3--数字推理考察的是数字之间的联系

合集下载

数字推理规律总结

数字推理规律总结

数字推理规律总结数字推理的主要是通过加、减、乘、除、平方、开方等方法来寻找数列中各个数字之间的规律,从而得出最后的答案。

在实际解题过程中,根据相邻数之间的关系分为两大类:一、相邻数之间通过加、减、乘、除、平方、开方等方式发生联系,产生规律,主要有以下几种规律:1、相邻两个数加、减、乘、除等于第三数2、相邻两个数加、减、乘、除后再加或者减一个常数等于第三数3、等差数列:数列中各个数字成等差数列4、二级等差:数列中相邻两个数相减后的差值成等差数列5、等比数列:数列中相邻两个数的比值相等6、二级等比:数列中相邻两个数相减后的差值成等比数列7、前一个数的平方等于第二个数8、前一个数的平方再加或者减一个常数等于第二个数;9、前一个数乘一个倍数加减一个常数等于第二个数;10、隔项数列:数列相隔两项呈现一定规律,11、全奇、全偶数列12、排序数列二、数列中每一个数字本身构成特点形成各个数字之间的规律。

1、数列中每一个数字都是n 的平方构成或者是n 的平方加减一个常数构成,或者是n的平方加减n构成2、每一个数字都是n的立方构成或者是n的立方加减一个常数构成,或者是n的立方加减n3、数列中每一个数字都是n的倍数加减一个常数以上是数字推理的一些基本规律,必须掌握。

但掌握这些规律后,怎样运用这些规律以最快的方式来解决问题呢?这就需要在对各种题型认真练习的基础上,应逐步形成自己的一套解题思路和技巧。

第一步,观察数列特点,看是否存是隔项数列,如果是,那么相隔各项按照数列的各种规律来解答。

第二步,如果不是隔项数列,那么从数字的相邻关系入手,看数列中相邻数字在加减乘除后符合上述的哪种规律,然后得出答案。

第三步,如果上述办法行不通,那么寻找数列中每一个数字在构成上的特点,寻找规律。

当然,也可以先寻找数字构成的规律,在从数字相邻关系上规律。

这里所介绍的是数字推理的一般规律,在对各种基本题型和规律掌握后,很多题是可以直接通过观察和心算得出答案数字推理题的一些经验1)等差,等比这种最简单的不用多说,深一点就是在等差,等比上再加、减一个数列,如24,70,208,622,规律为a*3-2=b2)深一点模式,各数之间的差有规律,如1、2、5、10、17。

数字推理题四种思路

数字推理题四种思路

一、从题干数列里看规律通过分析数列中所给数字的多少,根据数字大小变化的趋势,分析数列是不是常用的数列,如加法数列、减法数列、乘法数列、除法数列、分数数列、小数数列、等差数列、等比数列、平方数列、立方数列、开方数列、偶数数列、奇数数列、质数数列、合数数列,或者是复合数列、混合数列、隔项数列、分组数列等。

为了解题方便,可以借助于题后答案所提供的信息,或是数列本身的变化趋势,初步确定是哪一种数列,然后调整思路进行解题。

具体方法如下:(1)先考察前面相邻的两三个数字之间的关系,在大脑中假设出一种符合这个数字关系的规律,如将相邻的两个数相加或相减,相乘或相除之后,并迅速将这种假设应用到下一个数字与前一个数字之间的关系上,如果得到验证,就说明假设的规律是正确的,由此可以直接推出答案;如果假设被否定,就马上改变思路,提出另一种数量规律的假设。

另外,有时从后往前推,或者从中间向两边推导也是较为有效的。

例:150,75,50,37.5,30,( )A. 20B. 22.5C. 25D. 27.5——『2009年北京市公务员录用考试真题』【答案:C】前项除以后项后得到:2;3\2;4\3;5\4;( ),分子是2,3,4,5,( 6 ),分母是1,2,3,4,( 5 ),所以( )与前一项30的倍数是6/5;则( )×6/5=30,( )=25。

(2)观察数列特点,如果数列所给数字比较多,数列比较长,超过5个或6个,就要考虑数列是不是隔项数列、分组数列、多级数列或常规数列的变式。

如果奇数项和偶数项有规律地交替排列,则该数列是隔项数列;如果不具备这个规律,就可以在分析数列本身特点的基础上,三个数或四个数一组地分开,就能发现该数列是不是分组数列了。

