等腰三角形底边一点到两腰距离之和

合集下载

二次函数中的等腰三角形问题

二次函数中的等腰三角形问题

二次函数中的等腰三角形问题式;交点式:y=a (x -x 1)(x -x 2),通常要知道图像与x 轴的两个交点坐标x 1,x 2才能求出此解析式;对于y=ax 2+bx+c 而言,其顶点坐标为(-2ba ,244acb a ).对于y=a (x -h )2+k 而言其顶点坐标为(h ,k ),•由于二次函数的图像为抛物线,因此关键要抓住抛物线的三要素:开口方向,对称轴,顶点.考点2 等腰三角形的性质1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。

2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一性质”)。

3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。

4.等腰三角形底边上的垂直平分线到两条腰的距离相等。

5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。

6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。

7.等腰三角形是轴对称图形,(不是等边三角形的情况下)只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。

8.等腰三角形中腰的平方等于高的平方加底的一半的平方9.等腰三角形的腰与它的高的关系直接的关系是:腰大于高。

间接的关系是:腰的平方等于高的平方加底的一半的平方。

考点3 相似三角形的性质1.相似三角形对应角相等,对应边成正比例。

2.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。

3.相似三角形周长的比等于相似比。

4.相似三角形面积的比等于相似比的平方。

5.相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方6.若a/b =b/c,即b²=ac,b叫做a,c的比例中项7.c/d=a/b 等同于ad=bc.8.不必是在同一平面内的三角形里(1)相似三角形对应角相等,对应边成比例. (2)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.(3)相似三角形周长的比等于相似比三、例题精析【例题1】如图,抛物线y=-x2+x-4与x轴相交于点A、B,与y轴相交于点C,抛物线的对称轴与x轴相交于点M。

等腰三角形底边上任一点到两腰的距离之和等于一腰上的高证明

等腰三角形底边上任一点到两腰的距离之和等于一腰上的高证明

等腰三角形底边上任一点到两腰的距离之和等于一腰上的高证明第一篇:等腰三角形底边上任一点到两腰的距离之和等于一腰上的高证明等腰三角形底边上任一点到两腰的距离之和等于一腰上的高证明例一:如图所示,已知△ABC中,AB=AC=8,P是BC上任意一点,PD⊥AB于点D,PE⊥AC点E,若△ABC的面积为14。

问:PD+PE 的值是否确定?若能确定,是多少?若不能确定,请说明理由。

解:三角形ABC的面积为14,所以PD+PE的值为定值。

由已知:AB=AC=8,S(△ABC)=14,得S(△ABC)=1/2*AB*PD+1/2*AC*PE=1/2*8*PD+1/2*8*PE)=141/2*8*(PD+PE)=14PD+PE=14/4=3.5即 PD+PE=3.5这道题得出的结论是:等腰三角形底边上任一点到两腰上的距离之和等于一腰上的高。

结论虽简单,我们又应当如何证明呢?关于这道题的证明方法有很多种。

求证;等腰三角形底边上任一点到两腰的距离之和等于一腰上的高。

这是一道常见的几何证明问题,难度不大,但很经典,证明方法也很多。

已知:等腰三角形ABC中,AB=AC,BC上任意点D,DE⊥AB,DF⊥AC,BH⊥AC求证: DE+DF=BH证法一:连接AD则△ABC的面积=AB*DE/2+AC*DF/2=(DE+DF)*AC/2而△ABC的面积=BH*AC/2所以:DE+DF=BH即:等腰三角形底边上任意一点到两腰的距离之和等于腰上的高证法二:作DG⊥BH,垂足为G因为DG⊥BH,DF⊥AC,BH⊥AC所以四边形DGHF是矩形所以GH=DF因为AB=AC所以∠EBD=∠C因为GD//AC所以∠GDB=∠C所以∠EBD=∠GDB又因为BD=BD所以△BDE≌△DBG(ASA)所以DE=BG所以DE+DF=BG+GH=BH证法三:提示:过B作直线DF的垂线,垂足为M运用全等三角形同样可证另外运用三角函数也能进行证明如果D在BC或CB的延长线上,有下列结论:|DE-DF|=BH 问题:这个问题的另外一个表达形式:将此结论推广到等边三角形:等边三角形中任意一点到三边的距离的和等于等边三角形的一条高。

