2008年高中数学二次函数试题
二次函数真题集合

一、选择题1.(2009·甘肃兰州)把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为 A .2(1)3y x =---B .2(1)3y x =-+-C .2(1)3y x =--+D .2(1)3y x =-++2.(2009·河北)某车的刹车距离y (m )与开始刹车时的速度x (m/s )之间满足二次函数2120y x =(x >0),若该车某次的刹车距离为5 m ,则开始刹车时的速度为( ) A.40 m/sB .20 m/sC .10 m/sD .5 m/s3.(2009山东泰安)抛物线1822-+-=x x y 的顶点坐标为( )A.(-2,7)B.(-2,-25)C.(2,7)D.(2,-9)4. (2008·浙江温州)抛物线2(1)3y x =-+的对称轴是( )A .直线1x =B .直线3x =C .直线1x =-D .直线3x =-5. (2008·江苏扬州)若关于x 的一元二次方程2250ax x +-=的两根中有且仅有一根在0与1之间(不含0和1),则a 的取值范围是( )A .3a <B .3a >C .3a <-D .3a >-6. (2008·河北)如图3-4-15,正方形ABCD 的边长为10,四个全等的小正方形的对称中心分别在正方形ABCD 的顶点上,且它们的各边与正方形ABCD 各边平行或垂直.若小正方形的边长为x ,且010x <≤,阴影部分的面积为y ,则能反映y 与x 之间函数关系的大致图象是( )图3-4-157.(2009·湖北荆门)函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象可能是图3-4-16中的( )图3-4-168.(2008·福建福州)已知抛物线21y x x =--与x 轴的一个交点为(0)m ,,则代数式xA .xB .C .x D .D.图3-4-1822008m m -+的值为( )A .2006B .2007C .2008D .20099.(2009·浙江台州)已知二次函数c bx ax y ++=2的y 与x 的部分对应值如下表:x… 1-0 1 3 … y…3-131…则下列判断中正确的是( )A .抛物线开口向上B .抛物线与y 轴交于负半轴C .当x =4时,y >0D .方程02=++c bx ax 的正根在3与4之间10.(2009·安徽)已知二次函数y =ax 2+bx +c(a ≠0)的图象如图3-4-17所示,给出以下结论: ①a >0.②该函数的图象关于直线1x =对称. ③当13x x =-=或时,函数y 的值都等于0. 其中正确结论的个数是( ) A .3 B .2C .1D .0二、填空题11.(2009·长春)如图3-4-18,平行于y 轴的直线l 被抛物线y =2112x +、y =2112x -所截.当直线l 向右平移3个单位时, 直线l 被两条抛物线所截得的线段扫过的图形 面积为 平方单位.12. (2009·湖北荆门)函数y =(x -2)(3-x )取得最大值时,x =______.13. (2008·江苏苏州)初三数学课本上,用“描点法”画二次函数2y ax bx c =++的图象根据表格上的信息回答问题:该二次函数2y ax bx c=++在3x =时,y = .14. (2008·山东枣庄)已知二次函数c bx ax y ++=21(0≠a )与一次函数)0(2≠+=k m kx y 的图象相交于点A (-2,4),B (8,2)(如图3-4-19所示),则能使21y y >成立的x 的取值范围 .O图3-4-1715. (2008·安徽)如图3-4-20为二次函数2y ax bx c =++的图象,在下列说法中:①0ac <;②方程20ax bx c ++=的根为11x =-,23x =;③0a b c ++>;④当1x >时,y 随着x 的增大而增大.正确的说法有 .(请写出所有正确说法的序号)16. (2008·甘肃兰州)农村常需要搭建截面为半圆形的全封闭蔬菜塑料暖房如图3-4-21所示,则需要塑料布y (m 2)与半径R (m )的函数关系式是(不考虑塑料埋在土里的部分) .三、解答题17. (2008·江苏南通)已知点A (-2,-c )向右平移8个单位得到点A ',A 与A '两点均在抛物线2y ax bx c =++上,且这条抛物线与y 轴的交点的纵坐标为-6,求这条抛物线的顶点坐标.18.(2009·浙江宁波)如图3-4-22抛物线254y ax x a =-+与x轴相交于点A、B,且过点C(5,4).(1)求a 的值和该抛物线顶点P 的坐标. (2)请你设计一种..平移的方法,使平移后抛物线的顶点落要第二象限,并写出平移后抛物线的解析式.图3-4-22 19.(2008·浙江金华)跳绳时,绳甩到最高处时的形状是抛物线.正在甩绳的甲、乙两名同学拿绳的手间距AB 为6米,到地 面的距离AO 和BD 均为0. 9米,身高为1.4米的小丽站在距点O 的水平距离为1米的点F 处,绳子甩到最高处时刚好通过她的头顶点E .以点O 为原点建立如图3-4-23所示的平面直角坐标系,设此抛物线的解析式为y =ax 2+bx +0.9. (1)求该抛物线的解析式;(2)如果小华站在OD 之间,且离点O 的距离为3米,当绳子甩到最高处时刚好通过他的头顶,图3-4-21请你算出小华的身高;(3)如果身高为1.4米的小丽站在OD 之间,且离点O 的距离为t 米,绳子甩到最高处时超过她的头顶,请结合图像,写 出t 自由取值范围 .图3-4-23一、选择题1. (2009·甘肃兰州)在同一直角坐标系中,函数y mx m =+和函数222y mx x =-++(m是常数,且0m ≠)的图象可能..是图3-4-24中的( )图3-4-242. (2008·江苏泰州)二次函数243y x x =++的图像可以由二次函数2y x =的图像平移而得到,下列平移正确的是( )A .先向左平移2个单位长度,再向上平移1个单位长度B .先向左平移2个单位长度,再向下平移1个单位长度C .先向右平移2个单位长度,再向上平移1个单位长度D .先向右平移2个单位长度,再向下平移1个单位长度3. (2008·山东泰安)如图3-4-25所示是二次函数2122y x =-+的图象在x 轴上方的一部分,对于这段图象与x 轴所围成的阴影部分的面积,你认为与其最.接近的值是( ) A .4B .163C .2πD .8图3-4-254.(2009·泸州)在平面直角坐标系中,将二次函数22x y =的图象向上平移2个单位,所得图象的解析式为A .222-=x y B .222+=x yC .2)2(2-=x y D .2)2(2+=x y5.(2009·山东威海)二次函数2365y x x =--+的图象的顶点坐标是( )A .(18)-,B .(18),C .(12)-,D .(14)-,6. (2008·江苏宿迁)如图3-4-26,在平面直角坐标系中,函数1+-=x y 与2)1(23--=x y 的图象大致是( )DCB图3-4-267. (2008·浙江嘉兴)一个函数的图象如图3-4-27,给出以下结论: ①当0x =时,函数值最大;②当02x <<时,函数y 随x 的增大而减小; ③存在001x <<,当0x x =时,函数值为0. 其中正确的结论是( ) A .①② B .①③ C .②③ D .①②③图3-4-278. (2008·湖北恩施自治州)将一张边长为30cm 的正方形纸片的四角分别剪去一个边长为x cm 的小正方形,然后折叠成一个无盖的长方体.当x 取下面哪个数值时,长方体的体积最大( ) A .7 B .6 C .5 D .49. (2008·甘肃兰州)下列表格是二次函数2y ax bx c =++的自变量x 与函数值y 的对应值,判断方程20ax bx c ++=(0a a b c ≠,,,为常数)的一个解x 的范围是( )A .6 6.17x <<B .6.17 6.18x <<C .6.18 6.19x <<D .6.19 6.20x <<10.(2009·广西河池模拟)已知二次函数2(0)y ax bx c a =++≠的最大值为0,则( )A.2040a b ac >-=, B.2040a b ac <->, C.2040a b ac >-<, D.二、填空题11. (2009·安徽模拟)如图3-4-28是二次函数2y ax bx c =++的图象的一部份,图象过点A (-3,0),对称轴是直线1x =-,给出五个结论:①24b ac >;②20a b -=;③0c <;④0a b c ++=;⑤0a b c -+<。
2008年高考数学江西卷(理)全解全析

绝密★启用前2008年普通高等学校招生全国统一考试江西卷数学试题(理科)全解全析本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷l 至2页,第Ⅱ卷3至4页,共150分.第Ⅰ卷考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束,监考员将试题卷、答题卡一并收回.参考公式:如果事件A 、B 互斥,那么 球的表面积公式P (A +B)=P (A)+P (B) S =4πR 2如果事件A 、B 相互独立,那么 其中R 表示球的半径 P (A·B)=P (A)·P (B) 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 V =34πR 3n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径P n (k )=C kn P k (1一P )k n -一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.在复平面内,复数z =sin2+i cos 2对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 【标准答案】D【试题解析】易知sin2>0 ,cos 2<0。
根据复数的几何意义可知z 所对应的点位于第四象限。
【高考考点】三角函数的定义和复数的几何意义 【易错提醒】实数值与三角函数角的大小的对应。
【学科网备考提示】注意复数的几何意义。
2.定义集合运算:A *B ={z |z =xy ,x ∈A ,y ∈B }.设A ={1,2},B ={0,2},则集合A *B 的所有元素之和为 A .0 B .2 C .3 D .6 【标准答案】D【试题解析】A ,B 两个集合中的元素的乘积:1⨯0=0,1⨯2=2,2⨯0=0,2⨯2=4.故集合A *B 有三个元素0,2,4,它们的和为6。
2008年全国统一考试数学卷(全国新课标.文)

2008年全国统一考试数学卷(全国新课标.文)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.参考公式:样本数据12,,,n x x x 的标准差s =其中x 为样本平均数 柱体体积公式V Sh = 其中S 为底面面积,h 为高锥体体积公式13V Sh =其中S 为底面面积,h 为高球的表面积,体积公式24R S π=,334R V π=其中R 为球的半径第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}|(2)(1)0M x x x =+-<,{}|10N x x =+<,则M N =A .(1,1)-B .(2,1)-C .(2,1)--D .(1,2)2.双曲线221102xy-=的焦距为A.B. C.D .3.已知复数1z i =-,则21zz -=A .2B .2-C .2iD .4.设()ln f x x x =,若0()2f x '=,则0x =A .2eB .eC .ln 22D .5.已知平面向量(1,3)a =- ,(4,2)b =-,a b λ+ 与a 垂直,则λ=A .1-B .1C .2-D .26.右面的程序框图,如果输入三个实数a 、b 、c ,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的A .c x >B .x c >C .c b >D .b c >7.已知1230a a a >>>,则使得2(1)1(1,2,3)i a x i -<=都成立的x 取值范围是A .11(0,)a B .12(0,)a C .31(0,)a D .32(0,)a8.设等比数列{}n a 的公比2q =,前n 项和为n S ,则42S a =A .2B .4C .152D .1729.平面向量,a b共线的充要条件是A .,a b方向相同 B .,a b两向量中至少有一个为零向量C .R λ∃∈,b a λ=D .存在不全为零的实数12,λλ,120a b λλ+=10.点(,)P x y 在直线430x y +=上,且x ,y 满足147x y ≤-≤,则点P 到坐标原点距离的取值范围A .[]0,5B .[]0,10C .[]5,10D .[]5,1511.函数()cos 22sin f x x x =+的最小值和最大值分别为A .1-,1B .2-,2C .3-,32D .2-,3212.已知平面α⊥平面β,l αβ= ,点A α∈,A l ∉,直线A B ∥l ,直线A C ⊥l ,直线m ∥α,m ∥β,则下列四种位置关系中,不一定...成立的是 A .A B ∥mB .AC ⊥mC .A B ∥βD .A C ⊥β第Ⅱ卷(非选择题共90分)注意事项:用钢笔或圆珠笔直接答在答题卡上.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.13.已知{}n a 为等差数列,1322a a +=,67a =,则5a = .14.一个六棱柱的底面是正六边形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,3,那么这个球的体积为 .15.过椭圆22154xy+=的右焦点作一条斜率为2的直线与椭圆交于A 、B 两点,O 为坐标原点,则△O A B 的面积为 .16.从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm ),结果如下: 甲品种271 273 280 285 285 287 292 294 295 301 303 303 307 308 310 314 319 323 325 325 328 331 334 337 352 乙品种284292295304306307312313315315 316 318 318 320322322324327329331333336337343356由以上数据设计了如下茎叶图:根据以上茎叶图,对甲乙两品种棉花的纤维长度比较,写出两个统计结论:① . ② .