如果是,那么按照隔项数列或分组数列的各自规律来解答。

如果不是隔项数列或分组数列,那么从数字的相邻关系入手,看数列中相邻数字在加减乘除后符合上述的哪种规律,然后寻求答案。

【数量关系】数字推理的十种类型

【数量关系】数字推理的十种类型

【数量关系】"数字推理"的十种类型按数字之间的关系,可将数字推理题分为以下十种类型:1.和差关系。

又分为等差、移动求和或差两种。

(1)等差关系。

这种题属于比较简单的,不经练习也能在短时间内做出。

建议解这种题时,用口算。

(2)移动求和或差。

从第三项起,每一项都是前两项之和或差,这种题初次做稍有难度,做多了也就简单了。

1,2,3,5,(),13A 9B 11C 8D7选C。

1+2=3,2+3=5,3+5=8,5+8=132,5,7,(),19,31,50A 12B 13C 10D11 选A0,1,1,2,4,7,13,()A 22B 23C 24D 25选C。

注意此题为前三项之和等于下一项。

一般考试中不会变态到要你求前四项之和,所以个人感觉这属于移动求和或差中最难的。

5,3,2,1,1,()A-3B-2 C 0D2 选C。

2.乘除关系。

又分为等比、移动求积或商两种(1)等比。

从第二项起,每一项与它前一项的比等于一个常数或一个等差数列。

8,12,18,27,(40.5)后项与前项之比为1.5。

6,6,9,18,45,(135)后项与前项之比为等差数列,分别为1,1.5,2,2.5,3 (2)移动求积或商关系。

从第三项起,每一项都是前两项之积或商。

2,5,10,50,(500)100,50,2,25,(2/25)3,4,6,12,36,(216)此题稍有难度,从第三项起,第项为前两项之积除以2 1,7,8,57,(457)后项为前两项之积+13.平方关系1,4,9,16,25,(36),4966,83,102,123,(146)8,9,10,11,12的平方后+24.立方关系1,8,27,(81),1253,10,29,(83),127立方后+20,1,2,9,(730)有难度,后项为前项的立方+15.分数数列。

一般这种数列出难题较少,关键是把分子和分母看作两个不同的数列,有的还需进行简单的通分,则可得出答案1/24/39/416/525/6(36/7)分子为等比,分母为等差2/31/22/51/3(2/7)将1/2化为2/4,1/3化为2/6,可知下一个为2/76.带根号的数列。

数字推理

数字推理

数字推理的讲义第一部分:数字推理的认识数字推理是公务员考试当中最值得花时间学习的部分,言其理主要是通过认真的学习可以保证不丢分。

在国家公务员考试或者地方公务员考试当中,数字推理一般是5题或10题,其分值大概每题在0.8分左右。

其类型更是千奇百怪,无奇不有。

但通过从2002年~2008年这7年的考试题目分析。

我们最终还是找到一些规律和确定了一些认识。

借此写下这篇文章供大家参考。

数字推理就是给出一组数字,但其中缺少一项,要求考生仔细观察这个数列各数字之间的关系,找出其中的排列规律,然后从4个选项中选出自己认为最合适、合理的一个来填补空缺项,使之符合原数列的排列规律。

在寻找规律的时候,我们必须遵循规律的固有的性质:规律的普遍性和延续性。

在这几年公务员考试的过程当中,数字推理的题型发生了很大的变化,从最初简单的等比,等差,差值的数字特性规律渐渐发展到了复合运算,隔项运算,移动运算,甚至是数字本身拆项运算这样复杂的规律。

但其规律的基本性质还是必须遵循的,一组数列一般需要满足三项已知的规律状态,从而推导出第四项数字规律。

如:8,10,14,20,() A 24 B 28 C 32 D 36此题是数字之间差值构成等差数列关系。

10-8=2;14-10=4;20-14=6;?-20=8 ?=28如果我们把题目改变一下:10,14,20,()A 24 B 28 C 32 D 36是否能够根据14-10=4;20-14=6;这2项推导出28-20=8呢?我想大家都能感觉到这是一种非常牵强的做法。

