半加器全加器的工作原理和设计方法实验报告
数电实验报告半加全加器

数电实验报告半加全加器实验目的:掌握半加器和全加器的原理和应用,了解半加器和全加器的构造和工作原理。
实验器材:逻辑电路实验箱、7400四与非门、7402四与非门、7408四与门、7432四或门、7447数码显示器、开关、电源、跳线等。
实验原理:半加器和全加器是数字电路中常用的基本逻辑电路,用于对二进制进行加法运算,主要用于数字电路中的算术逻辑单元(ALU)。
1.半加器实验原理:半加器是一种能够对两个二进制位进行加法运算的电路。
半加器有两个输入端和两个输出端,输入端分别为A和B,输出端分别为S和C。
其中,A和B分别为要加的两个二进制数位,S为运算结果的个位,并且用S=A⊕B表示;C为运算结果的十位(进位),C=A·B表示。
半加器的真值表和逻辑符号表达式如下:```A,B,S,C0,0,0,00,1,1,01,0,1,01,1,0,1```2.全加器实验原理:全加器是一种能够对两个二进制位和一个进位信号进行加法运算的电路。
全加器有三个输入端和两个输出端,输入端分别为A、B和Cin,输出端分别为S和Cout。
其中,A和B分别为要加的两个二进制数位,Cin 为上一位的进位信号,S为运算结果的个位,并且用S=A ⊕ B ⊕ Cin表示;Cout为运算结果的十位(进位),Cout=(A·B) + (A·Cin) + (B·Cin)表示。
全加器的真值表和逻辑符号表达式如下:```A ,B , Cin , S , Cout0,0,0,0,00,0,1,1,00,1,0,1,00,1,1,0,11,0,0,1,01,0,1,0,11,1,0,0,11,1,1,1,1```实验步骤:1.首先,按照实验原理连接逻辑门实验箱中的电路。
将7400四与非门的1、2号引脚分别连接到开关1、2上,将开关3连接到7400的3号引脚,将开关4连接到7400的5号引脚,将7400的6号引脚连接到LED1上,表示半加器的进位输出。
实验十七 半加器和全加器

实验十七半加器和全加器一、实验目的验证半加器和全加器的逻辑功能,了解集成单元四位二进制全加器的逻辑功能。
二、实验仪器及材料DIEC—3型数字逻辑实验系统、万用表、74LS00、74LS83、74LS86、4LS74各一片。
三、芯片内部电路及引脚功能74LS83 是一个内部超前近卫的高速四位二进制串行进位全加器,他接受两个四位二进制数(A1 =A,B1 =B),和一个进位输入(Cn),并对每一位产生二进制和(∑∑-1 1)输出,还有最高有效位(第四位)产生的进位输出(C),该组件有越过所有四个位产生的内部超前进位的特点,提高了运算速度。
另外不需要对逻辑电平反相,就可以实现循环进位。
四、实验内容及步骤1、测试由异或门74LS86和与非门组成的半加器的逻辑功能。
(1)将74LS86和74LS00插入实验箱,按图.3.17.2连接电路。
A、B接电平开关,Y、C 接电平显示。
(2)改变输入状态,填写3.17.1.表3.17.12、测试全加器的逻辑功能(1)将74LS54、74LS86\74LS00插入实验箱,按图3.17.3接线,注意与非门的不同端需要接替,A 、B 接电平开关,Y 、C 接电平显示。
(2)改变输入端状态,填写表3.17.2. 表3.17.2表 3.17.23、测试四位二进制全加器的逻辑功能(1)将四位二进制全加器74LS83插入实验箱,按图3.17.4连接迪娜路,输入端A1/A3 、A2/A4、B1/B3、B2/B4分别接四个输入电平。
Co 进位端接“1”或“0”(接5V 或地),输出∑∑3/1、∑∑4/2,进位输出C4都接输出电平显示。
(2)改变输入逻辑状态,填写表 3.17.3.4、加法器在二进制数码转换中的应用(1)按图3.17.5连接电路,在D、C、B、A端输入BCD码,则d、c、b、a端输出为余三码。
(2)将测得的数据填入表3.17.4图3.17.5表3.17.4五、实验报告要求1、整理实验报告数据,图表,对实验结果进行分析和讨论。
半加器实验报告

半加器实验报告一、引言半加器是一种基本的数字电路元件,广泛应用于计算机和电子领域。
本实验旨在通过搭建半加器电路,对其原理和功能进行深入理解,并探索其在数字电路中的应用。