三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)如图,△A C D 是等边三角形,△ABC 是等腰三角形,90ACB ∠=B D 交AC 于E ,2A B =. (1)求cos C A E ∠的值; (2)求A E .18.(本小题满分12分)如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图.它的正视图和俯视图在下面画出(单位:cm )(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图; (2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连结1BC ,证明1BC ∥面EFG .27 28 29 30 31 32 33 34 351 37 5 5 05 4 2 8 7 3 39 4 0 8 5 5 37 4 124 2 35 56 8 8 4 6 72 5 0 2 2 4 7 9 13 6 7 3 6甲乙A BCC 1DB 1D 1EGF19.(本小题满分12分)为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查.6人得分情况如下:5,6,7,8,9,10. 把这6名学生的得分看成一个总体. (1)求该总体的平均数;(2)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过0.5的概率. 20.(本小题满分12分)已知m R ∈,直线2:(1)4l m x m y m -+=和圆:C 2284160x y x y +-++=.(1)求直线l 斜率的取值范围;(2)直线l 能否将圆C 分割成弧长的比值为12的两段圆弧?为什么?21.(本小题满分12分)设函数()b f x ax x=-,曲线()y f x =在点(2,(2))f 处的切线方程为74120x y --=.(1)求()f x 的解析式;(2)证明:曲线()y f x =上任一点处的切线与直线0x =和直线y x =所围成的三角形面积为定值,并求此定值.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时请写清题号.22.(本小题满分10分)【选修4-1:几何选讲】如图,过圆O 外一点M 作它的一条切线,切点为A ,过A 作直线A P 垂直直线O M ,垂足为P . (1)证明:2OM OP OA ⋅=;(2)N 为线段A P 上一点,直线N B 垂直直线O N ,且交圆O 于B 点.过B 点的切线交直线O N 于K .证明:90OKM ∠=23.(本小题满分10分)【选修4-4:坐标系与参数方程】已知曲线1cos :sin x C y θθ=⎧⎨=⎩(θ为参数),曲线22:2x C y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数).(1)指出1C ,2C 各是什么曲线,并说明1C 与2C 公共点的个数;(2)若把1C ,2C 上各点的纵坐标都压缩为原来的一半,分别得到曲线1C ',2C '.写出1C ',2C '的参数方程.1C '与2C '公共点的个数和1C 与2C 公共点的个数是否相同?说明你的理由. 24.(本小题满分10分)【选修4-5:不等式选讲】 已知函数()|8||4|f x x x =---. (1)作出函数()y f x =的图像; (2)解不等式|8||4|2x x --->.2008年全国统一考试数学卷(全国新课标.文)参考答案一、选择题,本题考查基础知识,基本概念和基本运算能力二、填空题.本题考查基础知识,基本概念和基本运算技巧13.14.15.16.三、解答题 17.一、选择题: 1.C 2.D 3.A 4.B 5.A 6.A 7.B8.C9.D10.B11.C12.D二、填空题: 13.1514.43π15.5316.(1)乙品种棉花的纤维平均长度大于甲品种棉花的纤维平均长度(或:乙品种棉花的纤维长度普遍大于甲品种棉花的纤维长度).(2)甲品种棉花的纤维长度较乙品种棉花的纤维长度更分散.(或:乙品种棉花的纤维长度较甲品种棉花的纤维长度更集中(稳定).甲品种棉花的纤维长度的分散程度比乙品种棉花的纤维长度的分散程度更大).(3)甲品种棉花的纤维长度的中位数为307mm ,乙品种棉花的纤维长度的中位数为318mm . (4)乙品种棉花的纤维长度基本上是对称的,而且大多集中在中间(均值附近).甲品种棉花的纤维长度除一个特殊值(352)外,也大致对称,其分布较均匀. 注:上面给出了四个结论.如果考生写出其他正确答案,同样给分. 三、解答题 17.解:(Ⅰ)因为9060150BCD =+= ∠,C B A C C D ==, 所以15CBE = ∠.所以cos cos(4530)4C BE =-= ∠. ··························································· 6分(Ⅱ)在A B E △中,2A B =, 由正弦定理2sin (4515)sin(9015)AE =-+.故2sin 30cos15AE =124⨯==. ·······························································12分18.解:(Ⅰ)如图···················································································· 3分 (Ⅱ)所求多面体体积V V V =-长方体正三棱锥1144622232⎛⎫=⨯⨯-⨯⨯⨯⨯ ⎪⎝⎭(俯视图)(正视图)(侧视图)2284(cm )3=. ·································································· 7分 (Ⅲ)证明:在长方体A B C D A B C D ''''-中, 连结A D ',则A D B C ''∥. 因为E G ,分别为A A ',A D ''中点,所以A D E G '∥,从而E G B C '∥.又B C '⊄平面EFG , 所以B C '∥面EFG . ·································································································12分 19.解:(Ⅰ)总体平均数为1(5678910)7.56+++++=. ·················································································· 4分 (Ⅱ)设A 表示事件“样本平均数与总体平均数之差的绝对值不超过0.5”.从总体中抽取2个个体全部可能的基本结果有:(56),,(57),,(58),,(59),,(510),,(67),,(68),,(69),,(610),,(78),,(79),,(710),,(89),,(810),,(910),.共15个基本结果. 事件A 包括的基本结果有:(59),,(510),,(68),,(69),,(610),,(78),,(79),.共有7个基本结果. 所以所求的概率为7()15P A =. ··············································································································12分20.解:(Ⅰ)直线l 的方程可化为22411m m y x m m =-++,直线l 的斜率21m k m =+, ···························································································· 2分因为21(1)2m m +≤,所以2112m k m =+≤,当且仅当1m =时等号成立.所以,斜率k 的取值范围是1122⎡⎤-⎢⎥⎣⎦,.········································································· 5分 (Ⅱ)不能.················································································································ 6分 由(Ⅰ)知l 的方程为(4)y k x =-,其中12k ≤.圆C 的圆心为(42)C -,,半径2r =.ACDE FGA 'B 'C 'D '圆心C 到直线l 的距离d =············································································································· 9分由12k ≤,得1d >≥,即2r d >.从而,若l 与圆C 相交,则圆C 截直线l 所得的弦所对的圆心角小于23π.所以l 不能将圆C 分割成弧长的比值为12的两段弧. ···················································12分21.解:(Ⅰ)方程74120x y --=可化为734y x =-.当2x =时,12y =. ··································································································· 2分又2()b f x a x'=+,于是1222744b a b a ⎧-=⎪⎪⎨⎪+=⎪⎩,,解得13.a b =⎧⎨=⎩,故3()f x x x=-. ········································································································ 6分(Ⅱ)设00()P x y ,为曲线上任一点,由231y x'=+知曲线在点00()P x y ,处的切线方程为002031()y y x x x ⎛⎫-=+- ⎪⎝⎭,即00200331()y x x x x x ⎛⎫⎛⎫--=+- ⎪ ⎪⎝⎭⎝⎭. 令0x =得06y x =-,从而得切线与直线0x =的交点坐标为060x ⎛⎫- ⎪⎝⎭,. 令y x =得02y x x ==,从而得切线与直线y x =的交点坐标为00(22)x x ,.···············10分所以点00()P x y ,处的切线与直线0x =,y x =所围成的三角形面积为016262x x-=.故曲线()y f x =上任一点处的切线与直线0x =,y x =所围成的三角形的面积为定值,此定值为6. ·························································································································12分 22.解:(Ⅰ)证明:因为M A 是圆O 的切线,所以O A A M ⊥. 又因为A P O M ⊥,在R t O A M △中,由射影定理知,2OA OM OP = . ········································································································ 5分 (Ⅱ)证明:因为B K 是圆O 的切线,B N O K ⊥. 同(Ⅰ),有2OB ON OK = ,又O B O A =, 所以O P O M O N O K = ,即O N O M O PO K=.又N O P M O K =∠∠,所以O N P O M K △∽△,故90OKM OPN == ∠∠. ············································10分 23.解:(Ⅰ)1C 是圆,2C 是直线. ························································································ 2分1C 的普通方程为221x y +=,圆心1(00)C ,,半径1r =. 2C的普通方程为0x y -+=.因为圆心1C到直线0x y -+=的距离为1,所以2C 与1C 只有一个公共点. ···················································································· 4分 (Ⅱ)压缩后的参数方程分别为1C ':cos 1sin 2x y θθ=⎧⎪⎨=⎪⎩,(θ为参数) 2C ':24x y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数)························· 8分化为普通方程为:1C ':2241x y +=,2C ':122y x =+,联立消元得2210x ++=,其判别式24210∆=-⨯⨯=,所以压缩后的直线2C '与椭圆1C '仍然只有一个公共点,和1C 与2C 公共点个数相同. ················································································································10分008年普通高等学校统一考试(海南、宁夏卷)数学(文科)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1、已知集合M ={ x|(x + 2)(x -1) < 0 },N ={ x| x + 1 < 0 },则M ∩N =( )A. (-1,1)B. (-2,1)C. (-2,-1)D. (1,2)【标准答案】C【试题解析】易求得{}{}|21,|1=-<<=<-M x x N x x ∴{}|21=-<<- M N x x 【高考考点】一元二次不等式的解法及集合的交集及补集运算 【易错提醒】混淆集合运算的含义或运算不仔细出错【全品备考提示】一元二次不等式的解法及集合间的交、并、补运算布高考中的常考内容,要认真掌握,并确保得分.2、双曲线221102xy-=的焦距为( )【标准答案】D【试题解析】由双曲线方程得22210,212==∴=a b c ,于是2==c c 【高考考点】双曲线的标准方程及几何性质【易错提醒】将双曲线中三个量,,a b c 的关系与椭圆混淆,而错选B【全品备考提示】在新课标中双曲线的要求已经降低,考查也是一些基础知识,不要盲目拔高 3、已知复数1z i =-,则21zz =-( )A. 2B. -2C. 2iD. -2i 【标准答案】A【试题解析】将1=-z i 代入得()22122111--===----i zi z i i,选A【高考考点】复数的加减、乘除及乘方运算 【易错提醒】运算出错【全品备考提示】简单的复数运算仍然是需要掌握的内容,但要求不高,属于必须得分的内容. 