(完整版)等腰三角形底边上任一点到两腰的距离之和等于一腰上的高证明

(完整版)等腰三角形底边上任一点到两腰的距离之和等于一腰上的高证明

等腰三角形底边上任一点到两腰的距离之和等于一腰上的高证明例一:如图所示,已知△ABC中,AB=AC=8,P是BC上任意一点,PD⊥AB于点D,PE⊥AC 点E,若△ABC的面积为14。

问:PD+PE的值是否确定?若能确定,是多少?若不能确定,请说明理由。

解:三角形ABC的面积为14,所以PD+PE的值为定值。

由已知:AB=AC=8,S(△ABC)=14,得S(△ABC)=1/2*AB*PD+1/2*AC*PE=1/2*8*PD+1/2*8*PE)=141/2*8*(PD+PE)=14PD+PE=14/4=3.5即 PD+PE=3.5这道题得出的结论是:等腰三角形底边上任一点到两腰上的距离之和等于一腰上的高。

结论虽简单,我们又应当如何证明呢?关于这道题的证明方法有很多种。

求证;等腰三角形底边上任一点到两腰的距离之和等于一腰上的高。

这是一道常见的几何证明问题,难度不大,但很经典,证明方法也很多。

已知:等腰三角形ABC中,AB=AC,BC上任意点D,DE⊥AB,DF⊥AC,BH⊥AC 求证: DE+DF=BH证法一:连接AD则△ABC的面积=AB*DE/2+AC*DF/2=(DE+DF)*AC/2而△ABC的面积=BH*AC/2所以:DE+DF=BH即:等腰三角形底边上任意一点到两腰的距离之和等于腰上的高证法二:作DG⊥BH,垂足为G因为DG⊥BH,DF⊥AC,BH⊥AC所以四边形DGHF是矩形所以GH=DF因为AB=AC所以∠EBD=∠C因为GD//AC所以∠GDB=∠C所以∠EBD=∠GDB又因为BD=BD所以△BDE≌△DBG(ASA)所以DE=BG所以DE+DF=BG+GH=BH证法三:提示:过B作直线DF的垂线,垂足为M运用全等三角形同样可证另外运用三角函数也能进行证明如果D在BC或CB的延长线上,有下列结论:|DE-DF|=BH问题:这个问题的另外一个表达形式:将此结论推广到等边三角形:等边三角形中任意一点到三边的距离的和等于等边三角形的一条高。