二、实验目的1. 理解半加器的基本原理和工作方式;2. 掌握搭建半加器电路所需的器件和端口连接方法;3. 进行实际操作,观察和验证半加器电路的输出结果。
三、实验原理半加器是一种用于实现两个二进制数的加法运算的数字电路。
它有两个输入端和两个输出端。
其中,输入端分别连接两个待加法的二进制位,而输出端则分别输出它们的“和”和“进位”。
半加器的原理图如下所示:(图1:半加器原理图)四、实验步骤1. 准备器材:半加器芯片、杜邦线、实验面包板等;2. 按照半加器的原理图,将芯片和其他元件连接起来。
即将待加法的两个二进制位分别连接到芯片的两个输入端口,将“和”和“进位”两个输出端口与示波器相连;3. 打开电源,给电路提供适当的电压;4. 观察示波器上显示的输出结果,并进行记录和分析。
五、实验结果与分析在实验中,我们使用了两个二进制位进行操作,并观察了半加器的输出结果。
通过实验数据的分析,我们可以得出以下结论:1. 当两个输入位均为0时,半加器的“和”位和“进位”位的输出分别为0;2. 当两个输入位中有一个为1,另一个为0时,半加器的“和”位输出为1,而“进位”位输出为0;3. 当两个输入位均为1时,半加器的“和”位输出为0,而“进位”位输出为1。
六、实验总结通过本次实验,我们进一步加深了对半加器的理解。
半加器作为一种基本的数字电路组件,其原理简单而重要。
它能够实现两个二进制数的加法运算,并正确输出它们的“和”和“进位”。
在计算机和电子领域中,半加器被广泛应用于多种数字电路中,如加法器、减法器等。
通过观察实验结果,我们可以看到半加器电路的输出符合预期,并且与理论模型相符。
这再次验证了半加器电路的正确性和可靠性。
同时,在实验操作过程中,我们也加深了对数字电路的搭建和连接方法的了解,提高了自身的实践操作能力。
实验五 半加器和全加器

实验五半加器和全加器实验五半加器和全加器一、实验目的1(掌握组合逻辑电路的分析和设计方法。
2(验证半加器、全加器、奇偶校验器的逻辑功能。
二、实验原理使用中、小规模集成门电路分析和设计组合逻辑电路是数字逻辑电路的任务之一。
本实验中有全加器的逻辑功能的测试,又有半加器、全加器的逻辑设计。
通过实验要求熟练掌握组合逻辑电路的分析和设计方法。
实验中使用的二输入端四异或门的电路型号为74LS86,四位二进制全加器的型号为74LS83A,其外引线排列及逻辑图如下:14 13 12 11 10 9 8VCC=1 =174LS86=1 =1GND1 2 3 4 5 6 774LS86引脚排列16 15 14 13 12 11 10 9C C GND B AΣ 44011 BΣ4174LS83AA 2A Σ AB V Σ B 4333CC221 2 3 4 5 6 7 874LS83引脚排列74LS83A是一个内部超前进位的高速四位二进制串行进位全加器,它接收两个四位二进制数(A~A,B~B),和一个进位输入(C),并对每一位产生二进制和14140 (Σ~Σ)输出,还有从最高有效位(第四位)产生的进位输出(C)。
该组件有144越过所有四个位产生内部超前进位的特点,提高了运算速度。
另外不需要对逻辑电平反相,就可以实现循环进位。
三、实验仪器和器件1(实验仪器(1)DZX-2B型电子学综合实验装置(2)万用表(MF47型)2(器件(1)74LS00(二输入端四与非门)(2)74LS86(二输入端四异或门)(3)74LS83(四位二进制全加器)(4)74LS54(双二双三输入端与或非门)四、实验内容1(设计用纯与非门组成的半加器,分析、验证其逻辑功能;解:?根据设计任务列出真值表输入输出A B Y C0 0 0 00 1 1 01 0 1 01 1 0 1?根据真值表写出逻辑表达式C=AB Y,AB,AB?对逻辑表达式进行化简Y =A?B C=AB?根据所用逻辑门的类型将化简后的逻辑表达式整理成符合要求的形式Y =A?B= C=AB,AB AAB,BAB?根据整理后的逻辑表达式画出逻辑图? Y2 & 接A 逻=AB Y? 辑1& & YY 1 接电Y=A AB 电2平 ? B 平& Y=B AB ?3 Y3 显Y=A?B 示 ? & C=AB C图5-1 半加器设计参考图?