但就目前公务员考试的题目中来讲这样的情况一般是很少发生的,除非是具备特殊性,这里所谓的特殊性是具有复杂的复合运算构成的规律,可以是两项推导出第三项如:2,3,13,175,()解:2×2+(3的2次方)=133×2+(13的2次方)=175推导出:13×2+(175的2次方)=30651另外对于非传统常规的规律方法。

广东行测知识点

广东行测知识点

广东行测知识点一、知识概述《广东行测知识点》①基本定义:广东行测就是广东省公务员录用考试行政职业能力测验的简称,就是一场考察考生在行政职业上发展潜力的标准化考试,里面有很多不同类型的题目。

②重要程度:这在广东省考中可是非常关键的,就像一把钥匙,想通过公务员考试进入体制内,行测成绩好不好很重要。

它能全面衡量你是否具备当公务员的能力,像综合分析能力、逻辑思维能力等好多能力。

③前置知识:你起码得有基本的计算能力、阅读理解能力、逻辑推理基础。

比如小学、中学学的语文知识中的理解文章大意,数学中的四则运算等。

④应用价值:现实生活中,假如你真的成了一名公务员,从处理文件解读政策(类似行测里的阅读理解),到做决策进行逻辑推导(像行测里的逻辑判断),这些能力都用得上。

二、知识体系①知识图谱:行测在省考知识体系里,就像一棵大树的重要枝干。

里头包含数量关系、言语理解与表达、判断推理、常识判断还有资料分析等几大块。

②关联知识:每个板块之间多少有点联系。

比如言语理解能力好对资料分析中题目的理解也有帮助;数量关系里的数学思维,在判断推理的一些逻辑题目里也能体现。

③重难点分析:- 掌握难度:真的因人而异,有人觉得数学相关的数量关系难上天,像我就觉得那些排列组合题目像天书一样;有人觉得常识判断难,因为它覆盖太广了。

- 关键点:对于每个板块的考点熟悉,还有掌握解题方法是重点。

就拿判断推理来说,知道各种推理规则并且熟练应用很关键。

④考点分析:- 在考试中的重要性:每个板块都重要,少了哪个得分不理想。

一个板块瘸腿都可能没法取得理想成绩。

- 考查方式:全是选择题,不过题目的形式多样。

数量关系有数学运算类的;言语理解可能是选词填空、阅读理解等。

三、详细讲解【理论概念类】①概念辨析:- 言语理解与表达:简单说就是考察你的语言文字功底,看你能不能理解一段文字的主旨大义,能不能准确选词填空,让语句通顺又表意准确。

- 判断推理:判断就是对各种事物关系进行判断,像逻辑判断是考察逻辑关系的推导是否正确;图形推理是通过给的图形找规律。

军队文职考试现在备考一点头绪也没有,希望大神可以指点一下!

军队文职考试现在备考一点头绪也没有,希望大神可以指点一下!

军队文职考试现在备考一点头绪也没有,希望大神可以指点一下!怒求大数据推给考军队文职的友友们!军队文职考试本身难度不大,近几年考军队文职的友友们是越来越多,竞争力随之也在不断地增大,上岸的分数线也提升了很多,现在对于我们来讲,即使是很用心地备考过,也不一定能一战就成功上岸,再加上很多人都是从新手开始进阶,对于文职考试还是属于一知半解的状态。

我是20年考上的军队文职,考文职这一年来得出来的经验也不少,所以,我就用了大半个月的时间,来总结这篇经验贴,今天终于总结整理完了,现在分享出来,希望可以帮到大家!一、评估个人能力,制定学习规划。

俗话说,知己知彼百战百胜,即使是备考军队文职,也是一样的道理。

在正式备考之前,建议大家最好先通读一遍考试大纲,了解一下文职考察的重点,之后可以对照教材,把熟悉的知识点快速过一遍,对于陌生的知识点做好标记,放在后期进行重点复习。

还有那些晦涩难懂的知识点,标记出来作为最后复习的内容。

结合将各部分的考点内容过完一遍之后,建议最好对不同的内容,要有侧重地去学,这时候就可以根据自己的实际情况,做一个学习规划,之后学习的时候就可以按照这个规划走,从而提高我们的学习效率。