等腰三角形一条性质的多种证明与拓展

等腰三角形一条性质的多种证明与拓展

等腰三角形一条性质的多种证明与拓展龚天芝【摘要】等腰三角形底边上任意一点到两腰的距离和等于一腰上的高.已知:如图1,在△ABC中,AB=AC,点P是边BC 上任意一点,PE ⊥AB,PF⊥AC,CD⊥AB,垂足分别是E、F、D. 求证:PE+PF=CD.【期刊名称】《中学数学》【年(卷),期】2012(000)002【总页数】2页(P84,88)【作者】龚天芝【作者单位】河南省漯河市外语中学【正文语种】中文等腰三角形底边上任意一点到两腰的距离和等于一腰上的高.已知:如图1,在△AB C中,AB=AC,点P是边BC上任意一点,PE⊥AB,PF⊥AC,CD⊥AB,垂足分别是E、F、D.求证: PE+PF=CD.证法1(面积法):故等腰三角形底边上任意一点到两腰的距离和等于一腰上的高.证法2(截长法):在CD上截取DG=EP,连接PG,如图2.因为CD⊥AB,PE⊥AB,所以四边形DEPG是矩形,所以∠DGP=90°.因为AB=AC,所以∠B=∠ACB.因为GP//DE,所以∠GPC=∠B.所以∠ACB=∠GPC,又因为PC=CP,∠PGC=∠CFP=90°.所以△CGP≌△PFC,所以PF=CG.所以PE+PF=DG+GC=CD.证法3(补短法):延长EP到G,使EG=DC,连接CG,如图3.因为CD⊥AB,PE⊥AB,所以四边形DEGC是矩形,所以∠G=90°.因为AB=AC,所以∠B=∠ACB,因为GC//DE,所以∠GCP=∠B.所以∠ACB=∠GCP,又因为PC=PC,∠G=∠CFP=90°.所以△CGP≌△CFP,所以PF=PG.所以PE+PF=EG=CD.(过点P作PG⊥CD,垂足为G,可得矩形DEPG,如图2,以下证法同方法2,可使问题得证;过C作直线EP的垂线,垂足为G,可得矩形DEGC,如图3,以下证法同方法3,可使问题得证.)证法4(利用三角形相似):因为PE⊥AB,PF⊥AC,CD⊥AB,如图1.所以∠BEP=∠BDC=∠CFP=90°.因为AB=AC,所以∠B=∠ACB.所以△BEP∽△BDC∽△CFP.拓展1.如果P在BC(或CB)的延长线上,如图4,有下列结论:|PE-PF|=CD.(证明方法同上,过程略)即:等腰三角形底边延长线上任意一点到两腰的距离差等于一腰上的高.拓展2.如果把等腰三角形变为等边三角形,又有如下结论:已知等边△ABC和点P,P到△ABC的三边AB、AC、BC的距离分别为h1、h2、h3,△ABC的高为h.(1)当点P在△ABC的一边BC上时,如图5,此时h3=0,则h1+h2+h3=h. 即:等边三角形边上一点到三边的距离和等于等边三角形的高.(2)当点P为△ABC内任意一点时,如图6,结论h1+h2+h3=h仍成立. 即:等边三角形内任意一点到三边的距离和等于等边三角形的高.由此可知,在等边三角形ΔABC中,设O为其中心,O到一边的距离为r3,显然h=3r3,就有结论h1+h2+h3=3r3(3)当点P在△ABC外部时,如图7,可得h1+h2-h3=h.(证明方法同上,过程略)拓展3.如果把等边三角形变为正方形、正五边形,正n边形时,又有如下结论:若点P为正边形ABCD内任一点,点O为正方形的中心,O到一边的距离为r4,P点到AB、BC、CD、DA各边的距离为h1,h2,h3,h4,则h1+h2+h3+h4=4r4.若点P为正五边形ABCDE内任一点,点O为正五边形的中心,O到一边的距离为r5,P到AB、BC、CD、DE、EA各边的距离为h1,h2,h3,h4,h5,则h1+h2+h3+h4+h5=5r5.若点P是正n边形内任一点,O是正n边形的中心,点O到一边的距离为rn,点P到各边的距离分别为h1,h2,h3,…,hn,则h1+h2+h3+…+hn=nrn.(证明略)中考链接例1(2009辽宁朝阳)如图8,△ABC是等边三角形,点D是BC边上任意一点,DE⊥AB于点E,DF⊥AC于点F.若BC=2,则DE+DF=_______.解析:由等边三角形的性质可知“等边三角形一边上任意一点到其他两边的距离和等于等边三角形的高”,可求得例2 (2011山东聊城)如图9,点P是矩形ABCD的边AD的一个动点,矩形的两条边AB、BC的长分别为3和4,那么点P到矩形的两条对角线AC和BD的距离之和是().解析:由矩形的性质得OA=OD,即△AOD是等腰三角形,根据等腰三角形的性质可知,点P到AC和BD的距离和为等腰△AOD 一腰上高的长.在Rt△ABD中,由勾股定理得BD=5,因此可得Rt△ABD斜边BD上的高(即等腰△AOD腰OD 上高)为故选A.例3(2011年佳木斯)如图10,将矩形纸片ABCD沿对角线AC折叠,使点B 落到点B′的位置,AB′与CD交于点E.(1)试找出一个与△AED全等的三角形,并加以证明.(2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC于H,试求PG+PH的值,并说明理由.解析:(1)由∠D=∠B′=90°,∠AED=∠CEB′,AD=CB′,可证△CEB′≌△AED.(2)由题意易证△ACE是等腰三角形,因此根据等腰三角形的性质可知PG+PH=AD.在Rt△ADE由勾股定理得AD=4,即PG+PH=4.例4 (2011年河北省)在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.一等腰直角三角尺按如图11-1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.(1)在图11-1中请你通过观察、测量BF与CG的长度,猜想并写出BF与CG 满足的数量关系,然后证明你的猜想.(2)当三角尺沿AC方向平移到图11-2所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE+DF与CG之间满足的数量关系,然后证明你的猜想.(3)当三角尺在(2)的基础上沿AC方向继续平移到图11-3所示的位置(点F 在线段AC上,且点F与点C不重合)时,(2)中的猜想是否仍然成立?(不用说明理由)解析:(1)BF=CG. 在△ABF和△ACG中,由∠F=∠G=90°,∠FAB=∠GAC,AB=AC,可证△ABF≌△ACG(AAS),故BF=CG.(2)根据等腰三角形的性质“等腰三角形底边上任意一点到两腰的距离之和等于一腰上高的长.”可证DE+DF=CG.(3)仍然成立.。