根据逻辑图装接实验电路,测试其逻辑功能并加以修正表5-1’(验证) 表5-1(分析)输入输出输入逐级输出Y B C B A B Y C A B YYYY C 1 2 3A 0 1 A 0 1 0 0 0 0 0 0 1 1 1 0 00 0 1 0 0 0 0 1 1 0 0 1 1 1 0 1 01 1 1 0 0 1 1 0 1 0 1 0 1 0 1 1 01 1 0 1 1 1 0 1 1 0 1 卡诺图Y= A?B C=AB 2(设计用异或门组成半加器,并测试其逻辑功能; 解:???步骤同上?根据所用逻辑门的类型将化简后的逻辑表达式整理成符合要求的形式Y =A?B C= AB,AB?根据整理后的逻辑表达式画出逻辑图?根据逻辑图装接实验电路,测试其逻辑功能并加以修正表5-2输入输出接接=1 A Y ? 逻电A B Y C 辑平显电0 0 0 0 平示 B ? C ? & & 0 1 1 0 图5-2测量由异或门组成的半加器的逻辑功能 1 0 1 01 1 0 12(设计用74LS54、74LS86、74LS00组成全加器,并测试其逻辑功能;解:?根据设计任务列出真值表输入输出 ?根据真值表写出逻辑表达式 Y C A B C 00 0 0 0 0 Y,ABC,ABC,ABC,ABC00000 1 0 1 0C,ABC,ABC,ABC,ABC00001 0 0 1 01 1 0 0 1 ?对逻辑表达式进行化简0 0 1 1 0,,,,,,,,Y,AB,ABC,AB,ABC,A,BC,A,BC0 1 1 0 1 00001 0 1 0 1 ,,,,,,,A,BC,A,BC,A,B,C0001 1 1 1 1,,,,,,C,ABC,C,AB,ABC,AB,A,BC0000?根据所用逻辑门的类型将化简后的逻辑表达式整理成符合要求的形式,, Y,A,B,C0,, C,AB,A,BC0?根据整理后的逻辑表达式画出逻辑图?根据逻辑图装接实验电路,测试其逻辑功能并加以修正表5-3接电平显示 C 输入输出 Y A B CY C 074LS00 & 0 0 0 0 0 ? 0 1 0 1 0 ?1 0 0 1 0 ?1 =1 =11 1 0 0 1 & & & & 0 0 1 1 0 1/2 74LS860 1 1 0 1 ? ? ? ? ? ? ? 1 0 1 0 1 ? A B C0 1 1 1 1 1 74LS54 接逻辑电平图5-34(分析四位二进制全加器74LS83A的逻辑功能;接电平显示Σ Σ Σ Σ 4321接接电“0” CC4 0 FAFAFAFA4 3 2 1 平或显“1” ? ? 示 ? ?74LS83A A/AA/AB/BB/B24 13 24 24接逻辑电平图5-4 分析四位二进制全加器74LS83A的逻辑功能表5-4输出输入C=0 C=1 00B/BA/A B/B A/A ΣΣΣΣCΣΣΣΣC24 2413131 2 3 4 4 1 2 3 4 4 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 0 1 0 1 0 1 0 0 0 1 1 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 0 0 1 0 0 0 1 0 10 1 1 0 1 0 0 1 0 1 1 1 1 1 0 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0 0 0 0 1 0 11 1 0 0 1 0 1 1 0 1 0 1 1 0 0 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 1 1 1 1 0 0 0 0 0 1 1 0 1 0 1 1 1 1 0 0 0 0 0 1 1 0 1 1 0 0 1 0 1 1 0 1 0 1 1 1 0 00 0 1 0 1 1 0 1 0 1 1 1 0 1 1 0 0 1 1 0 1 0 1 1 1 1 1 0 1 0 0 1 1 0 1 01 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1*5(用加法器74LS83A实现BCD码和余三码之间的相互转换。
实验二组合逻辑电路实验(半加器、全加器)

掌握 验证 学会
实验目的
组合逻辑电路的功能测试
数 法半字加电器路和实全验加箱器及的示逻波辑器功的能使用方 二进制数的运算规律
实验设备
序号 名称
