a b +()()a b a ba b a b -++÷+-∴=2a b +∴=()()22aa b a b a b ÷+-+ =aa b -,故选A .【点睛】题目主要考查分式的混合运算,熟练掌握运算法则是解题关键.18.(2022年河北省)若x 和y 互为倒数,则112x y y x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的值是() A .1 B .2 C .3 D .4【答案】B【解析】【分析】 先将112x y y x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭化简,再利用互为倒数,相乘为1,算出结果,即可【详解】112111221212121x y y x xy x y x y xy xy xyxy xy ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭=-⋅+⋅-=-+-=-+∴x 和y 互为倒数∴1xy =1212112xy xy -+=-+= 故选:B【点睛】本题考查代数式的化简,注意互为倒数即相乘为119.(2022年内蒙古乌海)若分式11x x --的值等于0,则x 的值为( ) A .﹣1B .0C .1D .±1【答案】A【解析】【分析】根据分式的值为0的条件即可得出答案.【详解】解:根据题意,|x |−1=0,x −1≠0,∴x =−1,故选:A .【点睛】本题考查了分式的值为0的条件,掌握分式的值为0的条件:分子等于0且分母不等于0是解题的关键.20.(2021年广西百色)当x =﹣2时,分式2232796x x x -++的值是( ) A .﹣15B .﹣3C .3D .15【答案】A【解析】【分析】 先把分子分母进行分解因式,然后化简,最后把2x =-代入到分式中进行正确的计算即可得到答案.【详解】 解:2232796x x x -++ ()()22393x x -=+()()()23333x x x +-+= ()333x x -=+ 把2x =-代入上式中原式()3231523--==--+故选A.【点睛】本题主要考查了分式的化简求值,解题的关键在于能够熟练掌握相关知识点进行求解运算.21.(2021年湖北黄石)函数()02y x =-的自变量x 的取值范围是( ) A .1x ≥-B .2x >C .1x >-且2x ≠D .1x ≠-且2x ≠【答案】C【解析】【分析】根据被开方数大于等于0,分母不为0以及零次幂的底数不为0,列式计算即可得解.【详解】 解:函数()02y x =-的自变量x 的取值范围是: 10x +>且20x -≠,解得:1x >-且2x ≠,故选:C .【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.22.(2022年辽宁大连)下列计算正确的是( )A 2=B 3=-C .=D .21)3=【答案】C【解析】【分析】分别化简二次根式判断即可.【详解】AB 3=,故该项错误,不符合题意; 本号资料皆*来源于微信:数学C 、=D 、221)13=+=+故选:C .【点睛】本题考查了二次根式的混合运算,正确利用二次根式运算法则是解题的关键.23.(2022年内蒙古通辽)下列命题:∴()3235m n m n ⋅=;∴数据1,3,3,5的方差为2;∴因式分解()()3422x x x x x -=+-;∴平分弦的直径垂直于弦;∴1≥x .其中假命题的个数是( )A .1B .3C .2D .4【答案】C【解析】【分析】根据积的乘方,方差的计算,多项的因式分解,垂径定理的推论,二次根式有意义的条件,逐项判断即可求解.【详解】解:∴()3362m n m n ⋅=,故原命题是假命题; ∴数据1,3,3,5的平均数为()1133534+++= ,所以方差为()()()()222211333335324⎡⎤-+-+-+-=⎣⎦,是真命题; ∴()()()324422x x x x x x x -=-=+-,是真命题;∴平分弦(不是直径)的直径垂直于弦,故原命题是假命题;* 本号资料皆来源于微信#:数学∴10x -≥,即1≥x ,是真命题;∴假命题的个数是2.故选:C【点睛】本题主要考查了积的乘方,方差的计算,多项的因式分解,垂径定理的推论,二次根式有意义的条件,熟练掌握相关知识点是解题的关键.24.(20222x -在实数范围内有意义,则x 的取值范围是( ) A .1x >-B .1x -C .1x -且0x ≠D .1x -且0x ≠ 【答案】C【解析】【分析】根据二次根式被开方数不能为负数,负整数指数幂的底数不等于0,计算求值即可;【详解】解:由题意得:x +1≥0且x ≠0,∴x ≥-1且x ≠0,故选: C .【点睛】本题考查了二次根式的定义,负整数指数幂的定义,掌握其定义是解题关键.25.