二、选择学习资料。

这一步至为重要,直接关乎你的计划与节奏。

在这里建议前期把资料准备完全,包括真题,课程,视频课程,讲义,模拟题等等,总之要靠谱,不然后期会耗费很大功夫。

下面给大家分享一下我当时在备考过程中用到的一些资料:a.教材,中公全套,公共科目和专业科目都是用的中公家的,文职考察的知识点都有整理,每个章节的考点内容整理地也很详细,但理论知识偏多,对于提分的效果帮助不大,不建议浪费太多的时间在看教材上面,只用来预习就可以了。

b.课程,公共科目用的马梦秋军队文职就行,绝对必备课程。

老师讲课很有特点,每节课都会把知识点带着我去系统地梳理一遍,对于那些重难考点内容,会结合例题来帮助我理解,讲解解题的方法和技巧,实用性很强,对于成绩提升的效果绝对是无人能敌的。

数字推理题的解题方法

数字推理题的解题方法

数字推理题的解题方法数字推理题难度较大,但并非无规律可循,了解和掌握一定的方法和技巧,对解答数字推理问题大有帮助。

1 快速扫描已给出的几个数字,仔细观察和分析各数之间的关系,尤其是前三个数之间的关系,大胆提出假设,并迅速将这种假设延伸到下面的数,如果能得到验证,即说明找出规律,问题即迎刃而解;如果假设被否定,立即改变思考角度,提出另外一种假设,直到找出规律为止。

2 推导规律时,往往需要简单计算,为节省时间,要尽量多用心算,少用笔算或不用笔算。

3 空缺项在最后的,从前往后推导规律;空缺项在最前面的,则从后往前寻找规律;空缺项在中间的可以两边同时推导。

4 若自己一时难以找出规律,可用常见的规律来“对号入座”,加以验证。

常见的排列规律有:(1)奇偶数规律:各个数都是奇数(单数)或偶数(双数);(2)等差:相邻数之间的差值相等,整个数字序列依次递增或递减。

(3)等比:相邻数之间的比值相等,整个数字序列依次递增或递减;如:2 4 8 16 32 64()这是一个“公比”为2(即相邻数之间的比值为2)的等比数列,空缺项应为128。

(4)二级等差:相邻数之间的差或比构成了一个等差数列;如:4 2 2 3 6 15相邻数之间的比是一个等差数列,依次为:0.5、1、1.5、2、2.5。

(5)二级等比数列:相邻数之间的差或比构成一个等比数理;如:0 1 3 7 15 31()相邻数之间的差是一个等比数列,依次为1、2、4、8、16,空缺项应为63。

(6)加法规律:前两个数之和等于第三个数,如例题23;(7)减法规律:前两个数之差等于第三个数;如:5 3 2 1 1 0 1()相邻数之差等于第三个数,空缺项应为-1。

(8)乘法(除法)规律:前两个数之乘积(或相除)等于第三个数;(9)完全平方数:数列中蕴含着一个完全平方数序列,或明显、或隐含;如:2 3 10 15 26 35()1*1+1=2, 2*2-1=3,3*3+1=10,4*4-1=15......空缺项应为50。

公务员数字推理图形推理技巧(根据网络资料整理)

公务员数字推理图形推理技巧(根据网络资料整理)

第一部分:数字推理题的解题技巧数字推理考察的是数字之间的联系,对运算能力的要求并不高。

所以,文科的朋友不必担心数学知识不够用或是以前学的不好。

只要经过足够的练习,这部分是可以拿高分的,至少不会拖你的后腿。

抽根烟,下面开始聊聊。

一、解题前的准备1.熟记各种数字的运算关系。

如各种数字的平方、立方以及它们的邻居,做到看到某个数字就有感觉。

这是迅速准确解好数字推理题材的前提。

常见的需记住的数字关系如下:(1)平方关系:2-4,3-9,4-16,5-25,6-36,7-49,8-64,9-81,10-100,11-121,12-14413-169,14-196,15-225,16-256,17-289,18-324,19-361,20-400(2)立方关系:2-8,3-27,4-64,5-125,6-216,7-343,8-512,9-729,10-1000(3)质数关系:2,3,5,7,11,13,17,19,23,29 (4)开方关系:4-2,9-3,16-4......以上四种,特别是前两种关系,每次考试必有。