型号与规格 数量
1 数字电路实验箱
THD-1
1
2 二输入四与非门
74LS00
3
3 二输入四异或门
74LS86
0
0
1
0
1
1
1
0
1
1
1
输出
Y1
Y2
(1)按上图接线(注意数字编号与芯片管脚编号对应) (2)写出Y2的逻辑表达式并化简。 (3)图中A、B、C接实验箱下方的逻辑开关,Y1,Y2接实验箱上方的电平显示发光管。 (4)按表格要求,拨动开关,改变A、B、C输入的状态,填表写出Y1,Y2的输出状态。 (5)将运算结果与实验结果进行比较 。
输入
Ai
Bi
Ci-1
0
0
0
输出
Si
Ci
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
认真复习,加强练习, 巩固成果,学以致用!
Goodbye!
每个小组在数字电路试验箱上找到本次实验所需要的芯片 ,并查看芯片形状是否完好,芯片管脚有没有插牢。
2、查看数字电路实验箱
74LS86
74LS00
3、了解芯片
芯片管脚示意图
4、实验内容与结果(一)
1.组合逻辑电路功能测试 (选用芯片74LS00)
(VHDL实验报告)一位半加器,全加器的设计

A
10
五、实验步骤
(一)半加器的设计
4、对设计文件进行仿真
4)编辑输入端口波形,即指定输入端口的逻辑电平变化,在波形编辑窗 口中,选择要输入波形的输入端口。以 b 端口为例,右键单击 b ,依次选 择value--clock--period,将时间改为1us。然后重复此过程将 a 的时间改 成 2us (a的周期是b的2倍),再将输入端的D0--D3选择不同的周期(一次 要有所差别)。最后选择软件的 Fie>Save进行保存。
3)加入输入、输出端口,在波形编辑器窗口左边的端口名列表 区点击鼠标右键,在弹出的右键菜单中选择 Insert Node or Bus… 命令,在弹出的 Insert Node or Bus 对话框界面中点击 Node Finder…按钮。在出现的 Node Finder 界面中的 Filter 列表中选 择 点击 List,在 Nodes Found 窗口出现所有信号的名称,点击中 间的按钮则 Selected Nodes 窗口下方出现被选择的端口名称。双击 OK按钮,完成设置,回到 Insert Node or Bus 对话框,双击OK按钮 ,所有的输入、输出端口将会在端口名列表区内显示出来。
5)按默认选项,点击NEXT出现新建工程以前所有的设定信息, 再点击FINISH完成新建工程的建立。
A
7
五、实验步骤
(一)半加器的设计
2、建立文本设计文件
1)选择File--New--Device Design Files--VHDL File,点击OK按钮,打开进入文本编辑器对话框。
2)在文本编辑器中输入对应VHDL程序代码,如下图 所示:
全加器的设计采用“元件例化语句”,故需建立两个VHDL文 本编辑对话框(一个顶层文件,一个底层文件)。在相应的编辑框中 输入相应的VHDL语句,再分别以各自的实体名进行保存。注意的是顶 层文件名应必须与工程名一致。此次实验底层文件为半加器VHDL语句 ,顶层文件为全加器VHDL语句,其语句分别如下两图所示:
半加器全加器的工作原理和设计方法实验报告

半加器全加器的工作原理和设计方法实验报告
一、实验目的
1、了解数字电路的基本运算电路,如半加器和全加器。
二、实验器材
集成电路IC:74LS86、74LS83A、定时器CD4017
三、实验原理
1、半加器
半加器的功能是对两个二进制位的加法进行部分运算,即进行逐位相加,得到次位的进位信号和本位的和信号,半加器的运算法则如下:
• 0+0=0,S=0,C=0
其中,S为和信号,C为进位信号。
半加器的逻辑电路图如图1所示:
其中,传输门XOR gate为异或门,SUM为和信号输出端,CARRY为进位信号输出端。
2、全加器
图2. 全加器逻辑电路图
四、实验内容
将集成电路74LS86的引脚定义为X1、X2、不连、SUM、CARRY,输入进位信号CARRY 为不连,依次连接如图3所示,将本位输入信号接到X1和X2引脚上,再将SUM和CARRY 引脚接到示波器上,调节示波器显示参数,观察和进位信号输出情况。
将全加器的电路图按照原理图进行布线,如图4所示:
五、实验结果