等腰三角形的判定和性质

等腰三角形的判定和性质
2 等腰三角形 第1课时 等腰三角形的判定和性质
一、等腰三角形的性质 1.定理:等腰三角形的两个底角相等.简述为: 等边对等角 . 2.定理:等腰三角形顶角的平分线、底边上的 中线 、底边上的 高
互相
重合.这一结论通常简述为“三线合一”. 3.等腰三角形两底角的平分线 相等 ;两条腰上的中线 相等 的高 相等 .
;两条腰上
【知识拓展】 等腰三角形底边上任意一点到两腰的距离和等于一腰上的高. 二、等腰三角形的判定
有两个角相等的三角形是等腰三角形.简述为: 等角对等边 .
知识点一 等腰三角形的性质
【例1】如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E. 求证:∠CBE= ∠BAD.
证 明 : 法 一 因 为 AB=AC,AD 是 BC 边 上 的 中 线 , 所 以 AD⊥BC,∠BAD=∠CAD, 所 以 ∠ CAD+ ∠C=90°. 因 为 BE⊥AC, 所 以 ∠ CBE+∠C=90°. 所 以 ∠ CBE=∠CAD, 所 以 ∠CBE=∠BAD. 法二 因为AB=AC,所以∠ABC=∠C.又因为AD是BC边上的中线,所以AD⊥BC,所以 ∠BAD+ ∠ABC=90°.因为BE⊥AC,所以∠CBE+∠C=90°,所以∠CBE=∠BAD.
解:(1)①②;①③.
(2)请选择(1)中的一种情形,写出证明过程.
解:(2)选①②证明如下:在△BOE和△COD中, 因为∠EBO=∠DCO,∠EOB=∠DOC,BE=CD, 所以△BOE≌△COD,所以BO=CO, 所以∠OBC=∠OCB, 所以∠EBO+∠OBC=∠DCO+∠OCB, 即∠ABC=∠ACB,所以AB=AC, 即△ABC是等腰三角形. 选①③证明如下: 在△BOC中,因为OB=OC,所以∠OBC=∠OCB. 因为∠EBO=∠DCO, 所以∠EBO+∠OBC=∠DCO+∠OCB, 即∠ABC=∠ACB,所以AB=AC,即△ABC是等腰三角形.

等腰三角形典型例题

等腰三角形典型例题

等腰三角形典型例题【例1】如图所示,△ABC中,AB=AC,D在BC上,且BD=AD,DC=AC,求∠B的度数。

ACB D思路点拨:只要把“等边对等角”这一性质用在三个不同的等腰三角形中,然后用方程思想解题,列方程的依据是三角形的内角和定理。

解:∵AB=CD(已知)∴∠B=∠C(等边对等角)同理:∠B=∠BAD,∠CAD=∠CDA设∠B为X0,则∠C=X0,∠BAD=X0∴∠ADC=2X0,∠CAD=2X0在△ADC中,∵∠C+∠CAD+∠ADC=1800∴X+2X+2X=180∴X=36答:∠B的度数为360注:用代数方法解几何计算题常可使我们换翻为简。