(2022333=,…,6666633n ++++++=个根号,一般地,对于正整数a ,b ,如果满足n b b b b b a a ++++++=个根号时,称(),a b 为一组完美方根数对.如上面()3,6是一组完美方根数对.则下面4个结论:∴()4,12是完美方根数对;∴()9,91是完美方根数对;∴若(),380a 是完美方根数对,则20a =;∴若(),x y 是完美方根数对,则点(),P x y 在抛物线2yx x 上.其中正确的结论有( ) A .1个B .2个C .3个D .4个【答案】C【解析】【分析】根据定义逐项分析判断即可.【详解】 解:1244+=,∴()4,12是完美方根数对;故∴正确;109≠∴()9,91不是完美方根数对;故∴不正确;若(),380a a =即2380a a =+解得20a =或19a =-a 是正整数则20a =故∴正确;若(),x y x =2y x x ∴+=, 即2y x x故∴正确故选C【点睛】本题考查了求算术平方根,解一元二次方程,二次函数的定义,理解定义是解题的关键.26.(2022的值应在( )A .10和11之间B .9和10之间C .8和9之间D .7和8之间【答案】B【解析】【分析】6=【详解】6=∴43,∴910<,故选:B .【点睛】本题考查了二次根式混合运算及无理数的估算,熟练掌握无理数估算方法是解题的关键.27.(2022年内蒙古包头、巴彦淖尔)若1x =,则代数式222x x -+的值为( )A.7B .4C .3D .3- 【答案】C【解析】【分析】先将代数式222x x -+变形为()211x -+,再代入即可求解.【详解】解:())22222=111113x x x -+-+=-+=. 故选:C【点睛】本题考查了求代数式的值,熟练掌握完全平方公式是解题关键,也可将x 的值直接代入计算.28.(2021年湖南娄底)2,5,m ) 本号资料皆来*源于微信*:数学第*六感 A .210m -B .102m -C .10D .4【答案】D【解析】【分析】 先根据三角形三边的关系求出m 的取值范围,再把二次根式进行化解,得出结论.【详解】解:2,3,m 是三角形的三边,5252m ∴-<<+,解得:37x ,374m m =-+-=,故选:D .【点睛】本题考查了二次根式的性质及化简,解题的关键是:先根据题意求出m 的范围,再对二次根式化简.29.(2021年广东)设6a ,小数部分为b ,则(2a b 的值是( )A .6B .C .12D .【答案】A【解析】【分析】a 的值,进而确定b 的值,然后将a 与b 的值代入计算即可得到所求代数式的值.【详解】∴34<,∴263<<,∴62a =,∴小数部分624b ==∴(((22244416106a b =⨯==-=.故选:A .【点睛】本题考查了二次根式的运算,正确确定6a 与小数部分b 的值是解题关键.30.(2021年广西贺州)如{}1,2,M x =,我们叫集合M ,其中1,2,x 叫做集合M 的元素.集合中的元素具有确定性(如x 必然存在),互异性(如1x ≠,2x ≠),无序性(即改变元素的顺序,集合不变).若集合{},1,2N x =,我们说M N .已知集合{}1,0,A a =,集合1,,b B a a a ⎧⎫=⎨⎬⎩⎭,若A B =,则b a -的值是( ) A .-1 B .0 C .1 D .2【答案】C【解析】【分析】根据集合的确定性、互异性、无序性,对于集合B 的元素通过分析,与A 的元素对应分类讨论即可.【详解】解:∴集合B 的元素1,ba a ,a ,可得,∴0a ≠, ∴10≠a ,0ba =,∴0b =, 当11a =时,1a =,{}1,0,1A =,{}1,1,0B =,不满足互异性,情况不存在, 当1a a =时,1a =±,1a =(舍),1a =-时,{}1,0,1A =-,{}1,1,0B =-,满足题意,此时,=1b a -.故选:C【点睛】本题考查集合的互异性、确定性、无序性。
中考数学总复习《分式与二次根式》专项练习题-附带参考答案

中考数学总复习《分式与二次根式》专项练习题-附带参考答案一、选择题:(本题共8小题,共40分.)1.计算(﹣ 13 )﹣2的值,正确的是( )A .19B .﹣ 19C .9D .﹣92.下列各数中,化为最简二次根式后能与√3合并的是( )A .√18B .√12C .√23D .√293.使代数式√x−3x−4有意义的x 的取值范围是( )A .x >3B .x ≥3C .x >4D .x ≥3 且x ≠44.下列运算中错误的是( )A .√2 + √3 = √5B .√2 × √3 = √6C .√8 ÷ √2 =2D .(−√3)2 =35.若分式 |x|−1x 2−3x+2 的值为0,则x 的值为( )A .-1B .0C .1D .±16.