4、设()ln f x x x =,若0'()2f x =,则0x =( )A. 2eB. eC.ln 22D. ln 2【标准答案】B【试题解析】∵()ln =f x x x ∴()'1ln ln 1=+⋅=+fx x x x x∴由()'02=fx 得00ln 12 +=∴=x x e ,选B【高考考点】两个函数积的导数及简单应用 【易错提醒】不能熟练掌握导数的运算法则而出错【全品备考提示】导数及应用是高考中的常考内容,要认真掌握,并确保得分.5、已知平面向量a =(1,-3),b=(4,-2),a b λ+ 与a垂直,则λ是( ) A. -1 B. 1 C. -2 D. 2 【标准答案】A【试题解析】由于()()4,32,1,3,a b a a b λ+=λ+-λ-=-λ+ ∴()()43320λ+--λ-=,即101001λ+=∴λ=-,选A【高考考点】简单的向量运算及向量垂直【易错点】:运算出错 【全品备考提示】:6、右面的程序框图,如果输入三个实数a 、b 、c ,要求输出这三个数中最大的数,那么在空白的判断 框中,应该填入下面四个选项中的( )权 A. c > x B. x > c C. c > bD. b > c【标准答案】:A【试题解析】:有流程图可知第一个选择框作用是比较x 与b 故第二个选择框的作用应该是比较x 与c 【高考考点】算法中的判断语句等知识.【易错点】:不能准确理解流程图的含义而导致错误. 【全品网备考提示】:算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.7、已知1230a a a >>>,则使得2(1)1i a x -<(1,2,3)i =都成立的x 取值范围是( )A.(0,11a ) B. (0,12a ) C. (0,31a ) D. (0,32a )【标准答案】:B【试题解析】:由()211i a x -<,得:22121i i a x a x -+<,即()220i i x a x a -<,解之得()200i ix a a <<>,由于1230a a a >>>,故120x a <<;选B.【高考考点】二次不等式的解法及恒成立知识 【易错点】:不能准确理解恒成立的含义而导致错误.【全品备考提示】:不等式恒成立问题是历年高考的一个重点,要予以高度重视 8、设等比数列{}n a 的公比2q =,前n 项和为n S ,则42S a =( )A. 2B. 4C.152D.172【标准答案】:C【试题解析】:由于()4141122,1512a q S a -=∴==- ∴4121151522S a a a ==;选C;【高考考点】等比数列的通项公式及求和公式的综合应用【易错点】:不能准确掌握公式而导致错误. 【全品备考提示】:等差数列及等比数列问题一直是高中数学的重点也是高考的一个热点, 要予以高度重视9、平面向量a ,b共线的充要条件是( )A. a ,b 方向相同B. a ,b 两向量中至少有一个为零向量C. R λ∃∈, b a λ=D. 存在不全为零的实数1λ,2λ,120a b λλ+=【标准答案】:D【试题解析】:若,a b均为零向量,则显然符合题意,且存在不全为零的实数12,,λλ使得120a b λ+λ=;若0a ≠ ,则由两向量共线知,存在0λ≠,使得b a =λ , 即0a b λ-=,符合题意,故选D【高考考点】向量共线及充要条件等知识.【易错点】:考虑一般情况而忽视了特殊情况【全品备考提示】:在解决很多问题时考虑问题必须要全面,除了考虑一般性外,还要注意特殊情况是否成立. 10、点P (x ,y )在直线4x + 3y = 0上,且满足-14≤x -y ≤7,则点P 到坐标原点距离的取值范围是( ) A. [0,5] B. [0,10]C. [5,10]D. [5,15]【标准答案】:B【试题解析】:根据题意可知点P在线段()43063x y x +=-≤≤上,有线段过原点,故点P到原点最短距离为零,最远距离为点()6,8P -到原点距离且距离为10,故选B;【高考考点】直线方程及其几何意义【易错点】:忽视了点的范围或搞错了点的范围而至错. 【全品备考提示】:随着三大圆锥曲线的降低要求,直线与圆的地位凸现,要予以重视. 11、函数()cos 22sin f x x x =+的最小值和最大值分别为( )A. -3,1B. -2,2C. -3,32D. -2,32【标准答案】:C【试题解析】:∵()221312sin 2sin 2sin 22f x x x x ⎛⎫=-+=--+ ⎪⎝⎭∴当1sin 2x =时,()m ax 32f x =,当sin 1x =-时,()min 3f x =-;故选C;【高考考点】三角函数值域及二次函数值域【易错点】:忽视正弦函数的范围而出错.【全品备考提示】:高考对三角函数的考查一直以中档题为主,只要认真运算即可.12、已知平面α⊥平面β,α∩β= l ,点A ∈α,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,m ∥β,则下列四种位置关系中,不一定...成立的是( ) A. AB ∥m B. AC ⊥m C. AB ∥βD. AC ⊥β【标准答案】:D【试题解析】:容易判断A、B、C三个答案都是正确的,对于D,虽然A C l ⊥,但AC不一定在平面α内,故它可以与平面β相交、平行,故不一定垂直;【高考考点】线面平行、线面垂直的有关知识及应用 【易错点】:对有关定理理解不到位而出错.【全品备考提示】:线面平行、线面垂直的判断及应用仍然是立体几何的一个重点,要重点掌握.二、填空题:本大题共4小题,每小题5分,满分20分.13、已知{a n }为等差数列,a 3 + a 8 = 22,a 6 = 7,则a 5 = ____________ 【标准答案】:15【试题解析】:由于{}n a 为等差数列,故3856a a a a +=+∴538622715a a a a =+-=-= 【高考考点】等差数列有关性质及应用 【易错点】:对有关性质掌握不到位而出错.【全品备考提示】:等差数列及等比数列“足数和定理”是数列中的重点内容,要予以重点掌握并灵活应用.14、一个六棱柱的底面是正六边形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,3,那么这个球的体积为 _________【标准答案】:43V =π【试题解析】∵正六边形周长为3,得边长为12,故其主对角线为1,从而球的直径22R == ∴1R = ∴球的体积43V =π【高考考点】正六棱柱及球的相关知识【易错点】:空间想象能力不强,不能画出直观图而出错.【全品备考提示】:空间想象能力是立体几何中的一个重要能力之一,平时要加强培养. 15、过椭圆22154xy+=的右焦点作一条斜率为2的直线与椭圆交于A 、B 两点,O 为坐标原点,则△OAB 的面积为______________ 【标准答案】:53【试题解析】:将椭圆与直线方程联立:()224520021x y y x ⎧+-=⎪⎨=-⎪⎩,得交点()540,2,,33A B ⎛⎫- ⎪⎝⎭;故121145122233O AB S O F y y =⋅⋅-=⨯⨯+=;【高考考点】直线与椭圆的位置关系【易错点】:不会灵活地将三角形面积分解而导致运算较繁.【全品备考提示】:对于圆锥曲线目前主要以定义及方程为主,对于直线与圆锥曲线的 位置关系只要掌握直线与椭圆的相关知识即可.16、从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm ),结果如下:甲品种:271 273 280 285 287 292 294 295 301 303 303 307 308 310 314 319 323 325 328 331 334 337 352乙品种:284 292 295 304 306 307 312 313 315 315 316 318 318320 322 322 324 327 329 331 333 336 337 343 356 由以上数据设计了如下茎叶图根据以上茎叶图,对甲、乙两品种棉花的纤维长度作比较,写出两个统计结论:① ; ② . 【试题解析】:参考答案(1)乙品种棉花的纤维平均长度大于甲品种棉花的纤维平均长度; (2)甲品种棉花的纤维长度较乙品种棉花的纤维长度更分散(或乙品种棉花的纤维长度较甲品种棉花的纤维长度更集中).(3)甲品种棉花的纤维长度的中位数为307mm ,乙品种棉花的纤维长度的中位数为318mm ;(4)乙品种棉花的纤维长度基本上是对称的,而且大多集中在中间(均值附近),甲品种 棉花的纤维长度除一个特殊值(352)外,也大致对称,其分布较均匀;【高考考点】统计的有关知识【易错点】:不会对数据作出统计分析. 【全品备考提示】:对数据的处理是新高考的一个新要求,此类问题今后仍然会出现.三、解答题:本大题共6小题,满分70分.解答须写出文字说明,证明过程和演算步骤. 17、(本小题12分)如图,△ACD 是等边三角形,△ABC 是等腰直角三角形,∠ACB=90°,BD 交AC 于E ,AB=2.(1)求cos ∠CBE 的值;(2)求AE .【试题解析】:.(1)因为BA0009060150,BC D C B AC C D ∠=+===所以015CBE ∠=,()00cos cos 45304C BE ∴∠=-=(2)在ABE ∆中,2A B =,故由正弦定理得()()2sin 4515sin 9015AE =-+,故0122sin 30cos154AE ⨯===【高考考点】正弦定理及平面几何知识的应用【易错点】:对有关公式掌握不到位而出错. 【全品备考提示】:解三角形一直是高考的重点内容之一,不能轻视.18、(本小题满分12分)如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm ).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连结'BC ,证明:'BC ∥面EFG .18. 【试题解析】(1)如图正视图E(2)所求多面体的体积()311284446222323V V V cm ⎛⎫=-=⨯⨯-⨯⨯⨯⨯= ⎪⎝⎭正长方体三棱锥 (3)证明:如图,在长方体''''ABCD A B C D -中,连接'AD ,则'AD ∥'BC因为E,G分别为''',AA A D 中点,所以'AD ∥E G ,从而E G ∥'BC ,又'BC EFG ⊄平面, 所以'BC ∥平面EFG;【高考考点】长方体的有关知识、体积计算及三视图的相关知识 【易错点】:对三视图的相关知识掌握不到位,求不出有关数据.【全品备考提示】:三视图是新教材中的新内容,故应该是新高考的热点之一,要予以足够的重视.19、(本小题满分12分)为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下:5,6,7,8,9,10.把这6名学生的得分看成一个总体.(1)求该总体的平均数;(2)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过0.5的概率.19. 【试题解析】 (1)总体平均数为()156789107.56+++++=(2)设A表示事件“样本平均数与总体平均数之差的绝对值不超过0.5”从总体中抽取2个个体全部可能的基本结果有:(5,6), (5,7), (5,8), (5,9), (5,10), (6,7), (6,8), (6,9), (6,10), (7,8), (7,9), (7,10), (8,9), (8,10), (9,10),共15个基本结果.事件A包含的基本结果有:(5,9), (5,10), (6,8), (6,9), (6,10), (7,8), (7,9),共有7个基本结果; 所以所求的概率为()715P A =【高考考点】统计及古典概率的求法 【易错点】:对基本事件分析不全面.【全品备考提示】:古典概率的求法是一个重点,但通常不难,要认真掌握.20、(本小题满分12分)已知m ∈R ,直线l :2(1)4m x m y m -+=和圆C :2284160x y x y +-++=. (1)求直线l 斜率的取值范围;(2)直线l 能否将圆C 分割成弧长的比值为12的两段圆弧?为什么?20【试题解析】(1)直线l 的方程可化为22411m m y x m m =-++,此时斜率21m k m =+因为()2112m m ≤+,所以2112m k m =≤+,当且仅当1m =时等号成立所以,斜率k 的取值范围是11,22⎡⎤-⎢⎥⎣⎦; (2)不能.由(1知l 的方程为()4y k x =-,其中12k ≤;圆C的圆心为()4,2C -,半径2r =;圆心C到直线l 的距离d =由12k ≤,得1d ≥>,即2r d >,从而,若l 与圆C相交,则圆C截直线l 所得的弦所对的圆心角小于23π,所以l 不能将圆C分割成弧长的比值为12的两端弧;【高考考点】直线与圆及不等式知识的综合应用 【易错点】:对有关公式掌握不到位而出错.【全品备考提示】:本题不是很难,但需要大家有扎实的功底,对相关知识都要受熟练掌握;21、(本小题满分12分)设函数()b f x ax x=-,曲线()y f x =在点(2,(2))f 处的切线方程为74120x y --=.(1)求()y f x =的解析式;(2)证明:曲线()y f x =上任一点处的 切线与直线0x =和直线y x =所围成的三角形面积为定值,并求此定值. 21. 【试题解析】1)方程74120x y --=可化为734y x =-,当2x =时,12y =;又()'2b f x a x =+,于是1222744b a b a ⎧-=⎪⎪⎨⎪+=⎪⎩,解得13a b =⎧⎨=⎩,故()3fx x x=-(2)设()00,P x y 为曲线上任一点,由'231y x=+知曲线在点()00,P x y 处的切线方程为()002031y y x x x ⎛⎫-=+- ⎪⎝⎭,即()00200331y x x x x x ⎛⎫⎛⎫--=+- ⎪ ⎪⎝⎭⎝⎭令0x =,得06y x =-,从而得切线与直线0x =的交点坐标为060,x ⎛⎫- ⎪⎝⎭;令y x =,得02y x x ==,从而得切线与直线y x =的交点坐标为()002,2x x ; 所以点()00,P x y 处的切线与直线0,x y x ==所围成的三角形面积为0016262x x -=;故曲线()y f x =上任一点处的切线与直线0,x y x ==所围成的三角形面积为定值,此定值为6;【高考考点】导数及直线方程的相关知识 【易错点】:运算不仔细而出错. 