练习1:如图所示,在△ABC中,D是AC上一点,并且AB=AD,DB=DC,若∠C=290,则∠A=___练习2:如图在△ABC 中,AB=AC,点D 在AC 上,且BD=BC=AD,求△ABC 各角的度数?【例2】如图所示,在△ABC 中,AB=AC ,O 是△ABC 内一点,且OB=OC 。

求证:AO ⊥BC思路点拨:要证AO ⊥BC ,即证AO是等腰三角形底边上的高,根据三线合一定理,只要先证AO 是顶角的平分线即可。

B证明:延长AO 交BC 于DAB=AC (已知) 在△ABO 和△ACO 中 OB=OC (已知) AO=AO(公共边) ∴△ABO ≌△ACO (SSS ) ∴∠BAO=∠CAO即∠BAD=∠CAD (全等三角形的对应角相等)∴AD ⊥BC ,即AO ⊥BC (等腰三角形顶角的平分线与底边上的高互相重合)评注:本题用两次全等也可达到目的.。

练习:如图所示,点D 、E 在△ABC 的边BC 上,AB=AC ,AD=AE 求证:BD=CE【例3】求证等腰三角形底边上任一点到两腰的距离之和等于一腰上C的高。

思路点拨:本题为文字题,文字题必须按下列步骤进行:(1)根据题意画出图形;(2)根据图形写出“已知”、“求证”;(3)写出证明过程。

等腰三角形 最短路径(含例题)