如果分式xy 2x−3y 中的x ,y 都扩大为原来的2倍,那么分式的值( )A .扩大为原来的2倍B .扩大为原来的4倍C .不变D .不能确定7.若先化简 (1+2p−2)÷p 2−pp 2−4 ,再求值,且 p 是满足 −3<p <3 的整数,则化简求值的结果为()A .0或 −12 或-2或4B .-2或 −12C .-2D .−128.若√x −1+√x +y =0 ,则x 2005+y 2005 的值为: ( )A .0B .1C .-1D .2二、填空题:(本题共5小题,共15分.)9.化简: 4a−4b 3ab ⋅15ab 2a −2b 2÷1a = .10.若分式 x 2−x−2x 2+2x+1 的值为 0 ,则 x 的值等于 .11.计算 √48−√27 的结果等于 .12.已知 1a −1b =12 ,则 ab a−b 的值是13.对于分式 ,当x= 时,分式 x 2−2x−3x−3 无意义;当x= 时,分式值为零.三、解答题:(本题共4题,共45分.)14.化简:(a ﹣1+1a−3)÷a2−4a−3;15.先化简,再求值:222414816a a a a a ---÷+++,其中2a =.16.(1)计算:(12)﹣2﹣|√2−3|+2tan45°﹣(2020﹣π)0;(2)先化简,再求值:(3a+1−a +1)÷a 2−4a 2+2a+1,其中a 从﹣1,2,3中取一个你认为合适的数代入求值.17. 先化简,再求值:(1x -y +2x 2-xy )÷x +22x ,其中实数x ,y 满足y =x -2-4-2x +1.参考答案:1.C2.B3.D4.A5.A6.A7.D8.A9.20ab a+b10.211.√312.﹣213.3;-114.原式=[(a−1)(a−3)a−3+1a−3]÷(a+2)(a−2)a−3 =(a 2−4a+3a−3+1a−3)•a−3(a+2)(a−2) =(a−2)2a−3•a−3(a+2)(a−2) =a−2a+2;15.解:原式=()()()242421142222a a a a a a a a +-+-+-⨯=-=-+++; 把22a 代入得:原式=2222=--+ 16.(1)(12)﹣2﹣|√2−3|+2tan45°﹣(2020﹣π)0=4+√2−3+2×1﹣1=4+√2−3+2﹣1=2+√2;(2)(3a+1−a +1)÷a 2−4a 2+2a+1=3−(a−1)(a+1)a+1×(a+1)2(a+2)(a−2) =−(a+2)(a−2)a+1=﹣a ﹣1要使原式有意义,只能a =3则当a =3时,原式=﹣3﹣1=﹣4.17.略。
整式,分式,二次根式专题训练

整式,分式,二次根式专题训练一、选择题1、实数a 、b 在数轴上的位置如图所示,则化简代数式||a +b –a 的结果是( )A .2a +bB .2aC .aD .b2、计算)3(623m m -÷的结果是( )(A )m 3- (B )m 2- (C )m 2 (D )m 33、下列计算中,正确的是( )A .33x x x =•B .3x x x -=C .32x x x ÷=D .336x x x +=4、下列计算中,正确的是( )A .325a b ab +=B .44a a a =•C .623a a a ÷=D .3262()a b a b = 5.对于非零实数m ,下列式子运算正确的是( )A .923)(m m =;B .623m m m =⋅;C .532m m m =+;D .426m m m =÷。
6).A 、3-B 、3或3-C 、3D 、97、 下列根式中属于最简二次根式的是().ABCD 8、代数式2346x x -+的值为9,则2463x x -+的值为( ) A .7 B .18 C .12 D .9二、填空题1、计算:当x 时,二次根式在实数范围内有意义. 2= . =310b -=,那么()2007a b +的值为 .4、若23x =,45y =,则22x y -的值为_________5、因式分解:①32a ab -= __________;②xy 2–2xy +x =6、在实数范围内分解因式:4x -9=7、若1<x <2,化简 = ___________8、已知111212323a =+=⨯⨯,211323438a =+=⨯⨯,3114345415a =+=⨯⨯,⋅⋅⋅,依据上述规律,则99a =三、解答题1、先化简,再求值:)1()1(2---a a a ,其中12-=a 。
2、计算:⑴ 24142x x ---. ⑵ 22a b ab b a a a ⎛⎫--÷- ⎪⎝⎭3、先化简代数式22221244a b a b a b a ab b--÷-+++,然后选择一个使原式有意义的a 、b 值代入求值.4、已知114a b -=,求2227a ab b a b ab---+的值22)1()2(x x ---5、计算:⑴⎛÷ ⎝⑵⑶. (()2771+-- ⑷. ((((22221111+-6、若x ,y 是实数,且2111+-+-<x x y ,求1|1|--y y 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式和二次根式专题训练