所以,对这些平方立方后的数字,及这些数字的邻居(如,64,63,65等)要有足够的敏感。

当看到这些数字时,立刻就能想到平方立方的可能性。

熟悉这些数字,对解题有很大的帮助,有时候,一个数字就能提供你一个正确的解题思路。

如 216 ,125,64()如果上述关系烂熟于胸,一眼就可看出答案但一般考试题不会如此弱智,实际可能会这样 215,124,63,()或是217,124,65,()即是以它们的邻居(加减1),这也不难,一般这种题5秒内搞定。

2.熟练掌握各种简单运算,一般加减乘除大家都会,值得注意的是带根号的运算。

根号运算掌握简单规律则可,也不难。

3.对中等难度以下的题,建议大家练习使用心算,可以节省不少时间,在考试时有很大效果。

二、解题方法按数字之间的关系,可将数字推理题分为以下十种类型:1.和差关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字推理考察的是数字之间的联系,对运算能力的要求并不高。

所以,文科的朋友不必担心数学知识不够用或是以前学的不好。

只要经过足够的练习,这部分是可以拿高分的,至少不会拖你的后腿。

抽根烟,下面开始聊聊。

一、解题前的准备1.熟记各种数字的运算关系。

如各种数字的平方、立方以及它们的邻居,做到看到某个数字就有感觉。

这是迅速准确解好数字推理题材的前提。

常见的需记住的数字关系如下:(1)平方关系。

2-4 3-9 4-16 5-25 6-36 7-49 8-64 9-81 10-100 11-121 12-144 13-169 14-196 1 5-225 16-256 17-289 18-32419-361 20-400(2)立方关系。

2-8 3-27 4-64 5-125 6-216 7-343 8-512 9-729 10-1000(3)质数关系。

2 3 5 7 11 13 17 19 23 29......(4)开方关系。

4-2 9-3 16-4......以上四种,特别是前两种关系,每次考试必有。

所以,对这些平方立方后的数字,及这些数字的邻居(如,64,63,65等)要有足够的敏感。

当看到这些数字时,立刻就能想到平方立方的可能性。

熟悉这些数字,对解题有很大的帮助,有时候,一个数字就能提供你一个正确的解题思路。

如216 ,125,64()如果上述关系烂熟于胸,一眼就可看出答案但一般考试题不会如此弱智,实际可能会这样215,124,63,()或是217,124,65,()即是以它们的邻居(加减1),这也不难,一般这种题5秒内搞定。

2.熟练掌握各种简单运算,一般加减乘除大家都会,值得注意的是带根号的运算。

根号运算掌握简单规律则可,也不难。

3.对中等难度以下的题,建议大家练习使用心算,可以节省不少时间,在考试时有很大效果。

二、解题方法按数字之间的关系,可将数字推理题分为以下十种类型:1.和差关系。

又分为等差、移动求和或差两种。

(1)等差关系。

这种题属于比较简单的,不经练习也能在短时间内做出。

建议解这种题时,用口算。

12,20,30,42,()127,112,97,82,()3,4,7,12,(),28(2)移动求和或差。

从第三项起,每一项都是前两项之和或差,这种题初次做稍有难度,做多了也就简单了。

1,2,3,5,(),13A 9B 11C 8 D7选C。

1+2=3,2+3=5,3+5=8,5+8=132,5,7,(),19,31,50A 12B 13C 10 D11选A0,1,1,2,4,7,13,()A 22B 23C 24D 25选C。

注意此题为前三项之和等于下一项。

一般考试中不会变态到要你求前四项之和,所以个人感觉这属于移动求和或差中最难的。

5,3,2,1,1,()A-3 B-2 C 0 D2选C。

2.乘除关系。

又分为等比、移动求积或商两种(1)等比。

从第二项起,每一项与它前一项的比等于一个常数或一个等差数列。

8,12,18,27,(40.5)后项与前项之比为1.5。

6,6,9,18,45,(135)后项与前项之比为等差数列,分别为1,1.5,2,2.5,3(2)移动求积或商关系。

从第三项起,每一项都是前两项之积或商。

2,5,10,50,(500)100,50,2,25,(2/25)3,4,6,12,36,(216)此题稍有难度,从第三项起,第项为前两项之积除以21,7,8,57,(457)后项为前两项之积+13.平方关系1,4,9,16,25,(36),4966,83,102,123,(146) 8,9,10,11,12的平方后+24.立方关系1,8,27,(81),1253,10,29,(83),127 立方后+20,1,2,9,(730)有难度,后项为前项的立方+15.分数数列。