1.等腰三角形的性质性质1:等腰三角形的两个底角__________(简写成“等边对等角”).性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互__________(简写成“三线合一”).等腰三角形的其他性质:(1)等腰三角形两腰上的中线、高分别相等.(2)等腰三角形两底角的平分线相等.(3)等腰三角形底边上任意一点到两腰的距离之和等于一腰上的高.(4)当等腰三角形的顶角为90°时,此等腰三角形为等腰直角三角形,它的两条直角边相等,两个锐角都是45°.2.等腰三角形的判定判定等腰三角形的方法:(1)定义法:有两边__________的三角形是等腰三角形;(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对__________”).数学语言:在△ABC中,∵∠B=∠C,∴AB=AC(等角对等边).【注意】(1)“等角对等边”不能叙述为:如果一个三角形有两个底角相等,那么它的两腰也相等.因为在没有判定出它是等腰三角形之前,不能用“底角”“腰”这些名词,只有等腰三角形才有“底角”“腰”.(2)“等角对等边”与“等边对等角”的区别:由两边相等得出它们所对的角相等,是等腰三角形的性质;由三角形有两角相等得出它是等腰三角形,是等腰三角形的判定.3.等边三角形及其性质等边三角形的概念:三边都相等的三角形是__________三角形.等边三角形的性质:等边三角形的三个内角都相等,并且每一个角都等于__________.【注意】(1)等边三角形是轴对称图形,它有三条对称轴;(2)等边三角形是特殊的等腰三角形,它具有等腰三角形的一切性质.4.等边三角形的判定判定等边三角形的方法:(1)定义法:三边都相等的三角形是等边三角形.(2)三个角都相等的三角形是等边三角形.(3)有一个角是60°的__________三角形是等边三角形.5.含30°角的直角三角形的性质一在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的__________.【注意】(1)该性质是含30°角的特殊直角三角形的性质,一般的直角三角形或非直角三角形没有这个性质,更不能应用.(2)这个性质主要应用于计算或证明线段的倍分关系.(3)该性质的证明出自于等边三角形,所以它与等边三角形联系密切.(4)在有些题目中,若给出的角是15°时,往往运用一个外角等于和它不相邻的两个内角的和将15°的角转化后,再利用这个性质解决问题.6.最短路径问题1.求直线异侧的两点到直线上一点距离的和最小的问题,只要连接这两点,所得线段与直线的交点即为所求的位置.2.求直线同侧的两点到直线上一点距离的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,所得线段与该直线的交点即为所求的位置.K知识参考答案:1.相等,重合2.相等,等边3.等边,60°4.等腰5.一半K—重点等腰三角形的判定和性质,等边三角形的判定和性质K—难点等腰三角形中的分类讨论问题K—易错等腰三角形“三线合一”性质的应用一、等腰三角形的性质和判定1.应用“三线合一”性质的前提条件是在等腰三角形中,且必须是底边上的中线、底边上的高和顶角平分线,若是一腰上的高与中线就不一定重合.2.等腰三角形是轴对称图形,顶角平分线(或底边上的高、底边上的中线)所在的直线是它的对称轴.【例1】如图,AD⊥BC,D是BC的中点,那么下列结论错误的是A.△ABD≌△ACD B.∠B=∠CC.△ABC是等腰三角形D.△ABC是等边三角形【答案】D【解析】因为AD⊥BC,D是BC的中点,所以△ABD与△ACD关于直线AD对称,由轴对称的性质可知△ABD ≌△ACD,∠B=∠C,△ABC是等腰三角形,但不能得到△ABC是等边三角形,故选D.【例2】已知等腰三角形一腰上的高与另一腰的夹角为60︒,则这个等腰三角形的顶角是A.30︒B.60︒C.150︒D.30︒或150︒【答案】D【例3】如图,在△ABC中,AB=AC,AD⊥BC于D,E是AB上的一点,EF∥AD交CA的延长线于F.求证:△AEF是等腰三角形.【解析】∵AB=AC,AD⊥BC,∴∠BAD=∠CAD.又∵AD∥EF,∴∠F=∠CAD,∠FEA=∠BAD,∴∠FEA=∠F,∴△AEF是等腰三角形.二、等边三角形的性质和判定判定等边三角形时常用的选择方法:若已知三边关系,一般选用(1);若已知三角关系,一般选用(2);若已知该三角形是等腰三角形,一般选用(3).【例4】下列推理中,错误的是A.∵∠A=∠B=∠C,∴△ABC是等边三角形B.∵AB=AC,且∠B=∠C,∴△ABC是等边三角形C.∵∠A=60°,∠B=60°,∴△ABC是等边三角形D.∵AB=AC,∠B=60°,∴△ABC是等边三角形【答案】B【例5】如图,已知OA=5,P是射线ON上的一个动点,∠AON=60°.当OP=__________时,△AOP为等边三角形.【答案】5【解析】已知∠AON=60°,当OP=OA=5时,根据有一个角为60°的等腰三角形为等边三角形,可得△AOP 为等边三角形.故答案为:5.三、含30°角的直角三角形的性质含30°角的直角三角形的性质是求线段长度和证明线段倍分关系的重要依据.【例6】在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6 cm,那么CE等于A.4 cm B.2 cmC.3 cm D.1 cm【答案】C四、最短路径问题通常利用轴对称变换将不在一条直线上的两条或多条线段转化到一条直线上,从而作出最短路径的选择. 【例7】公园内两条小河MO,NO在O处汇合,两河形成的半岛上有一处景点P(如图所示).现计划在两条小河上各建一座小桥Q和R,并在半岛上修三段小路,连通两座小桥与景点,这两座小桥应建在何处才能使修路费用最少?请说明理由.【解析】如图,作P关于OM的对称点P′,作P关于ON的对称点P″,连接P′P″,分别交MO,NO于Q,R,连接PQ,PR,则P′Q=PQ,PR=P″R,则Q,R就是小桥所在的位置.理由:在OM上任取一个异于Q的点Q′,在ON上任取一个异于R的点R′,连接PQ′,P′Q′,Q′R′,P″R′,PR′,则PQ′=P′Q′,PR′=P″R′,且P′Q′+Q′R′+R′P″>P′Q+QR+RP″,所以△PQR的周长最小,故Q,R就是我们所求的小桥的位置.。