【全品备考提示】:运算能力一直是高考考查的能力之一,近年来,对运算能力的要求降低了,但对准确率的要求提高了.请考生在第22、23题中任选一题做答,如果多做,则按所做的第一题记分. 做答时用2B 铅笔在答题卡上把所选题目对应的题号涂黑.22、(本小题满分10分)选修4-1:几何证明选讲如图,过圆O 外一点M 作它的一条切线,切点为A ,过A 作直线AP 垂直直线OM ,垂足为P . (1)证明:O M ·OP = OA 2;(2)N为线段AP上一点,直线NB垂直直线ON,且交圆O于B点.过B点的切线交直线ON于K.证明:∠OKM = 90°.22.【试题解析】(1)证明:因为MA是圆O的切线,所以O A A M⊥,又因为A P O M⊥,在R t O A M∆中,由射影定理知2OA OM OP=⋅;(2)证明:因为BK是圆O的切线,B N O K⊥,同()1有:2OB ON OK=⋅,又O B O A=,所以O M O P⋅=O N O K⋅,即O N O MO P O K=,又N O P M O K∠=∠,所以O N P O M K∆∆,故090OKM OPN∠=∠=;【高考考点】圆的有关知识及应用【易错点】:对有关知识掌握不到位而出错【全品备考提示】:高考对平面几何的考查一直要求不高,故要重点掌握,它是我们的得分点之一.23、(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C1:cos()sinxyθθθ=⎧⎨=⎩为参数,曲线C2:2()2xty⎧=-⎪⎪⎨⎪=⎪⎩为参数.(1)指出C1,C2各是什么曲线,并说明C1与C2公共点的个数;157417843.doc -第 21 页 (共 21 页) (2)若把C 1,C 2上各点的纵坐标都压缩为原来的一半,分别得到曲线1'C ,2'C .写出1'C ,2'C 的参数方程.1'C 与2'C 公共点的个数和C 1与C 2公共点的个数是否相同? 说明你的理由.23. 【试题解析】(1)C1时圆,C2是直线C1的普通方程为221x y +=,圆心C1(0,0),半径1r =;C2的普通方程为0x y -+=,因为圆心C1到直线0x y -+=的距离为1, 所以C1与C2只有一个公共点;(2)压缩后的参数方程分别为()()''12cos 2::1sin 24x x C C t y y t ⎧=θ=-⎧⎪⎪⎪θ⎨⎨=θ⎪⎪⎩=⎪⎩为参数,为参数化为普通方程为'2'121::22C x C y x =+2+4y =1,联立消元得:2210x ++=,其判别式(24210∆=-⨯⨯=; 所以压缩后的直线与椭圆仍然只有一个公共点,和原来相同;【高考考点】参数方程与普通方程的互化及应用 【易错点】:对有关公式掌握不到位而出错.【全品备考提示】:高考对参数方程的考查要求也不高,故要重点掌握,它也是我们的得分点之一.。
高中数学-二次函数专项练习题

高中数学-二次函数专项练习题一、填空题1、函数①y=x +;②y=3(x -1)2+2;③y=(x +3)2-2x 2;④y=+x 中是二次函数的有_______2、二次函数y=(m +1)x+2x -1的图象开口向下,则m= .3、函数的对称轴是_______,顶点坐标为_________,函数有最____值______。
将函数化为顶点式为_________________,函数图象与x 轴的交点坐标为__________________,与y 轴的交点坐标为________,当x____时,y 随x 增大而减小。
4、函数的对称轴是_________,顶点坐标为____________,函数有最____值______。
将函数化为一般式为_________________,函数图象与x 轴的交点坐标为______________,与x 轴两交点之间的距离是_____,与y 轴的交点坐标为________,当x_______时,y 随x 增大而增大。
5、函数的对称轴是_________,顶点坐标为_______,将函数化为一般式为________。
6、通过配方把写成的形式后,a=___,m=___,k=___。
7、抛物线y=2x 2向左平移1个单位,再向下平移3个单位,得到的抛物线表达式为 ______8、抛物线与直线交于(1,),则抛物线的解析式_______________x 121x 22-m 122---=x x y ()2122++-=x y ()()313--=x x y 6422---=x x y ()k m x a y ++=22ax y =x y -=m9、若二次函数有最大值,且图象经过原点,则m=______。
10、函数y=x 2-4x+1的图象经过_____象限. 11、函数y =x 2+2x +1写成y =a (x -h)2+k 的形式是__________________12、已知二次函数,则当 时,其最大值为0.13、抛物线过第二、三、四象限,则 0,bc 0.14、抛物线在轴上截得的线段长度是15、二次函数y =-x 2,当x 1<x 2<0时,y 1与y 2的大小为______.16、如图所示的抛物线:当x =_____时,y =0;当y<0时,x 的取值范围是___________;当y >0时,x 的取值范围是___________;当x =_____时,y 有最大值是_____.17、若二次函数y =x 2-2x +c 图象的顶点在x 轴上,则c 等于______ 18、函数 y =(x -1)2+3,当 x ____时,函数值 y 随 x 的增大而增大。
高中数学练习题附带解析二次函数的性质与变形

高中数学练习题附带解析二次函数的性质与变形【高中数学练习题附带解析:二次函数的性质与变形】一、基础知识梳理1. 二次函数的定义:在笛卡尔坐标系中,自变量 x 的平方可写成形如 y=ax²+bx+c 的函数称为二次函数,其中 a、b、c 是常数且a≠0。
2. 二次函数的图像特征:- 当 a>0 时,二次函数的图像开口向上,顶点为最小值点;- 当 a<0 时,二次函数的图像开口向下,顶点为最大值点。
二、基本习题1. 已知二次函数 y=ax²+2x+3,求该函数的顶点坐标以及开口方向。
解析:根据题目已知条件可知 a=1,b=2,c=3。
通过求顶点坐标和判断 a 的正负来确定开口方向。
- 顶点坐标:x=-b/2a=-2/(2×1)=-1,代入函数得到 y=(1)(-1)²+2(-1)+3=4,故顶点坐标为 (-1,4)。
- 开口方向:a=1>0,因此二次函数的图像开口向上。
2. 已知二次函数的函数图像如下图所示,求该函数的解析式。
解析:根据题目给出的函数图像可知,图像开口向上,且图像经过点(-1,0)、(1,0),因此该函数的解析式为 y=a(x+1)(x-1)。
接下来我们需要求解 a 的值,可通过给定的点(3,8)求得。
将 x=3,y=8 代入函数得到 8=a(3+1)(3-1)→8=8a,解得 a=1。
所以该函数的解析式为 y=(x+1)(x-1)。
三、进阶习题1. 已知二次函数的函数图像经过点(1,3),且在 x 轴上有两个不等的实根,求该函数的解析式。
解析:已知图像经过点(1,3),代入函数得到3=a(1)²+b(1)+c→3=a+b+c。
又已知该函数有两个不等的实根,即判别式Δ=b²-4ac>0。
将 x=0 代入函数可得到 c=3-a-b。
将Δ>0 代入Δ=b²-4ac>0 可得到 b²-4a(3-a-b)>0,化简后得到 b²+(4a-12)a+4a-9>0。
2008年普通高等学校招生全国统一考试数学试卷分类汇编2.4函数的综合应用

第二章 函数四 函数的综合应用【考点阐述】 函数的综合应用 【考试要求】应用函数知识思想解决一些简单的实际问题。
【考题分类】(一)选择题(共5题)1.(江西卷理12文12).已知函数2()22(4)1f x mx m x =--+,()g x mx =,若对于任一实数x ,()f x 与()g x 至少有一个为正数,则实数m 的取值范围是 A . (0,2) B .(0,8) C .(2,8) D . (,0)-∞ 解:当0m ≤时,显然不成立 当0m >时,因(0)10f =>当4022b ma --=≥即04m <≤时结论显然成立; 当4022b ma --=<时只要24(4)84(8)(2)0m m m m ∆=--=--<即可 即48m <<,则08m <<,选B2.(全国Ⅰ卷理2文2)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )解:A . 根据汽车加速行驶212s at =,匀速行驶s vt =,减速行驶212s at =-结合函数图像可知;3.(山东卷理3文3)函数y =lncos x (-2π<x <)2π的图象是sA .sssB .C .D .解析:本小题主要考查复合函数的图像识别。
ln cos ()22y x x ππ=-<<是偶函数,可排除B 、D ,由cos 1lncos 0x x ≤⇒≤排除C,选A.4.(陕西卷理11)定义在R 上的函数()f x 满足()()()2f x y f x f y x y+=++(x y ∈R ,),(1)2f =,则(3)f -等于( ) A .2B .3C .6D .9解:令0(0)0x y f ==⇒=,令1(2)2(1)26x y f f ==⇒=+=;令2,1(3)(2)(1)412x y f f f ==⇒=++=,再令3,3x y ==-得0(33)(3)(3)18(3)18(3)6f f f f f =-=+--⇒-=-=5.(陕西卷文11)定义在R 上的函数()f x 满足()()()2f x y f x f y x y+=++(x y ∈R ,),(1)2f =,则(2)f -等于( ) A .2B .3C .6D .9解:令0(0)0x y f ==⇒=,令1(2)2(1)26x y f f ==⇒=+=;令2,2x y ==-得0(22)(2)(2)8(2)8(2)862f f f f f =-=+--⇒-=-=-= (二)填空题(共3题)1.(湖北卷文13)方程223x x -+=的实数解的个数为 . 解:画出2xy -=与23y x=-的图象有两个交点,故方程223x x -+=的实数解的个数为2个。
高中数学二次函数常考题集二次函数的应用

解答题1.定义[p,q]为一次函数y=px+q的特征数.(1)若特征数是[2,k-2]的一次函数为正比例函数,求k的值;(2)设点A,B分别为抛物线y=(x+m)(x-2)与x,y轴的交点,其中m>0,且△OAB的面积为4,O为原点,求图象过A,B两点的一次函数的特征数.2.如图,已知直线l1的解析式为y=3x+6,直线l1与x轴,y轴分别相交于A,B两点,直线l2经过B,C两点,点C的坐标为(8,0),又已知点P在x轴上从点A向点C移动,点Q在直线l2从点C向点B移动.点P,Q同时出发,且移动的速度都为每秒1个单位长度,设移动时间为t秒(1<t<10).(1)求直线l2的解析式;(2)设△PCQ的面积为S,请求出S关于t的函数关系式;(3)试探究:当t为何值时,△PCQ为等腰三角形?3.如图,抛物线y=12x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(-1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,求m的值.[注:抛物线y=ax2+bx+c的顶点坐标为(-b2a,4ac-b24a).].4.已知:如图①,在Rt△ACB中,∠C=90°,AC=4 cm,BC=3 cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q 由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),解答下列问题:(1)当t为何值时,PQ∥BC;(2)设△AQP的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;(4)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP′C,那么是否存在某一时刻t,使四边形PQP′C为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.5.如图:抛物线经过A(-3,0)、B(0,4)、C(4,0)三点.(1)求抛物线的解析式.(2)已知AD=AB(D在线段AC上),有一动点P从点A沿线段AC以每秒1个单位长度的速度移动;同时另一个动点Q以某一速度从点B沿线段BC移动,经过t秒的移动,线段PQ被BD垂直平分,求t的值;(3)在(2)的情况下,抛物线的对称轴上是否存在一点M,使MQ+MC有最小值?若存在,请求出点M的坐标;若不存在,请说明理由.(注:抛物线y=ax2+bx+c的对称轴为x=-b2a)6.如图1,在Rt△ABC中,∠C=90°,BC=8厘米,点D在AC上,CD=3厘米.点P、Q分别由A、C两点同时出发,点P沿AC方向向点C匀速移动,速度为每秒k厘米,行完AC全程用时8秒;点Q沿CB方向向点B匀速移动,速度为每秒1厘米.设运动的时间为x秒(0<x<8),△DCQ的面积为y1平方厘米,△PCQ的面积为y2平方厘米.(1)求y1与x的函数关系,并在图2中画出y1的图象;(2)如图2,y2的图象是抛物线的一部分,其顶点坐标是(4,12),求点P的速度及AC的长;(3)在图2中,点G是x轴正半轴上一点0<OG<6,过G作EF垂直于x轴,分别交y1、y2的图象于点E、F.①说出线段EF的长在图1中所表示的实际意义;②当0<x<6时,求线段EF长的最大值.7.如图,平面直角坐标系中有一矩形纸片OABC,O为原点,点A,C分别在x轴,y轴上,点B坐标为2 (m,)(其中m>0),在BC边上选取适当的点E和点F,将△OCE沿OE翻折,得到△OGE;再将△ABF沿AF翻折,恰好使点B与点G重合,得到△AGF,且∠OGA=90度.(1)求m的值;(2)求过点O,G,A的抛物线的解析式和对称轴;(3)在抛物线的对称轴上是否存在点P,使得△OPG是等腰三角形?若不存在,请说明理由;若存在,直接答出所有满足条件的点P的坐标(不要求写出求解过程).8.如图,已知平面直角坐标系xoy中,有一矩形纸片OABC,O为坐标原点,AB∥x轴,B(3,3),现将纸片按如图折叠,AD,DE为折痕,∠OAD=30度.折叠后,点O落在点O1,点C落在线段AB点C1处,并且DO1与DC1在同一直线上.(1)求折痕AD所在直线的解析式;(2)求经过三点O,C1,C的抛物线的解析式;(3)若⊙P的半径为R,圆心P在(2)的抛物线上运动,⊙P与两坐标轴都相切时,求⊙P半径R的值.9.如图,抛物线y1=-ax2-ax+1经过点P(-12,98),且与抛物线y2=ax2-ax-1相交于A,B两点.