将X1和X2输入信号分别输入1和0,观察示波器上和进位信号输出情况如图5所示:
图5. 半加器实验结果
该结果表明,1+0=1,和信号S=1,进位信号C=0,符合半加器的逻辑运算法则。
3、实验验证了半加器和全加器的逻辑运算法则和逻辑电路设计方法。
实验二--组合逻辑电路实验(半加器、全加器)

实验步骤
1、检查芯片完好
每个小组在数字电路试验箱上找到本次实验所需要的芯片 ,并查看芯片形状是否完好,芯片管脚有没有插牢。
2、查看数字电路实验箱
74LS86
74LS00
3、了解芯片
芯片管脚示意图
4、实验内容与结果(一)
1.组合逻辑电路功能测试 (选用芯片74LS00)
输入
A
B
C
0
0
0
0
0
1
0
1
实验二组合逻辑电路实验半加实验二组合逻辑电路实验半加器全加器器全加器实验目的实验目的掌握掌握组合逻辑电路的功能测试验证验证数字电路实验箱及示波器的使用方学会学会二进制数的运算规律数字电路实验箱及示波器的使用方半加器和全加器的逻辑功能序号名称型号与规格数量数字电路实验箱thd1二输入四与非门74ls00二输入四异或门74ls86二输入端四或非门74ls022
输入
Ai
Bi
Ci-1
0
0
0
输出
Si
Ci
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
认真复习,加强练习, 巩固成果,学以致用!
Goodbye!
以上有不当之处,请大家给与批评指正, 谢谢大家!
5、记录实验结果(二)
2.用异或门(74LS86)和与非门(74LS00)组成的半加器电路
输入
A
B
0
0
0
1
1
0
1
1
输出
Y
Z
(1)在数字电路实验箱上插入异或门和与非门芯片。输入端A、B接逻辑开 关,Y,Z接电平显示发光管。 (2)按表格要求,拨动开关,改变A、B输入的状态,填表写出y、z的输出 状态,并根据真值表写出y、z逻辑表达式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、实验目的
1、学习和掌握半加器全加器的工作原理和设计方法。
2、熟悉EDA工具Quartus II的使用,能够熟练运用Vrilog HDL语言在
Quartus II下进行工程开发、调试和仿真。
3、掌握组合逻辑电路在Quartus Ⅱ中的图形输入方法及文本输入方法,
掌握层次化设计方法。
4、掌握半加器、全加器采用不同的描述方法。
二、实验容
1、完成半加器全加器的设计,包括原理图输入,编译、综合、适配、仿真等。
并将半加器电路设
置成一个硬件符号入库
2、建立更高层次的原理图设计,利用1位半加器构成1位全加器,并完成编译、综合、适配、仿
真并硬件测试
3、采用图形输入法设计1位加法器分别采用图形输入和文本输入方法,设计全加器
4、实验报告:详细叙述1位全加法器的设计流程,给出各层次的原理图及其对应的仿真波形图,
给出加法器的上时序分析情况,最后给出硬件测试流程和结果。
三、实验步骤
1、建立一个Project。
2、编辑一个VHDL程序,要求用VHDL结构描述的方法设计一个半加器
3、对该VHDL程序进行编译,修改错误。
4、建立一个波形文件。
(根据真值表)
5、对该VHDL程序进行功能仿真和时序仿真
四、实验现象
任务1:半加器真值表描述方法
代码如下:
半加器是只考虑两个加数本身,而不考虑来自低位进位的逻辑电路
S=A B+A B CO=AB
代码如下:
LIBRARY IEEE; --行为描述半加器 USE IEEE.STD_LOGIC_1164.ALL; ENTITY h_adder IS
PORT(a,b:IN STD_LOGIC; so,co:OUT STD_LOGIC); END h_adder;
Architecture FH1 OF h_adder IS
Signal abc:STD_LOGIC_vector(1 downto 0); Begin
abc<=a&b; --并 Process(abc) --进程 begin
case abc is
WHEN "00"=>SO<='0';CO<='0'; WHEN "01"=>SO<='1';CO<='0'; WHEN "10"=>SO<='1';CO<='0'; WHEN "11"=>SO<='0';CO<='1'; WHEN OTHERS =>NULL; END CASE; END PROCESS;