数学思维与解题基础

数学思维与解题基础数学是一门逻辑严谨的学科,需要学生的逻辑思维能力和形象思维能力。

这就使得教师在教学中要注重培养学生的数学思维能力,师生在做题过程中要注重解题方法的总结。

今天主要讲一下中学数学解题过程中基本解题思维和方法的培养。

关键词:初中数学解题思维解题方法为适应新课标的要求及历年多变的考试题型,教师对学生的培养的侧重点不断向学习能力转移,而不是单独的注重于分数的提升。

于是培养中学生的解决题目的能力成了近些年的热潮。

而此处的能力是指学生对问题的分析能力及利用已学知识解决问题的能力。

由于课堂是学生能力发展与提升的主要场所,我们就主要讲如何在课堂学习以及题目讲解中发展学生的思维能力。

一、数学思维数学思维主要分为逻辑思维与非逻辑思维,其中非逻辑思维又包括形象思维与直觉思维。

这三种思维类型都是我们在日常的数学学习中经常涉及到的思维方式。

逻辑思维一般占主体,非逻辑思维做辅助作用。

当然也存在相反的情况。

只不过相较于上一种情况较少。

然后根据指向性的不同,思维又可分为定向思维、逆向思维、集中思维和发散思维。

明白这些思维的分类方式有助于我们更好地学习和发展它们。

逻辑思维是数学的基本思维形式,而概念则是逻辑思维的基本思维形式。

概念给予我们一种所描述的情况,例如两组对边平行的四边形是平行四边形。

在以后学习到新的图形的时候,第一时间会认识到这个图形是平行四边形或者不是平行四边形。

这就是逻辑思维中的判断。

我们对单个概念进行比对就有了判断的概念。

那如果是单个或者多个判断的叠加呢?那么就有了我们所谓的推论。

例如小明家在小红家左边,小芳家在小明家左边,那么我们可以得出推论小芳家在小红家左边。

这些就是逻辑思维的主要思维形式。

我们的解题过程都是建立在这些基础的思维形式之上。

而非逻辑思维我们则不做过多的论述。

由上述内容可见,人的思维发展总是从认知到判断再到逻辑推理。

这与我即将谈到的解题过程近乎完全一致。

我们研究题目也必须契合人的思维模式,这样才能更好地为学生所接受。

等腰三角形知识点总结等腰三角形知识点归纳重点

等腰三角形知识点总结等腰三角形知识点归纳重点等腰三角形是初中数学中的一种基本几何图形,具有很多特殊的性质和定理。

本文将对等腰三角形的相关知识点进行总结和归纳,帮助读者更好地理解和掌握等腰三角形的特点和应用。

以下是等腰三角形知识点总结汇总,希望对大家的学习有所帮助。

1、等腰三角形知识总结,定义(1)等腰三角形:有两条边相等的三角形叫等腰三角形,相等的两条边叫腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。

(2)等边三角形:特殊的等腰三角形,三条边都相等的三角形叫做等边三角形。

2、等腰三角形知识总结,等腰三角形的相关概念(1)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在的直线就是它的对称轴。

(2)等腰三角形的外心、内心、重心和垂心都在顶角平分线上,即四心共线。

(3)等边三角形的外心、内心、重心和垂心四心合一,成为等边三角形的中心。

3、等腰三角形知识总结,等腰三角形的性质定理(1)推理格式:在△ABC中,因为AB=AC,所以∠B=∠C。

(2)定理的作用:证明同—个三角形中的两个角相等。

4、等腰三角形知识总结,等腰三角形性质定理的推论(1)等腰三角形的顶角平分线平分底边并且垂直于底边。

(2)等边三角形的三个内角都相等,并且每个角都等于60°。

5、等腰三角形知识总结,等腰三角形的判定定理(1)该定理是证明两条线段相等的重要定理,是将三角形中的角的相等关系转化为边的相等关系的重要依据。

(2)注意:该定理不能叙述为“如果一个三角形中有两个底角相等,那么它的两腰也相等”。

因为在没有判定出它是等腰三角形之前,不能用“底角”、“腰”这些名词,只有等腰三角形才有“底角”、“腰”。

相等的两条边叫腰;两腰的夹角叫顶角;顶角所对的边叫底;腰与底的夹角叫底角。

(2)等边对等角;(3)底边上的高、底边上的中线、顶角平分线互相重合;(4)是轴对称图形,对称轴是顶角平分线;(5)底边小于腰长的两倍并且大于零,腰长大于底边的一半;(6)顶角等于180°减去底角的两倍;(7)顶角可以是锐角、直角、钝角,而底角只能是锐角.等边三角形性质:①具备等腰三角形的一切性质。