(1)求a值;(2)设y1=-ax2-ax+1与x轴分别交于M,N两点(点M在点N的左边),y2=ax2-ax-1与x轴分别交于E,F 两点(点E在点F的左边),观察M,N,E,F四点的坐标,写出一条正确的结论,并通过计算说明;(3)设A,B两点的横坐标分别记为x A,x B,若在x轴上有一动点Q(x,0),且x A≤x≤x B,过Q作一条垂直于x轴的直线,与两条抛物线分别交于C,D两点,试问当x为何值时,线段CD有最大值,其最大值为多少?10.如图所示,E是正方形ABCD的边AB上的动点,EF⊥DE交BC于点F.(1)求证:△ADE∽△BEF;(2)设正方形的边长为4,AE=x,BF=y.当x取什么值时,y有最大值?并求出这个最大值.11.如图,等腰梯形ABCD中,AB=4,CD=9,∠C=60°,动点P从点C出发沿CD方向向点D运动,动点Q同时以相同速度从点D出发沿DA方向向终点A运动,其中一个动点到达端点时,另一个动点也随之停止运动.(1)求AD的长;(2)设CP=x,问当x为何值时△PDQ的面积达到最大,并求出最大值;(3)探究:在BC边上是否存在点M使得四边形PDQM是菱形?若存在,请找出点M,并求出BM的长;不存在,请说明理由.12.如图,在平面直角坐标系中,直线y=-3x- 3与x轴交于点A,与y轴交于点C,抛物线y=ax2-233x+c(a≠0)经过A,B,C三点.(1)求过A,B,C三点抛物线的解析式并求出顶点F的坐标;(2)在抛物线上是否存在点P,使△ABP为直角三角形?若存在,直接写出P点坐标;若不存在,请说明理由;(3)试探究在直线AC上是否存在一点M,使得△MBF的周长最小?若存在,求出M点的坐标;若不存在,请说明理由.13.如图,现有两块全等的直角三角形纸板Ⅰ,Ⅱ,它们两直角边的长分别为1和2.将它们分别放置于平面直角坐标系中的△AOB,△COD处,直角边OB,OD在x轴上.一直尺从上方紧靠两纸板放置,让纸板Ⅰ沿直尺边缘平行移动.当纸板Ⅰ移动至△PEF处时,设PE,PF与OC分别交于点M,N,与x轴分别交于点G,H.(1)求直线AC所对应的函数关系式;(2)当点P是线段AC(端点除外)上的动点时,试探究:①点M到x轴的距离h与线段BH的长是否总相等?请说明理由;②两块纸板重叠部分(图中的阴影部分)的面积S是否存在最大值?若存在,求出这个最大值及S取最大值时点P的坐标;若不存在,请说明理由.14.如图1,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y 轴的正半轴上,OA=5,OC=4.(1)在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标;(2)如图2,若AE上有一动点P(不与A,E重合)自A点沿AE方向E点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为t秒(0<t<5),过P点作ED的平行线交AD于点M,过点M作AE平行线交DE于点N.求四边形PMNE的面积S与时间t之间的函数关系式;当t取何值时,s有最大值,最大值是多少?(3)在(2)的条件下,当t为何值时,以A,M,E为顶点的三角形为等腰三角形,并求出相应的时刻点M的坐标?15.如图,已知抛物线与x轴交于点A(-2,0),B(4,0),与y轴交于点C(0,8).(1)求抛物线的解析式及其顶点的坐标;(2)设直线CD交x轴于点E.在线段OB的垂直平分线上是否存在点P,使得点P到直线CD的距离等于点P到原点O的距离?如果存在,求出点P的坐标;如果不存在,请说明理由;(3)过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?16.如图所示,在平面直角坐标系中,⊙M经过原点O,且与x轴、y轴分别相交于A(-6,0),B(0,-8)两点.(1)请求出直线AB的函数表达式;(2)若有一抛物线的对称轴平行于y轴且经过点M,顶点C在⊙M上,开口向下,且经过点B,求此抛物线的函数表达式;(3)设(2)中的抛物线交x轴于D,E两点,在抛物线上是否存在点P,使得S△PDE=115S△ABC?若存在,请求出点P的坐标;若不存在,请说明理由.17.在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.以MN为直径作⊙O,并在⊙O内作内接矩形AMPN.令AM=x.(1)用含x的代数式表示△MNP的面积S;(2)当x为何值时,⊙O与直线BC相切;(3)在动点M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数表达式,并求x 为何值时,y的值最大,最大值是多少?18.如图,已知抛物线经过原点O和x轴上另一点A,它的对称轴x=2与x轴交于点C,直线y=-2x-1经过抛物线上一点B(-2,m),且与y轴、直线x=2分别交于点D、E.(1)求m的值及该抛物线对应的函数关系式;(2)求证:①CB=CE;②D是BE的中点;(3)若P(x,y)是该抛物线上的一个动点,是否存在这样的点P,使得PB=PE?若存在,试求出所有符合条件的点P的坐标;若不存在,请说明理由.19.如图,已知抛物线y=x 2+bx+c 经过点(1,-5)和(-2,4) (1)求这条抛物线的解析式;(2)设此抛物线与直线y=x 相交于点A ,B (点B 在点A 的侧),平行于y 轴的直线x=m (0<m < 5+1)与抛物线交于点M ,与直线y=x 交于点N ,交x 轴于点P ,求线段MN 的长(用含m 的代数式表示);(3)在条件(2)的情况下,连接OM 、BM ,是否存在m 的值,使△BOM 的面积S 最大?若存在,请求出m 的值;若不存在,请说明理由.20.如图,以矩形OABC 的顶点O 为原点,OA 所在的直线为x 轴,OC 所在的直线为y 轴,建立平面直角坐标系.已知OA=3,OC=2,点E 是AB 的中点,在OA 上取一点D ,将△BDA 沿BD 翻折,使点A 落在BC 边上的点F 处.(1)直接写出点E 、F 的坐标;(2)设顶点为F 的抛物线交y 轴正半轴于点P ,且以点E 、F 、P 为顶点的三角形是等腰三角形,求该抛物线的解析式;(3)在x 轴、y 轴上是否分别存在点M 、N ,使得四边形MNFE 的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.21.已知,如图,直线l 经过A (4,0)和B (0,4)两点,它与抛物线y=ax 2在第一象限内相交于点P ,又知△AOP 的面积为4,求a 的值.22.在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点B的坐标为(3,0),将直线y=kx沿y轴向上平移3个单位长度后恰好经过B,C两点.(1)求直线BC及抛物线的解析式;(2)设抛物线的顶点为D,点P在抛物线的对称轴上,且∠APD=∠ACB,求点P的坐标;(3)连接CD,求∠OCA与∠OCD两角和的度数.23.如图,在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(4,3).平行于对角线AC的直线m 从原点O出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线m与矩形OABC的两边分别交于点M、N,直线m运动的时间为t(秒).(1)点A的坐标是,点C的坐标是;(2)当t=秒或秒时,MN=12AC;(3)设△OMN的面积为S,求S与t的函数关系式;(4)探求(3)中得到的函数S有没有最大值?若有,求出最大值;若没有,要说明理由.24.如图,已知抛物线P:y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在x轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F、G分别在线段BC、AC上,抛物线P上部分点的横坐标对应的纵坐标如下:x …-3 -2 1 2 …y …-52-4-520 …(1)求A、B、C三点的坐标;(2)若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系,并指出m的取值范围;(3)当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使FM=k•DF,若点M不在抛物线P上,求k的取值范围.25.已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内.将Rt△OAB沿OB折叠后,点A落在第一象限内的点C 处.(1)求点C的坐标;(2)若抛物线y=ax2+bx(a≠0)经过C、A两点,求此抛物线的解析式;(3)若抛物线的对称轴与OB交于点D,点P为线段DB上一点,过P作y轴的平行线,交抛物线于点M.问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由.注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(-b2a26.如图,抛物线y=x2-2x-3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;(3)点G抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.27.如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴y上.(1)求m的值及这个二次函数的关系式;(2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E 点,设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围;(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四形?若存在,请求出此时P点的坐标;若不存在,请说明理由.28.如图,在平面直角坐标系中,以点C(0,4)为圆心,半径为4的圆交y轴正半轴于点A,AB是⊙C的切线.动点P从点A开始沿AB方向以每秒1个单位长度的速度运动,点Q从O点开始沿x轴正方向以每秒4个单位长度的速度运动,且动点P、Q从点A和点O同时出发,设运动时间为t(秒).(1)当t=1时,得到P1、Q1两点,求经过A、P1、Q1三点的抛物线解析式及对称轴l;(2)当t为何值时,直线PQ与⊙C相切并写出此时点P和点Q的坐标;(3)在(2)的条件下,抛物线对称轴l上存在一点N,使NP+NQ最小,求出点N的坐标并说明理由.29.在△ABC中,∠C=Rt∠,AC=4cm,BC=5cm,点D在BC上,并且CD=3cm,现有两个动点P、Q分别从点A和点B同时出发,其中点P以1cm/s的速度,沿AC向终点C移动;点Q以1.25cm/s的速度沿BC向终点C 移动.过点P作PE∥BC交AD于点E,连接EQ,设动点运动时间为x秒.(1)用含x的代数式表示AE、DE的长度;(2)当点Q在BD(不包括点B、D)上移动时,设△EDQ的面积为y(cm2),求y与x的函数关系式,并写出自变量x的取值范围;(3)当x为何值时,△EDQ为直角三角形?30.如图,在△OAB中,∠B=90°,∠BOA=30°,OA=4,将△OAB绕点O按逆时针方向旋转至△OA′B′,C 点的坐标为(0,4).(1)求A′点的坐标;(2)求过C,A′,A三点的抛物线y=ax2+bx+c的解析式;(3)在(2)中的抛物线上是否存在点P,使以O,A,P为顶点的三角形是等腰直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.。
二次函数专题训练(含答案)

二次函数专题训练(含答案)一、 填空题1.把抛物线221x y -=向左平移2个单位得抛物线 ,接着再向下平移3个 单位,得抛物线 .2.函数x x y +-=22图象的对称轴是 ,最大值是 .3.正方形边长为3,如果边长增加x 面积就增加y ,那么y 与x 之间的函数关系是 .4.二次函数6822-+-=x x y ,通过配方化为k h x a y +-=2)(的形为 .5.二次函数c ax y +=2(c 不为零),当x 取x 1,x 2(x 1≠x 2)时,函数值相等,则 x 1与x 2的关系是 .6.抛物线c bx ax y ++=2当b=0时,对称轴是 ,当a ,b 同号时,对称轴在y 轴 侧,当a ,b 异号时,对称轴在y 轴 侧.7.抛物线3)1(22-+-=x y 开口 ,对称轴是 ,顶点坐标是 .如果y 随x 的增大而减小,那么x 的取值范围是 .8.若a <0,则函数522-+=ax x y 图象的顶点在第 象限;当x >4a -时,函数值随x 的增大而 .9.二次函数c bx ax y ++=2(a ≠0)当a >0时,图象的开口a <0时,图象的开口 ,顶点坐标是 .10.抛物线2)(21h x y --=,开口 ,顶点坐标是 ,对称轴是 . 11.二次函数)()(32+-=xy 的图象的顶点坐标是(1,-2). 12.已知2)1(312-+=x y ,当x 时,函数值随x 的增大而减小. 13.已知直线12-=x y 与抛物线k x y +=25交点的横坐标为2,则k= ,交点坐标为 .14.用配方法将二次函数x x y 322+=化成k h x a y +-=2)(的形式是 . 15.如果二次函数m x x y +-=62的最小值是1,那么m 的值是 .二、选择题:16.在抛物线1322+-=x x y 上的点是( )A.(0,-1)B.⎪⎭⎫ ⎝⎛0,21C.(-1,5)D.(3,4)17.直线225-=x y 与抛物线x x y 212-=的交点个数是( ) A.0个 B.1个 C.2个 D.互相重合的两个18.关于抛物线c bx ax y ++=2(a ≠0),下面几点结论中,正确的有( )① 当a >0时,对称轴左边y 随x 的增大而减小,对称轴右边y 随x 的增大而增大,当 a <0时,情况相反.② 抛物线的最高点或最低点都是指抛物线的顶点.③ 只要解析式的二次项系数的绝对值相同,两条抛物线的形状就相同.④ 一元二次方程02=++c bx ax (a ≠0)的根,就是抛物线c bx ax y ++=2与x 轴 交点的横坐标.A.①②③④B.①②③C. ①②D.①19.二次函数y=(x+1)(x-3),则图象的对称轴是( )A.x=1B.x=-2C.x=3D.x=-320.如果一次函数b ax y +=的图象如图代13-3-12中A 所示,那么二次函+=2ax y bx -3的大致图象是( )图代13-2-1221.若抛物线c bx ax y ++=2的对称轴是,2-=x 则=b a ( ) A.2 B.21 C.4 D.41 22.若函数xa y =的图象经过点(1,-2),那么抛物线3)1(2++-+=a x a ax y 的性 质说得全对的是( )A. 开口向下,对称轴在y 轴右侧,图象与正半y 轴相交B. 