一、填空题:(每题 3 分,共 36 分) 1、当 x ____时,分式有意义。
2、当____时,有意义。
3、计算:-a -1=____。
4、化简:(x 2
-xy)÷=____。
5、分式
,,的最简公分母是____。
6、比较大小:2____3。
7、已知
=,则的值是____。
8、若最简根式和是同类根式,则 x +y =____。
9、仿照2=·==的做法,化简3
=____。
10、当 2<x <3 时,-=____。
11、若的小数部分是 a ,则 a =____。
12、若 =++2成立,则 x +y =____。
二、选择题:(每题 4 分,共 24 分) 1、下列各式中,属于分式的是( ) A 、
B 、
C 、x +
D 、 2、对于分式
总有( ) A 、= B 、= C 、= D 、= 3、下列根式中,属最简二次根式的是( ) A 、 B 、 C 、 D 、 4、可以与合并的二次根式是( ) A 、 B 、 C 、
D 、 x 2x -3
a -2a 2
a -1
x -y
xy
b 2a 24a 3b
c a 5c 2
32x +2y 2y 5 2x +y
y
x +1y
30.5220.54×0.521
3
(2-x)2(x -3)2
31-x x -1x -y 22x +y 12x
2
1
x -1
1x -1x -1(x -1)21x -1x +1x 2-11x -112
(x -1)21x -11
1-x
27x 2+11
2
a 2
b 182761
3
8y y
5、如果分式
中的 x 和 都扩大为原来的 2 倍,那么分式的值( ) A 、扩大 2 倍 B 、扩大 4 倍 C 、不变 D 、缩小 2 倍
6、当 x <0 时,|-x |等于( ) A 、0 B 、-2x C 、2x
D 、-2x 或0
三、计算:(每题 6 分,共 24 分)
1、()3÷()0×(-)-2 2、(+)÷
3、-+ 4、(3-2)2
四、计算:(每题 6 分,共 24 分) 1、-+ 2、÷(x +
1)·
3、-· 4、4b +-3ab (+)
五、解答题:(每题 8 分,共 32 分)
1、某人在环形跑道上跑步,共跑两圈,第一圈的速度是 x 米/分钟,第二圈的速度是 米/分钟(x >),则他平均一分钟跑的路程是多少?
2x
x +y
x 2b 2a 22b 23a b a x 2x -242-x x +2
2x 84
2
1223x x +y y
y -x 2xy x 2-y 2x 2-1x 2+4x +4x 2+3x +2
x -1
20+55
1312a b 2a a 5b 31
ab 4ab y y y
2、若菱形的两条对角线的长分别为 3+2 和 3-2,求菱形的面积。
3、如图,是某住宅的平面结构示意图,
图中标明了有关尺寸(墙体厚度忽略不计,单位:m
),房主计划把卧室以外的地面都铺上地砖,如果他选用的地砖的价格是 a 元/m 2
,则买砖至少需要多少元?若每平方米需砖 b 块,则他应该买多少块砖?(用含 a ,x
,的代数式表示)。
六、(10分)某同学作业本上做了这么一道题:“当 a 时,试求 a +的值”,其中是被墨水弄污的,该同学所求得的答案为,请你判断该同学答案是
否正确,说出你的道理。
2323a 2-2a +1
1
2
y
分式和二次根式专题训练答案
一、1、≠3 2、a ≥2 3、 4、x 2y 5、30a 2bc 2 6、< 7、2 8、4
9、 10、1 11、-1 12、3
二、1、B 2、A 3、B 4、D 5、C 6、B 三、1、=
·1× = 2、=· = 3、=2-2+2 =2 4、=18-12+12 =30-12
四、1、=++ = = 2、
3、=2+1-2 =1
4、4+2ab -3-6ab =-4ab
五、1、 2、 (3+2) (3-2) =(18-12) =3 3、解:2x ·4y +x ·2y +xy =8xy +2xy +xy =11xy ①11axy 元 ②
11bxy 块
六、a +=a +| a -1 | 当 a ≥1 时,上式=2a -1 2a -1=时,a =(不合题意)
当a <1时,上式=1 ∴该同学答案不对。
1
a -133
b 38a 6
a 3b
2b
8a 4x +2x -22x x +22x
x -2223366x 2-xy x 2-y 2xy +y 2
x 2-y 22xy x 2-y 2(x +y)2x 2-y
2x +y x -y x +1
x +2ab ab ab ab ab ab 21x
+1y
1223231
2(a -1)21
23
4。