等底等高的两个三角形

等底等高的两个三角形等腰三角形底边上任一点到两腰的距离之和等于一腰上的高证明等腰三角形底边上任一点到两腰的距离之和等于一腰上的高证明例一:如图所示,已知△ABC中,AB=AC=8,P是BC上任意一点,PD⊥AB于点D,PE⊥AC点E,若△ABC的面积为14。

问:PD+PE的值是否确定?若能确定,是多少?若不能确定,请说明理由。

解:三角形ABC的面积为14,所以PD+PE的值为定值。

由已知:AB=AC=8,S(△ABC)=14,得S(△ABC)=1/2*AB*PD+1/2*AC*PE=1/2*8*PD+1/2*8*PE)=141/2*8*(PD+P E)=14PD+PE=14/4=3.5即PD+PE=3.5这道题得出的结论是:等腰三角形底边上任一点到两腰上的距离之和等于一腰上的高。

结论虽简单,我们又应当如何证明呢?关于这道题的证明方法有很多种。

求证;等腰三角形底边上任一点到两腰的距离之和等于一腰上的高。

这是一道常见的几何证明问题,难度不大,但很经典,证明方法也很多。

已知:等腰三角形ABC中,AB=AC,BC上任意点D,DE⊥AB,DF⊥AC,BH⊥AC 求证:DE+DF=BH证法一:连接AD则△ABC的面积=AB*DE/2+AC*DF/2=(DE+DF)*AC/2而△ABC的面积=BH*AC/2所以:DE+DF=BH即:等腰三角形底边上任意一点到两腰的距离之和等于腰上的高证法二:作DG⊥BH,垂足为G因为DG⊥BH,DF⊥AC,BH⊥AC所以四边形DGHF是矩形所以GH=DF因为AB=AC所以∠EBD =∠C因为GD//AC所以∠GDB=∠C所以∠EBD=∠GDB又因为BD=BD所以△BDE≌△DBG(ASA)所以DE=BG所以DE+DF=BG+GH=BH证法三:提示:过B作直线DF的垂线,垂足为M运用全等三角形同样可证另外运用三角函数也能进行证明如果D在BC或CB的延长线上,有下列结论:|DE-DF|=BH问题:这个问题的另外一个表达形式:将此结论推广到等边三角形:等边三角形中任意一点到三边的距离的和等于等边三角形的一条高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如图甲所示,在△ABC中,AB=AC,在底边BC上有任意一点P,则P点到两腰的距离之和等于定长(腰上的高),即PD+PE=CF,若P点在BC的延长线上,那么请你猜想PD、PE和CF之间存在怎样的等式关系?写出你的猜想并加以证明.
考点:
等腰三角形的性质;三角形的面积.
专题:
证明题.分析:ຫໍສະໝຸດ 猜想:PD、PE、CF之间的关系为PD=PE+CF.根据∵S△PAB= AB•PD,S△PAC= AC•PE,S△CAB= AB•CF,S△PAC= AC•PE, AB•PD= AB•CF+ AC•PE,即可求证.
解答:
解:我的猜想是:PD、PE、CF之间的关系为PD=PE+CF.理由如下:
连接AP,则S△PAC+S△CAB=S△PAB,
∵S△PAB= AB•PD,S△PAC= AC•PE,S△CAB= AB•CF,
又∵AB=AC,
∴S△PAC= AB•PE,
∴ AB•PD= AB•CF+ AB•PE,
即 AB(PE+CF)= AB•PD,
∴PD=PE+CF.
点评:
本题考查了等腰三角形的性质及三角形的面积,难度适中,关键是先猜想出PD、PE、CF之间的关系为PD=PE+CF再证明.
相关文档
最新文档