开口向下,对称轴在y 轴左侧,图象与正半y 轴相交C. 开口向上,对称轴在y 轴左侧,图象与负半y 轴相交D. 开口向下,对称轴在y 轴右侧,图象与负半y 轴相交23.二次函数c bx x y ++=2中,如果b+c=0,则那时图象经过的点是( )A.(-1,-1)B.(1,1)C.(1,-1)D.(-1,1)24.函数2ax y =与xa y =(a <0)在同一直角坐标系中的大致图象是( )图代13-3-1325.如图代13-3-14,抛物线c bx x y ++=2与y 轴交于A 点,与x 轴正半轴交于B , C 两点,且BC=3,S △ABC =6,则b 的值是( )A.b=5B.b=-5C.b=±5D.b=4图代13-3-1426.二次函数2ax y =(a <0),若要使函数值永远小于零,则自变量x 的取值范围是 ( )A .X 取任何实数 B.x <0 C.x >0 D.x <0或x >027.抛物线4)3(22+-=x y 向左平移1个单位,向下平移两个单位后的解析式为 ( )A.6)4(22+-=x yB.2)4(22+-=x yC.2)2(22+-=x yD.2)3(32+-=x y28.二次函数229k ykx x y ++=(k >0)图象的顶点在( )A.y 轴的负半轴上B.y 轴的正半轴上C.x 轴的负半轴上D.x 轴的正半轴上29.四个函数:xy x y x y 1,1,-=+=-=(x >0),2x y -=(x >0),其中图象经过原 点的函数有( )A.1个B.2个C.3个D.4个30.不论x 为值何,函数c bx ax y ++=2(a ≠0)的值永远小于0的条件是( )A.a >0,Δ>0B.a >0,Δ<0C .a <0,Δ>0 D.a <0,Δ<0三、解答题31.已知二次函数1222+-+=b ax x y 和1)3(22-+-+-=b x a x y 的图象都经过x 轴上两上不同的点M ,N ,求a ,b 的值.32.已知二次函数c bx ax y ++=2的图象经过点A (2,4),顶点的横坐标为21,它 的图象与x 轴交于两点B (x 1,0),C (x 2,0),与y 轴交于点D ,且132221=+x x ,试问:y 轴上是否存在点P ,使得△POB 与△DOC 相似(O 为坐标原点)?若存在,请求出过P ,B 两点直线的解析式,若不存在,请说明理由.33.如图代13-3-15,抛物线与直线y=k(x-4)都经过坐标轴的正半轴上A ,B 两点,该抛物线的对称轴x=-21与x 轴相交于点C ,且∠ABC=90°,求:(1)直线AB 的解析式;(2)抛物线的解析式.图代13-3-15图代13-3-16 34.中图代13-3-16,抛物线c x ax y +-=32交x 轴正方向于A ,B 两点,交y 轴正方向于C 点,过A ,B ,C 三点做⊙D ,若⊙D 与y 轴相切.(1)求a ,c 满足的关系;(2)设∠ACB=α,求tg α;(3)设抛物线顶点为P ,判断直线PA 与⊙O 的位置关系并证明.35.如图代13-3-17,这是某市一处十字路口立交桥的横断面在平面直角坐标系中的示意图,横断面的地平线为x 轴,横断面的对称轴为y 轴,桥拱的DGD '部分为一段抛物线,顶点C 的高度为8米,AD 和A 'D '是两侧高为5.5米的支柱,OA 和OA '为两个方向的汽车通行区,宽都为15米,线段CD 和C 'D '为两段对称的上桥斜坡,其坡度为1∶4. 求(1)桥拱DGD '所在抛物线的解析式及CC '的长;(2)BE 和B 'E '为支撑斜坡的立柱,其高都为4米,相应的AB 和A 'B '为两个方 向的行人及非机动车通行区,试求AB 和A 'B '的宽;(3)按规定,汽车通过该桥下时,载货最高处和桥拱之间的距离不得小于0.4米,车载大型设备的顶部与地面的距离均为7米,它能否从OA (或OA ')区域安全通过?请说明理由.图代13-3-1736.已知:抛物线2)4(2+++-=m x m x y 与x 轴交于两点)0,(),0,(b B a A (a <b ).O 为坐标原点,分别以OA ,OB 为直径作⊙O 1和⊙O 2在y 轴的哪一侧?简要说明理由,并指出两圆的位置关系.37.如果抛物线1)1(22++-+-=m x m x y 与x 轴都交于A ,B 两点,且A 点在x 轴 的正半轴上,B 点在x 同的负半轴上,OA 的长是a ,OB 的长是b.(1) 求m 的取值范围;(2) 若a ∶b=3∶1,求m 的值,并写出此时抛物线的解析式;(3) 设(2)中的抛物线与y 轴交于点C ,抛物线的顶点是M ,问:抛物线上是否存 在 点P ,使△PAB 的面积等于△BCM 面积的8倍?若存在,求出P 点的坐标;若不存在,请 说明理由.38.已知:如图代13-3-18,EB 是⊙O 的直径,且EB=6,在BE 的延长线上取点P ,使EP=EB.A 是EP 上一点,过A 作⊙O 的切线AD ,切点为D ,过D 作DF ⊥AB 于F ,过B 作AD 的垂线BH ,交AD 的延长线于H ,连结ED 和FH.图代13-3-18(1) 若AE=2,求AD 的长.(2) 当点A 在EP 上移动(点A 不与点E 重合)时,①是否总有FHED AH AD =?试证 明 你的结论;②设ED=x ,BH=y ,求y 与x 的函数关系式,并写出自变量x 的取值范围.39.已知二次函数)294(2)254(222+--+--=m m x m m x y 的图象与x 轴的交点为A ,B (点A 在点B 右边),与y 轴的交点为C.(1) 若△ABC 为Rt △,求m 的值;(2) 在△ABC 中,若AC=BC ,求∠ACB 的正弦值;(3) 设△ABC 的面积为S ,求当m 为何值时,S 有最小值,并求这个最小值.40.如图代13-3-19,在直角坐标系中,以AB 为直径的⊙C 交x 轴于A ,交y 轴于B , 满足OA ∶OB=4∶3,以OC 为直径作⊙D ,设⊙D 的半径为2.图代13-3-19(1) 求⊙C 的圆心坐标.(2) 过C 作⊙D 的切线EF 交x 轴于E ,交y 轴于F ,求直线EF 的解析式.(3) 抛物线c bx ax y ++=2(a ≠0)的对称轴过C 点,顶点在⊙C 上,与y 轴交点为B ,求抛物线的解析式.41.已知直线x y 21=和m x y +-=,二次函数q px x y ++=2图象的顶点为M. (1) 若M 恰在直线x y 21=与m x y +-=的交点处,试证明:无论m 取何实数值, 二次函数q px x y ++=2的图象与直线m x y +-=总有两个不同的交点.(2) 在(1)的条件下,若直线m x y +-=过点D (0,-3),求二次函数q px x y ++=2的表达式,并作出其大致图象.图代13-3-20(3) 在(2)的条件下,若二次函数q px x y ++=2的图象与y 轴交于点C ,与x 同 的左交点为A ,试在直线x y 21=上求异于M 点P ,使P 在△CMA 的外接圆上. 42.如图代13-3-20,已知抛物线b ax x y ++-=2与x 轴从左至右交于A ,B 两点,与y 轴交于点C ,且∠BAC=α,∠ABC=β,tg α-tg β=2,∠ACB=90°.(1) 求点C 的坐标;(2) 求抛物线的解析式;(3) 若抛物线的顶点为P ,求四边形ABPC 的面积.参 考 答 案动脑动手1. 设每件提高x 元(0≤x ≤10),即每件可获利润(2+x )元,则每天可销售(100-10x )件,设每天所获利润为y 元,依题意,得)10100)(2(x x y -+=.360)4(10200801022+--=++-=x x x∴当x=4时(0≤x ≤10)所获利润最大,即售出价为14元,每天所赚得最大利润360元.2.∵43432+⎪⎭⎫ ⎝⎛+-=x m mx y , ∴当x=0时,y=4. 当0,043432≠=+⎪⎭⎫ ⎝⎛+-m x m mx 时m m m 34,321==. 即抛物线与y 轴的交点为(0,4),与x 轴的交点为A (3,0),⎪⎭⎫⎝⎛0,34m B . (1) 当AC=BC 时, 94,334-=-=m m . ∴ 4942+-=x y (2) 当AC=AB 时,5,4,3===AC OC AO .∴ 5343=-m. ∴ 32,6121-==m m . 当61=m 时,4611612+-=x x y ; 当32-=m 时,432322++-=x x y . (3) 当AB=BC 时,22344343⎪⎭⎫ ⎝⎛+=-m m , ∴ 78-=m . ∴ 42144782++-=x x y . 可求抛物线解析式为:43232,461161,494222+--=+-=+-=x x y x x y x y 或42144782++-=x x y .3.(1)∵)62(4)]5([222+---=∆m m0)1(122222+=++=m m m图代13-3-21∴不论m 取何值,抛物线与x 轴必有两个交点.令y=0,得062)5(222=+++-m x m x0)3)(2(2=---m x x ,∴ 3,2221+==m x x .∴两交点中必有一个交点是A (2,0).(2)由(1)得另一个交点B 的坐标是(m 2+3,0).12322+=-+=m m d ,∵ m 2+10>0,∴d=m 2+1.(3)①当d=10时,得m 2=9.∴ A (2,0),B (12,0).25)7(241422--=+-=x x x y .该抛物线的对称轴是直线x=7,顶点为(7,-25),∴AB 的中点E (7,0). 过点P 作PM ⊥AB 于点M ,连结PE , 则2222)7(,,521a MEb PM AB PE -====,∴ 2225)7(=+-b a . ① ∵点PD 在抛物线上,∴ 25)7(2--=a b . ②解①②联合方程组,得0,121=-=b b .当b=0时,点P 在x 轴上,△ABP 不存在,b=0,舍去.∴b=-1.注:求b 的值还有其他思路,请读者探觅,写出解答过程.②△ABP 为锐角三角形时,则-25≤b <-1;△ ABP 为钝角三角形时,则b >-1,且b ≠0.同步题库一、 填空题 1.3)2(21,)2(2122-+-=+-=x y x y ; 2.81,41=x ; 3.9)3(2-+=x y ; 4. 2)2(22+--=x y ; 5.互为相反数; 6.y 轴,左,右; 7.下,x=-1,(-1,-3),x >-1;8.四,增大; 9.向上,向下,a b x a b ac a b 2,44,22-=⎪⎪⎭⎫ ⎝⎛--; 10.向下,(h,0),x=h ; 11.-1,-2; 12.x <-1; 13.-17,(2,3); 14.91312-⎪⎭⎫ ⎝⎛+=x y ; 15.10. 二、选择题16.B 17.C 18.A 19.A 20.C 21.D 22.B 23.B 24.D 25.B 26.D 27.C 28.C 29.A 30.D三、解答题31.解法一:依题意,设M (x 1,0),N (x 2,0),且x 1≠x 2,则x 1,x 2为方程x 2+2ax-2b+1=0的两个实数根,∴ a x x 221-=+,1x ²122+-=b x .∵x 1,x 2又是方程01)3(22=-+-+-b x a x 的两个实数根,∴ x 1+x 2=a-3,x 1²x 2=1-b 2.∴ ⎩⎨⎧-=+--=-.112,322b b a a解得 ⎩⎨⎧==;0,1b a 或⎩⎨⎧==.2,1b a 当a=1,b=0时,二次函数的图象与x 轴只有一个交点,∴a=1,b=0舍去.当a=1;b=2时,二次函数322-+=x x y 和322+--=x x y 符合题意.∴ a=1,b=2.解法二:∵二次函数1222+-+=b ax x y 的图象对称轴为a x -=,二次函数1)3(22-+-+-=b x a x y 的图象的对称轴为23-=a x , 又两个二次函数图象都经过x 轴上两个不同的点M ,N ,∴两个二次函数图象的对称轴为同一直线.∴ 23-=-a a .解得 1=a .∴两个二次函数分别为1222+-+=b x x y 和1222-+--=b x x y . 依题意,令y=0,得01222=+-+b x x ,01222=-+--b x x .①+②得022=-b b .解得 2,021==b b .∴ ⎩⎨⎧==;0,1b a 或⎩⎨⎧==.2,1b a当a=1,b=0时,二次函数的图象与x 轴只有一个交点,∴a=1,b=0舍去.当a=1,b=2时,二次函数为322-+=x x y 和322+--=x x y 符合题意. ∴ a=1,b=2.32.解:∵c bx ax y ++=2的图象与x 轴交于点B (x 1,0),C (x 2,0), ∴ a cx x a bx x =⋅-=+2121,.又∵132221=+x x 即132)(21221=-+x x x x ,∴ 132)(2=⋅--a ca b .① 又由y 的图象过点A (2,4),顶点横坐标为21,则有4a+2b+c=4, ② 212=-a b.③ 解由①②③组成的方程组得a=-1,b=1,c=6.∴ y=-x 2+x+6.与x 轴交点坐标为(-2,0),(3,0).与y 轴交点D 坐标为(0,6).设y 轴上存在点P ,使得△POB ∽△DOC ,则有(1) 当B (-2,0),C (3,0),D (0,6)时,有6,3,2,====OD OC OB ODOPOC OB . ∴OP=4,即点P 坐标为(0,4)或(0,-4).当P 点坐标为(0,4)时,可设过P ,B 两点直线的解析式为y=kx+4.有 0=-2k-4. 得 k=-2. ∴ y=-2x-4. 或3,6,2,====OC OD OB OCOPOD OB . ∴OP=1,这时P 点坐标为(0,1)或(0,-1).当P 点坐标为(0,1)时,可设过P ,B 两点直线的解析式为y=kx+1.有 0=-2k+1.得 21=k . ∴ 121+-=x y .当P 点坐标为(0,-1)时,可设过P ,B 两点直线的解析式为y=kx-1,有 0=-2k-1, 得 21-=k . ∴ 121--=x y . (2)当B (3,0),C (-2,0),D (0,6)时,同理可得y=-3x+9,或 y=3x-9,或 131+-=x y , 或 131-=x y .33.解:(1)在直线y=k(x-4)中, 令y=0,得x=4.∴A 点坐标为(4,0).∴ ∠ABC=90°. ∵ △CBD ∽△BAO , ∴OBOA OC OB =,即OB 2=OA ²OC. 又∵ CO=1,OA=4,∴ OB 2=1³4=4. ∴ OB=2(OB=-2舍去) ∴B 点坐标为(0,2).将点B (0,2)的坐标代入y=k(x-4)中,得21-=k . ∴直线的解析式为:221+-=x y . (2)解法一:设抛物线的解析式为h x a y ++=2)1(,函数图象过A (4,0),B (0, 2),得⎩⎨⎧=+=+.2,025h a h a 解得 .1225,121=-=h a ∴抛物线的解析式为:1225)1(1212++-=x y .