END ARCHITECTURE FH1; 结果如下:
逻辑图
半加器真值表
A i
B i S i
C i 0 0 0 1 1 0 1 1
0 0 1 0 1 0 0 1
任务2:二进制加法运算规则描述
代码如下:
LIBRARY IEEE;--行为描述(抽象描述结构体的功能) USE IEEE.STD_LOGIC_1164.ALL;
ENTITY h_adder2 is --半加器
PORT(A,B:IN STD_LOGIC;
S,C0:OUT STD_LOGIC);
END h_adder2;
ARCHITECTURE be_half_adder OF h_adder2 IS BEGIN
PROCESS(A,B)
BEGIN
IF(A='0' AND B='0') THEN S<='0';C0<='0'; ELSIF(A='0' AND B='1') THEN
S<='1';C0<='0';
ELSIF(A='1' AND B='0') THEN S<='1';C0<='0'; ELSE
S<='0';C0<='1';
END IF;
END PROCESS;
END be_half_adder;
结果如下:
任务3:按逻辑表达式设计
代码如下:
LIBRARY IEEE; --行为描述半加器(按逻辑表达式)USE IEEE.STD_LOGIC_1164.ALL;
ENTITY h_adder3 IS
PORT(a,b:IN STD_LOGIC;
so,co:OUT STD_LOGIC);
END h_adder3;
Architecture FH1 OF h_adder3 IS
Begin
so<=a XOR b ;
co<=a AND b;
END ARCHITECTURE FH1;
结果如下:
任务4:用基本单元电路与或非描述半加器
代码如下:
library IEEE;
use IEEE.STD_LOGIC_1164.all;
entity h_adder4 is
port(a:in STD_LOGIC;
b:in STD_LOGIC;
sum:out STD_LOGIC;
co:out STD_LOGIC );
end h_adder4;
architecture ch4 of h_adder4 is
signal c,d:std_logic;
begin
c<=a or b;
d<=a nand b;
co<=not d;
sum<=c and d;
end architecture ch4;
结果如下:
任务5 :结构描述
代码如下:
--h_adder5
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY h_adder5 IS
PORT(A,B:IN STD_LOGIC;
co,s: OUT STD_LOGIC);
END ENTITY h_adder5;
ARCHITECTURE mix OF h_adder5 IS COMPONENT xor21 IS
PORT(i0,i1:IN STD_LOGIC;
q:OUT STD_LOGIC);
END COMPONENT;
BEGIN
co<=A AND B;
u1: xor21 PORT MAP(i0=>A,i1=>B,q=>s); --例化END ARCHITECTURE mix;
--xor21
--half_adder半加器,结构描述
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY xor21 IS
PORT(i0,i1:IN STD_LOGIC;
q: OUT STD_LOGIC);
END ENTITY xor21;
ARCHITECTURE behav OF xor21 IS
BEGIN
q<=i0 XOR i1;
END ARCHITECTURE behav;
结果如下:
五、实验体会
通过这次实验,复习了VHDL语言的应用,通过五种不同的方式,进行半加器的设计,加深了对半加器的理解,及对五种方法的运用,真值表描述方法、二进制加法运算规则描述、按逻辑表达式设计、用基本单元电路与或非描述半加器、结构描述。
尤其在结构描述,元件例化部分,有了更好的理解和掌握。