一般这种数列出难题较少,关键是把分子和分母看作两个不同的数列,有的还需进行简单的通分,则可得出答案1/2 4/3 9/4 16/5 25/6 (36/7)分子为等比,分母为等差2/3 1/2 2/5 1/3 (1/4)将1/2化为2/4,1/3化为2/6,可知下一个为2/8 6.带根号的数列。

这种题难度一般也不大,掌握根号的简单运算则可。

限于计算机水平比较烂,打不出根号,无法列题。

7.质数数列2,3,5,(7),114,6,10,14,22,(26)质数数列除以220,22,25,30,37,(48)后项与前项相减得质数数列。

8.双重数列。

又分为三种:(1)每两项为一组,如1,3,3,9,5,15,7,(21)第一与第二,第三与第四等每两项后项与前项之比为32,5,7,10,9,12,10,(13)每两项之差为31/7,14,1/21,42,1/36,72,1/52,()两项为一组,每组的后项等于前项倒数*2(2)两个数列相隔,其中一个数列可能无任何规律,但只要把握有规律变化的数列就可得出结果。

22,39,25,38,31,37,40,36,(52)由两个数列,22,25,31,40,()和39,38,37,36组成,相互隔开,均为等差。

34,36,35,35,(36),34,37,(33)由两个数列相隔而成,一个递增,一个递减(3)数列中的数字带小数,其中整数部分为一个数列,小数部分为另一个数列。

2.01, 4.03, 8.04, 16.07, (32.11)整数部分为等比,小数部分为移动求和数列。

双重数列难题也较少。

能看出是双重数列,题目一般已经解出。

特别是前两种,当数字的个数超过7个时,为双重数列的可能性相当大。

9.组合数列。

此种数列最难。

前面8种数列,单独出题几乎没有难题,也出不了难题,但8种数列关系两两组合,变态的甚至三种关系组合,就形成了比较难解的题目了。

最常见的是和差关系与乘除关系组合、和差关系与平方立方关系组合。

只有在熟悉前面所述8种关系的基础上,才能较好较快地解决这类题。

1,1,3,7,17,41()A 89B 99C 109D 119选B。

此为移动求和与乘除关系组合。

第三项为第二项*2+第一项65,35,17,3,()A 1B 2C 0D 4选A。

平方关系与和差关系组合,分别为8的平方+1,6的平方-1,4的平方+1,2的平方-1,下一个应为0的平方+1=14,6,10,18,34,()A 50B 64C 66D 68选C。

各差关系与等比关系组合。

依次相减,得2,4,8,16(),可推知下一个为32,32+34=666,15,35,77,()A 106B 117C 136D 163选D。

等差与等比组合。

前项*2+3,5,7依次得后项,得出下一个应为77*2+9=1632,8,24,64,()A 160B 512C 124D 164选A。

此题较复杂,幂数列与等差数列组合。

2=1*2的1次方,8=2*2的平方,24=3*2的3次方,64=4*2的4次方,下一个则为5*2的5次方=1600,6,24,60,120,()A 186B 210C 220D 226选B。

和差与立方关系组合。

0=1的3次方-1,6=2的3次方-2,24=3的3次方-3,60=4的3次方-4,120 =5的3次方-5。

1,4,8,14,24,42,()A 76B 66C 64 D68选A。

两个等差与一个等比数列组合依次相减,得3,4,6,10,18,()再相减,得1,2,4,8,(),此为等比数列,下一个为16,倒推可知选A。

10.其他数列。

2,6,12,20,()A 40B 32C 30D 28选C。

2=1*2,6=2*3,12=3*4,20=4*5,下一个为5*6=301,1,2,6,24,()A 48B 96C 120D 144选C。

后项=前项*递增数列。

1=1*1,2=1*2,6=2*3,24=6*4,下一个为120=24*51,4,8,13,16,20,()A20 B 25 C 27 D28选B。

每三项为一重复,依次相减得3,4,5。

下个重复也为3,4,5,推知得25。

27,16,5,(),1/7A 16B 1C 0D 2选B。

依次为3的3次方,4的2次方,5的1次方,6的0次方,7的-1次方。

这些数列部分也属于组合数列,但由于与前面所讲的和差,乘除,平方等关系不同,故在此列为其他数列。

这种数列一般难题也较多。

相关文档
最新文档