解法二:设抛物线的解析式为:c bx ax y ++=2,又设点A (4,0)关于x=-1的对 称是D.∵ CA=1+4=5, ∴ CD=5. ∴ OD=6. ∴D 点坐标为(-6,0). 将点A (4,0),B (0,2),D (-6,0)代入抛物线方程,得⎪⎩⎪⎨⎧=+-==++.0636,2,0416c b a c c b a 解得 2,61,121=-=-=c b a . ∴抛物线的解析式为:2611212+--=x x y . 34.解:(1)A ,B 的横坐标是方程032=+-c x ax 的两根,设为x 1,x 2(x 2>x 1),C 的 纵坐标是C.又∵y 轴与⊙O 相切,∴ OA ²OB=OC 2.∴ x 1²x 2=c 2. 又由方程032=+-c x ax 知ac x x =⋅21, ∴acc =2,即ac=1. (2)连结PD ,交x 轴于E ,直线PD 必为抛物线的对称轴,连结AD 、BD ,图代13-3-22∴ AB AE 21=. α=∠=∠=∠ADE ADB ACB 21. ∵ a >0,x 2>x 1, ∴ a a ac x x AB 54912=-=-=. aAE 25=. 又 ED=OC=c , ∴ 25==DE AE tg α. (3)设∠PAB=β, ∵P 点的坐标为⎪⎭⎫⎝⎛-a a 45,23,又∵a >0, ∴在Rt △PAE 中,aPE 45=. ∴ 25==AE PE tg β. ∴ tg β=tg α. ∴β=α.∴∠PAE=∠ADE.∵ ∠ADE+∠DAE=90° ∴PA 和⊙D 相切. 35.解:(1)设DGD '所在的抛物线的解析式为c ax y +=2,由题意得G (0,8),D (15,5.5).∴ ⎩⎨⎧+==.255.5,8c a c 解得⎪⎩⎪⎨⎧=-=.8,901c a∴DGD '所在的抛物线的解析式为89012+-=x y . ∵41=AC AD 且AD=5.5, ∴ AC=5.5³4=22(米).∴ 2215(2)(22+⨯=+⨯=='AC OA OC c c ) =74(米). 答:cc '的长为74米.(2)∵4,41==BE BC EB , ∴ BC=16.∴ AB=AC-BC=22-16=6(米). 答:AB 和A 'B '的宽都是6米.(3)在89012+-=x y 中,当x=4时, 45377816901=+⨯-=y .∵ 4519)4.07(45377=+->0. ∴该大型货车可以从OA (OA ')区域安全通过.36.解:(1)∵⊙O 1与⊙O 2外切于原点O ,∴A ,B 两点分别位于原点两旁,即a <0,b >0. ∴方程02)4(2=+++-m x m x 的两个根a ,b 异号. ∴ab=m+2<0,∴m <-2.(2)当m <-2,且m ≠-4时,四边形PO 1O 2Q 是直角梯形. 根据题意,计算得22121b S Q O PO =四边形(或221a 或1). m=-4时,四边形PO 1O 2Q 是矩形. 根据题意,计算得22121b S Q O PO =四边形(或221a 或1). (3)∵ 4)2()2(4)4(22++=+-+=∆m m m >0 ∴方程02)4(2=+++-m x m x 有两个不相等的实数根. ∵ m >-2, ∴ ⎩⎨⎧+=+=+.02,04 m ab m b a∴ a >0,b >0.∴⊙O 1与⊙O 2都在y 轴右侧,并且两圆内切. 37.解:(1)设A ,B 两点的坐标分别是(x 1,0)、(x 2,0), ∵A ,B 两点在原点的两侧,∴ x 1x 2<0,即-(m+1)<0, 解得 m >-1.∵ )1()1(4)]1(2[2+⨯-⨯--=∆m m7)21(484422+-=+-=m m m 当m >-1时,Δ>0, ∴m 的取值范围是m >-1.(2)∵a ∶b=3∶1,设a=3k ,b=k (k >0),则 x 1=3k ,x 2=-k ,∴ ⎩⎨⎧+-=-⋅-=-).1()(3),1(23m k k m k k解得 31,221==m m . ∵31=m 时,3421-=+x x (不合题意,舍去), ∴ m=2 ∴抛物线的解析式是32++-=x x y .(3)易求抛物线322++-=x x y 与x 轴的两个交点坐标是A (3,0),B (-1,0) 与y 轴交点坐标是C (0,3),顶点坐标是M (1,4).设直线BM 的解析式为q px y +=,则 ⎩⎨⎧+-⋅=+⋅=.)1(0,14q p q p解得 ⎩⎨⎧==.2,2q p∴直线BM 的解析式是y=2x+2.设直线BM 与y 轴交于N ,则N 点坐标是(0,2), ∴ MNC BCN BCM S S S ∆∆∆+=.111211121=⨯⨯+⨯⨯=设P 点坐标是(x,y ),∵ BCM ABP S S ∆∆=8, ∴1821⨯=⨯⨯y AB .即8421=⨯⨯y . ∴ 4=y .∴4±=y . 当y=4时,P 点与M 点重合,即P (1,4),当y=-4时,-4=-x 2+2x+3,解得 221±=x . ∴满足条件的P 点存在.P 点坐标是(1,4),)4,221(),4,221(---+. 38.(1)解:∵AD 切⊙O 于D ,AE=2,EB=6,∴ AD 2=AE ²AB=2³(2+6)=16. ∴ AD=4.图代13-2-23(2)①无论点A 在EP 上怎么移动(点A 不与点E 重合),总有FHEDAH AD =. 证法一:连结DB ,交FH 于G , ∵AH 是⊙O 的切线,∴ ∠HDB=∠DEB. 又∵BH ⊥AH ,BE 为直径,∴ ∠BDE=90°有 ∠DBE=90°-∠DEB =90°-∠HDB =∠DBH. 在△DFB 和△DHB 中,DF ⊥AB ,∠DFB=∠DHB=90°,DB=DB ,∠DBE=∠DBH , ∴ △DFB ∽△DHB. ∴BH=BF , ∴△BHF 是等腰三角形. ∴BG ⊥FH ,即BD ⊥FH. ∴ED ∥FH ,∴FHEDAH AD =.图代13-3-24证法二:连结DB , ∵AH 是⊙O 的切线,∴ ∠HDB=∠DEF. 又∵DF ⊥AB ,BH ⊥DH ,∴ ∠EDF=∠DBH. 以BD 为直径作一个圆,则此圆必过F ,H 两点, ∴∠DBH=∠DFH ,∴∠EDF=∠DFH.∴ ED ∥FH. ∴FHEDAH AD =. ②∵ED=x ,BH=,BH=y ,BE=6,BF=BH ,∴EF=6y. 又∵DF 是Rt △BDE 斜边上的高,∴ △DFE ∽△BDE ,∴EBED ED EF =,即EB EF ED ⋅=2. ∴)6(62y x -=,即6612+-=x y .∵点A 不与点E 重合,∴ED=x >0.A 从E 向左移动,ED 逐渐增大,当A 和P 重合时,ED 最大,这时连结OD ,则OD ⊥PH. ∴ OD ∥BH.又 12,936==+=+=PB EO PE PO ,4,=⋅==POPBOD BH PB PO BH OD , ∴ 246,4=-=-===BF EB EF BH BF , 由ED 2=EF ²EB 得12622=⨯=x ,∵x >0,∴32=x .∴ 0<x ≤32.(或由BH=4=y ,代入6612+-=x y 中,得32=x ) 故所求函数关系式为6612+-=x y (0<x ≤32).39.解:∵]294)[2(2942254222⎪⎭⎫ ⎝⎛+--+=⎪⎭⎫ ⎝⎛+--⎪⎭⎫ ⎝⎛+--=m m x x m m x m m x y , ∴可得⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+--⎪⎭⎫ ⎝⎛+--2942,0,0,294),0,2(22m m C m m B A . (1)∵△ABC 为直角三角形,∴OB AO OC⋅=2,即⎪⎭⎫ ⎝⎛+-⨯=⎪⎭⎫ ⎝⎛+-22942294422m m m m ,化得0)2(2=-m .∴m=2.(2)∵AC=BC ,CO ⊥AB ,∴AO=BO ,即22942=+-m m . ∴429422=⎪⎭⎫⎝⎛+-=m m OC .∴25==BC AC . 过A 作AD ⊥BC ,垂足为D ,∴ AB ²OC=BC ²AD. ∴ 58=AD .∴ 545258sin ===∠AC AD ACB.图代13-3-25(3)CO AB S ABC ⋅=∆21.1)1()2(2942229421222-+=+=⎪⎭⎫ ⎝⎛+-⋅⎪⎭⎫ ⎝⎛++-=u u u m m m m ∵ 212942≥+-=m m u , ∴当21=u ,即2=m 时,S 有最小值,最小值为45.40.解:(1)∵OA ⊥OB ,OA ∶OB=4∶3,⊙D 的半径为2, ∴⊙C 过原点,OC=4,AB=8. A 点坐标为⎪⎭⎫⎝⎛0,532,B 点坐标为⎪⎭⎫⎝⎛524,0.∴⊙C 的圆心C 的坐标为⎪⎭⎫⎝⎛512,516. (2)由EF 是⊙D 切线,∴OC ⊥EF.∵ CO=CA=CB ,∴ ∠COA=∠CAO ,∠COB=∠CBO. ∴ Rt △AOB ∽Rt △OCE ∽Rt △FCO.∴ OBOCAB OF OA OC AB OE ==,. ∴ 320,5==OF OE .E 点坐标为(5,0),F 点坐标为⎪⎭⎫ ⎝⎛320,0, ∴切线EF 解析式为32034+-=x y . (3)①当抛物线开口向下时,由题意,得抛物线顶点坐标为⎪⎭⎫⎝⎛+4512,516,可得 ⎪⎪⎩⎪⎪⎨⎧==-=⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=-.524,1,325.52453244,51622c b a c a b ac a b ∴ 5243252++-=x x y . ②当抛物线开口向上时,顶点坐标为⎪⎭⎫⎝⎛-4512,516,得 ⎪⎪⎩⎪⎪⎨⎧=-==⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=-=-.524,4,85.524,5844,51622c b a c a b ac a b∴ 5244852+--=x x y . 综合上述,抛物线解析式为5243252++-=x x y 或5244852+-=x x y . 41.(1)证明:由⎪⎩⎪⎨⎧+-==,,21m x y x y 有m x x +-=21, ∴ m y m x m x 31,32,23===.∴交点)31,32(m m M .此时二次函数为m m x y 31322+⎪⎭⎫ ⎝⎛-=m m mx x 31943422++-=. 由②③联立,消去y ,有0329413422=-+⎪⎭⎫⎝⎛--m m x m x .⎪⎭⎫ ⎝⎛--⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--=∆m m m 3294413422.013891613891622>=+-+-=mm m m ∴无论m 为何实数值,二次函数q px x y ++=2的图象与直线m x y +-=总有两个不同的交点.图代13-3-26(2)解:∵直线y=-x+m 过点D (0,-3), ∴ -3=0+m ,∴ m=-3.∴M (-2,-1).∴二次函数为)1)(3(341)2(22++=+-=-+=x x x x x y .图象如图代13-3-26.(3)解:由勾股定理,可知△CMA 为Rt △,且∠CMA=Rt ∠,∴MC 为△CMA 外接圆直径.∵P 在x y 21=上,可设⎪⎭⎫ ⎝⎛n n P 21,,由MC 为△CMA 外接圆的直径,P 在这个圆上, ∴ ∠CPM=Rt ∠.过P 分别作PN ⊥y ,轴于N ,PQ ⊥x 轴于R ,过M 作MS ⊥y 轴于S ,MS 的延长线与PR 的 延长线交于点Q.由勾股定理,有222QP MQ MP +=,即222121)2(⎪⎭⎫ ⎝⎛+++=n n MP . 22222213n n NP NC CP +⎪⎭⎫ ⎝⎛-=+=. 202=CM. 而 222CM CP MP=+, ∴ 20213121)2(2222=+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+++n n n n , 即 062252=-+n n , ∴ 012452=-+n n ,0)2)(65(=+-n n .∴ 2,5621-==n n . 而n 2=-2即是M 点的横坐标,与题意不合,应舍去.∴ 56=n , 此时 5321=n . ∴P 点坐标为⎪⎭⎫⎝⎛53,56.42.解:(1)根据题意,设点A (x 1,0)、点(x 2,0),且C (0,b ),x 1<0,x 2>0,b >0, ∵x 1,x 2是方程02=++-b ax x 的两根,∴ b x x a x x -=⋅=+2121,.在Rt △ABC 中,OC ⊥AB ,∴OC 2=OA ²OB.∵ OA=-x 1,OB=x 2,∴ b 2=-x 1²x 2=b.∵b >0,∴b=1,∴C (0,1).(2)在Rt △AOC 的Rt △BOC 中, 211212121==+-=--=-=-ba x x x x x x OB OC OA OC tg tg βα. ∴ 2=a .∴抛物线解析式为122++-=x x y.图代13-3-27(3)∵122++-=x x y ,∴顶点P 的坐标为(1,2),当0122=++-x x 时,21±=x . ∴)0,21(),0,21(+-B A .延长PC 交x 轴于点D ,过C ,P 的直线为y=x+1,∴点D 坐标为(-1,0).∴ D CA D PB ABPC S S S ∆∆-=四边形 ).(22321)22(212)22(212121平方单位+=⨯-⨯-⨯+⨯=⋅-⋅⋅=yc AD y DB p。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、二次函数(命题人:华师附中郭键)1. (人教A 版第27页A 组第6题)解析式、待定系数法2若 f x ]=x bx c ,且 f 1V-0,f 3产0,求 f -1 的值._o变式1:若二次函数f x 二ax bx c 的图像的顶点坐标为 2,-1,与y 轴的交点坐标为 (0,11),贝yA . a=1,b--4,c--11B . a=3,b=12,c = 11C . a =3,b = -6,c =11D . a = 3, b =-12, c = 11变式 2:若 f x = -x :: j :b 2 x 3,^ [b,c]的图像 x=1 对称,则 c= 变式3:若二次函数f x = ax 2 bx c 的图像与 x 轴有两个不同的交点 A x 1,0、B X 2,0,且xj • X 22二26,试问该二次函数的图像由9单位得到?2. (北师大版第52页例2)图像特征将函数f x 二-3x 2 -6X V 配方,确定其对称轴, 或最小值,并画出它的图像.4ac -b 2 D .4a变式2:函数f x = x 2 px q 对任意的x 均有 f 1 x 二 f 1 — x ,那么 f 0、f -1、f 1的大小关系是A . f 1 < f -1 < f 0 变式3:已知函数f x = ax 2 bx c 的图像如右图所示, 请至少写出三个与系数 a 、b 、c 有关的正确命题 3. (人教A 版第43页B 组第1题)单调性_ 2 2变式1 :已知二次函数2f x 二 ax bx c ,如果f X 1二f X 2 (其中x^ - x 2 ),则2f x =-3 x-1的图像向上平移几个顶点坐标,求出它的单调区间及最大值bA .2aC . f 1 f 0 :: f -1D . f -1 :: f 0 :: f 1O 一已知函数f x = x -2x, g x = x -2xx [2,4].(1)求f X , g x的单调区间;(2)求f x , g x的最小值.变式1:已知函数f x = x2 4ax 2在区间-::,6内单调递减,则a的取值范围是A. a _3B. a^3C. a :::—3 D . a 二一3变式2:已知函数f x =x^ a -1 x 5在区间(2 ,1)上为增函数,那么f 2的取值范围是_________ .・kx在[2,4]上是单调函数,求实数k的取值范围.变式3:已知函数f X = -x24. (人教A版第43页B组第1题)最值2 2已知函数f X 二x -2x, g x 二 x -2x x [2,4].(1)求f X , g x的单调区间;(2)求f x , g x的最小值.c 2变式1:已知函数f X =x-2x • 3在区间[0,m]上有最大值3,最小值2,则m的取值范围是A. 1, ::B.〔0,21C. 1,21D. - ,2变式2:若函数y =3j-X2+4的最大值为M,最小值为m,贝y M + m的值等于__________________ .变式3:已知函数f x = 4x2 -4ax a^2a 2在区间[0,2]上的最小值为3,求a的值.5. (人教A版第43页A组第6题)奇偶性已知函数f X是定义在R上的奇函数,当X > 0时,f x]=x 1 X .画出函数f X的图像,并求出函数的解析式.变式1:若函数f x =mTx2,m2-1x,1是偶函数,则在区间一兀',0丨上f x是A •增函数B •减函数C.常数 D •可能是增函数,也可能是常数变式2:若函数f x = ax2 bx 3b a「1岂x空2 a是偶函数,则点a,b的坐标是变式3:设a为实数,函数f (x) = x2• | x - a | • 1, x • R •(I) 讨论f (x)的奇偶性;(II)求f (x)的最小值.6. (北师大版第64页A组第9题)图像变换厂 2x +4x+3,-3ExcO 已知f(x)=<—3x+3, 0 兰xc1・—x2 +6x —5,1 兰x 乞6(1)画出函数的图象;(2)求函数的单调区间;⑶求函数的最大值和最小值.变式1:指出函数y = —X2+2X+3的单调区间.变式2:已知函数f (x) x2-2ax b |(x R).给下列命题:①f (x)必是偶函数;②当f (0) = f(2)时,f (x)的图像必关于直线x=1对称;③若a2- b - 0,则f (x)在区间[a,+s )上是增函数;④ f (x)有最大值|a2 -b| .其中正确的序号是__________ .③变式3:设函数f(x)=x|x|,bx c,给出下列4个命题:①当c=0时,y = f(x)是奇函数;②当b=0, c>0时,方程f(x) =0只有一个实根;③y = f (x)的图象关于点(0, c)对称;④方程f(x) =0至多有两个实根.上述命题中正确的序号为____________________ .7. (北师大版第54页A组第6题)值域求二次函数f(x)=-2X2・6X在下列定义域上的值域:(1)定义域为・ Z0空x乞3?;(2)定义域为[-2,11.变式1:函数f (x)二-2x2 6x:;:「2 :::x 2的值域是B. -20,4变式2:函数y=cos2x+sinx的值域是____________ .变式3:已知二次函数f(x) = ax 2+ bx (a、b为常数,且a工0),满足条件f (1 + x) = f (1 —x),且方程f (x) = x有等根.(1)求f (x)的解析式;⑵是否存在实数m、n (m < n),使f (x)的定义域和值域分别为[m,n]和[3m,3n],如果存在,求出m、n的值,如果不存在,说明理由.8. (北师大版第54页B组第5题)恒成立问题当a,b,c具有什么关系时,二次函数 f x A ax2• bx c的函数值恒大于零?恒小于零?变式1:已知函数f (x) = lg (a x 2+ 2x + 1).(I) 若函数f (x)的定义域为R,求实数a的取值范围;(II) 若函数f (x)的值域为R,求实数a的取值范围.变式2:已知函数f (x) = x2• ax • 3-a,若x 1-2,21时,有f (x) _2恒成立,求a的取值范围.变式3:若f (x) = x 2+ bx + c,不论〉、:为何实数,恒有f (sin : ) > 0, f (2 + cos:) < 0.⑴求证:b + c = —1;(II) 求证:c> 3;(III) 若函数f (sin :)的最大值为8,求b、c的值.9 (北师大版第54页B组第1题)根与系数关系右图是二次函数 f x =ax bx c的图像,它与x轴交于点x-i,0和X2,0 ,试确定a, b,c以及X1X2,音+X2的符号. y变式1:二次函数y =ax2 - b与一次函数y = ax • b(a . b)在同一个直角坐标系的图像为变式2:直线y 二mx - 3与抛物线G : y = x2 5mx - 4m, C2:y = x2 (2m - 1) x m2 - 3,2 __C3: y = x - 3mx -2m -3中至少有一条相交,则m的取值范围是.变式3:对于函数f (x),若存在X o • R,使f (x o) = x o成立,则称x o为f (x)的不动点.如果函数f(x) = ax 2+ bx + 1 (a > 0)有两个相异的不动点x i、x?.1⑴若X1 < 1 < X2,且f(X)的图象关于直线x = m对称,求证m > -;(II)若I X1 | < 2且I X1- X2 | = 2,求b的取值范围.10.(北师大版第52页例3)应用绿缘商店每月按出厂价每瓶3元购进一种饮料•根据以前的统计数据,若零售价定为每瓶4元,每月可销售400瓶;若每瓶售价每降低0.05元,则可多销售40瓶•在每月的进货量当月销售完的前提下,请你给该商店设计一个方安:销售价应定为多少元和从工厂购进多少瓶时,才可获得最大的利润?变式1:在抛物线f x - -x2• ax与x轴所围成图形的内接矩形(一边在x轴上)中(如图),求周长最长的内接矩形两边之比,其中a是正实数.变式2:某民营企业生产A, B两种产品,根据市场调查与预测,产品的利润与投资成正比,其关系如图一;B产品的利润与投资的算术平方根成正比,其关系如图二(注:利润和投资单位:万元)(1)分别将A、B两种产品的利润表示为投资的函数关系式;yA Dx O B C(2)该企业已筹集到10万元资金,并全部投入A, B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润?其最大利润约为多少元(精确到1万元)?变式3:设a为实数,记函数f(x) =a-.. 1 -x2• ... 1 • x • 1 - x的最大值为g(a) (I)求g(a); (n )试求满足g(a)=g』)的所有实数a.a二次函数答案1.(人教A 版第27页A 组第6题)解析式、待定系数法变式2:b 十20十c解:由题意可知1,解得b=0 ,•1,解得c=2 .2 2变式3: 解:由题意可设所求二次函数的解析式为f (x ) = -3(x -1) + k ,展开得f X i=—3x 2・6x-3・k ,亠 c3_k ••• X 1 X 2 =2公低2 :32 丄 2..226 2(3 —k ) 26 . 4• X 1 ■ X2 h]X 1 • X 2 -2X 1X 2,即 4 ,解得 k .9393所以,该二次函数的图像是由 2f x = -3 x-1的图像向上平移43单位得到的,它的解析,口2 , 4 2 1 5式疋f x = -3 x ~1,即 f x 二-3x 6x -32.(北师大版第52页例2) 图像特征变式1:解:根据题意可知x 1+x 2_ b • jt+x?]4ac— b 2,故选 D .2 2a , 2 4a变式1: 解:由题意可知4ac -b 24a c =11a =3 I =_1,解得 ^ = -12,故选D .^=11变式2:解:•/ f 1 x ju f 1 -x ,•••抛物线f x = x2px q的对称轴是x = 1 , p ‘1 即p =-2 ,22f x =x -2x q ,••• f 0 =q、f -1 = 3 q、f1=-1q,故有f -1 f 0 f 1,选C.变式3:解:观察函数图像可得:① a>0(开口方向):②c=1(和y轴的交点);③ 4a • 2b • 1 = 0(和x 轴的交点):④ a b ^:: 0 (f 1 ::•;:■ 0);b2⑤b -4a 0(判别式):⑥ 仁::2(对称轴).3. (人教A版第43页B 组第1题)单调性O 变式1:解:函数f x =x2 4ax 2图像是开口向上的抛物线,其对称轴是x = -2 a ,由已知函数在区间内单调递减可知区间[.-匚:',6应在直线x =-2a的左侧,• -2a _6,解得a _ -3,故选D.21变式2:解:函数f x =x- a-1 x 5在区间(2 ,1)上为增函数,由于其图像(抛物线)开a _1 1 1 a _ 11口向上,所以其对称轴x 或与直线x 重合或位于直线x 的左侧,即应有2 2 2 2 2 解得a乞2,f 2 =4 - a -1 2 5 _7,即卩f 2 _ 7 .变式3:解:2函数f X = -x kx的图像是开口向下的抛物线,经过坐标原点,对称轴是k•••已知函数在[2, 4]上是单调函数,• 区间[2, 4]应在直线x 的左侧或右侧,2k k即有2或一—4,解得k乞4或k -8 .2 24. (人教A版第43页B组第1题)最值I y 变式1:解:作出函数f x i=x2-2x・3的图像,开口向上,对称轴上x=1,顶点是(1, 2),和y轴的交点是(0, 3),••• m的取值范围是1 _ m _ 2,故选C.变式2:解:函数有意义,应有-X2• 4 _ 0 ,解得-2乞X乞2 ,2 I 2 t2••• 0 一_X 4 乞4 = o ——X 4 乞2 = 0 < 3 - -X 4 乞6,M=6, m=0,故M + m=6.变式3:解:函数f X的表达式可化为f x =4 x_a? 12_2a .a①当0 2,即0空a乞4时,f X有最小值2 - 2a,依题意应有2 - 2a = 3,解得1 、a ,这个值与0 _a _4相矛盾.2a 2 2②当0,即a :: 0时,f 0 = a…2a ' 2是最小值,依题意应有a…2a ■ 2 = 3,解得a=1「2 ,又••• a c0,「. a=1 — J2为所求.a 2③当-2,即a 4时,f 2 =16-8a a -2a 2是最小值,依题意应有16 -8a ■ a2-2a • 2 = 3,解得a = 5 二、一10,又T a 4 , • a = 5 •10 为所求.综上所述,a = 1 - 2 或a = 5「10 .5. (人教A版第43页A组第6题)奇偶性2 2 2变式1: 解:函数fx=m-1x m -1X1是偶函数=• m -1 = 0 = m= 1 ,当m =1时,f X = 1是常数;当m - -1时,f x二-2X2 1,在区间[一匚?,0 1上f X是增函数,故选D.1变式2:解:根据题意可知应有a-1 + 2a = 0且b = 0, 即卩a=-且b = 0 ,•点(a, b)的坐3标是0 LG丿变式3:解:(I)当a = 0 时,函数f(_x) =(-x)2• |-x「1 二f (X),此时,f(x)为偶函数;x当 a = 0时,f (a)二a 2 1, f (_a)二a 2 2 |a | 1 ,f(a) = f(-a), f(a) = -f(-a),此时f (x)既不是奇函数,也不是偶函数.2— x a 1 =(x —丄)2 a -,24f (x)在(-:=,a ]上单调递减,从而函数 f (x)在(」:,a ]上的最小值 为 f (a)二 a 2 1.为 f (a)二 a 21.1 . a 时,函数f(x)的最小值为2213a 时,函数f (x)的最小值为a6. (北师大版第64页A 组第9题)图像变换 变式1:解:函数可转化为二次函数,作出函数图像,由图像可得单调区间.只2 2当 x 亠0 时,y = —x 2 2x 3 = —x —14 ,2 2当 XC0 时,y=_x _2x+3 = —(x+1 ) +4 . 作出函数图像,由图像可得单调区间.在-::,-1和0,11上,函数是增函数;在 〔-1,0 1和1,匸:上,函数是减函数. 变式2:解:若a =1,b =1,则f (x) =|x 2 -2x • 1|=x 2 -2x • 1,显然不是偶函数,所以①是不(II ) (i )当,则函数,则函数(ii )当 x _a 时,— 1 3f(x)在(-⑺a ]上的最小值为f (2)= ;'21 23函数 f (x) = x x - a 1 = (x ) -a2 4 1 1a ,且 f (2)乞 f(a). 1 1右a ,则函数f (x)在(- ::,a ]上的最小值为f () 芒 1 右a则函数f(x)在[aj :J 上单调递增,从而函数3 1 严,且y (a ),f (x)在[a,::)上的最小值综上,当3时,函数f (x)的最小值为4 - a ;a 2 1 ;正确的;若a - _1,b - 一4,则f (x) =|x 2 2x-4|,满足f (0^ f (2),但f (x)的图像不关于直线 x=1对称,所以②是不正确的;若a 2-b _0,则f(x) =| x 2-2ax • b |=x 2「2ax • b ,图像是开口向上的抛物线,其对称轴是x =a ,••• f (x)在区间[a,+s )上是增函数,即③是正确的;2显然函数f(x) =|x -2ax b| R 没有最大值,所以④是不正确的.变式3:解:f (x):2x +bx + c,x3 0^x | x| bx c =2,「x bx c, x :: 0(1)当c=0时,f(x)=xx+bx ,满足f(—x) = —f(x ),是奇函数,所以①是正确的;2l x + c,x K 0 ⑵当 b=0, c>0 时,f(x)=xx+c = < 2-x + c, x v 0f 2f 2x + c = 0 —x + c = 0l显然方程彳无解;方程彳的唯一解是x = _妊,所以② 是正确的;>0l x <0而该点关于(0, c )对称的点是:;:-x 0,2c -y 0,代入检验2c 「y ° =-X 。