Cantor集与Cantor函数
十二个不可积分函数

十二个不可积分函数1. Dirichlet函数:定义在实数集上的函数,对于有理数为1,对于无理数为0。
2. Thomae函数:定义在实数集上的函数,对于有理数1/n(n为正整数),为1/n,对于无理数为0。
3. Riemann函数:定义在实数集上的函数,对于有理数1/n(n为正整数),为1/n,对于无理数为14. Thomae反例函数:定义在实数集上的函数,对于有理数,如果该有理数可以表示为a/b(a、b互质且b>0),则f(x)=1/b;对于无理数,f(x)=0。
5.欧拉函数:定义在正整数集上的函数,表示小于等于n且与n互质的正整数的个数。
6.莫比乌斯函数:定义在正整数集上的函数,根据n的素因子分解形式确定。
如果n有平方因子,则f(n)=0;如果n是不同素数的乘积且素数个数为奇数,则f(n)=-1;如果n是不同素数的乘积且素数个数为偶数,则f(n)=17. Sierpinski函数:定义在实数集上的函数,对于有理数,如果该有理数可以表示为a/b(a、b互质且b>0),则f(x)=1/b^2;对于无理数,f(x)=0。
8. Weierstrass函数:定义在实数集上的函数,为以2^(-n)cos(3^n x)的无穷和。
9. Cantor函数:定义在实数集上的函数,是一个实数x在Cantor集合中的特征函数。
10.不连续开关函数:定义在实数集上的函数,当x为有理数时为1,当x为无理数时为0。
11.阶梯函数:定义在实数集上的函数,在n为整数的区间[n,n+1)上取常数值n。
12. Riemann定积分不可积函数:定义在实数集上的函数,只在一列分割区间中有限个点的函数。
(5分)cator集和cator函数

它的生成方法是把一条直线等分成三段,将中间一段用夹角为600的二条等长(1/3)的折线来代替,形成一个生成单元,如图(b).然后再把每一条直线段用生成单元进行代替,经过无穷多次迭代后就呈现一条无穷多弯曲的koch曲线。用它来模拟自然界中的海岸线是相当理想的。
4.2.1自相似性
一个系统的自相似性是指某种结构或过程的特征从不同的空间尺度或时间尺度来看都是相似的,或者某系统或结构的局域性质或局域结构与整体类似。另外,在整体与整体之间或部分与部分之间,也会存在自相似性。一般情况下自相似性有比较复杂的表现形式,而不是局域放大一定倍数以后简单地和整体完全重合。人们在观察和研究自然界的过程中,认识到自相似性可以存在于物理、化学、天文学、生物学、材料科学、经济学,以及社会科学等众多的科学之中,可以存在于物质系统的多个层次上,它是物质运动、发展的一种普遍的表现形式,即是自然界普遍的规律之一。下面举几个例子来说明自相似性。
二.Cantor集与Cantor函数的基本性质
三.借助于Cantor集,给出一孤立点集,其导集是完备集
四.分形的介绍
五.纬度——性质测量工具
六.关于Cantor和纬度相关的考虑
一.Cantor集与Cantor函数的定义
1、Cantor集的定义
将基本区间[0,1]用分点1/3,2/3三等分,并除去中间的开区间 ,把余下的两个闭区间各三等分,并除去中间的开区间 , ,然后再将余下的四个闭区间用同样的方法处理。 这样,当进行到n次时,一共去掉 个开区间 如此下去,就从 中去掉了可数个不相交的开区间
一类Cantor函数不可微点集合的Hausdorff维数

一类Cantor函数不可微点集合的Hausdorff维数自相似集是分形几何中最简单,最经典的分形集.对经典Cantor三分集以及它的一些推广的研究是分形几何研究的热点问题,我们对经典三分Cantor集的测度已经进行了大量而深入的研究.利用数的三进制展式,我们可以计算出经典三分Cantor集的Hausdorff维数为ln2/ln3.关于经典三分Cantor集,我们对它的研究不仅仅限于最初的测度计算和维数的证明.而很多学者对于Cantor函数不可微点的研究产生了很大的兴趣.其中对相应的Cantor函数的不可微点的研究具有重要意义.1995年, Darst证明了经典三分Cantor集的Cantor函数的不可微点集合的Haus-dorff维数是(ln2/ln3)2,并提到这一结论可以推广到一般的Cantor函数.2005年,李文侠老师对Cantor函数不可微点的集合作出了全面而完善的研究.本文主要是根据Darst的方法,利用五进制,研究Cantor五分集的Cantor函数的不可微点集合的Hausdorff维数.本文首先介绍了Cantor函数不可微点的研究背景.第二部分,我们引述了Hausdorff测度与维数基本性质.第三部分,利用数的五进制展式,给出Cantor五分集的Cantor函数的不可微点的刻画,即S=N+∪N∪{C的端点值},其中其中N+:对于C的非端点值,当函数f(x)右上导数无穷的点时,其右下导数有限, N:对于C的非端点值,当函数f(x)左上导数无穷的点时,其左下导数有限.并计算Cantor五分集的Cantor函数的不可微集合的Hausdorff维数.第四部分,对全文进行总结和展望.。
Cantor集、连续延拓定理

Cantor集、连续延拓定理Cantor集对[0,1]区间三等分, 去掉中间⼀个开区间, 然后对留下的两个闭区间继续三等分,去掉中间的开区间, 不断做下去, 最后留下来的点集称为Cantor 三分集, 记为C.它的性质(1) 分割点⼀定在Cantor集中,(2) C的"长度"为0,去掉的区间长度和$$\sum{\infty}_{n=1}\frac{1}{3n}\cdot 2^{n-1}=\frac{\frac{1}{3}}{1-\frac{2}{3}}=1.$$(3) C没有内点证明:对任意x∈C, x必被含于在第n次时留下的2n个长为1/3n的互不相交的某个闭区间I(n)i中,∀ε>0,1/3n<ε,I(n)i⊂B(x,ε),但由Cantor集的做法,要继续三等分去掉中间的⼀个开区间, 从⽽B(x,ε)内⾄少有⼀点不属于C, 所以x不可能是C的内点.(4) C中的点都是聚点, 从⽽没有孤⽴点.数的进制⼗进制⼩数:相应于对[0,1]⼗等分⼆进制⼩数:相应于对[0,1]⼆等分说明:对应于[0,1]⼗等分的端点有两种表⽰,如0.2000000..., 0.1999999...(⼗进制⼩数)(5) C的基数为ℵ,(利⽤三进制证明)证明思路:把[0,1]区间中的点都写成三进制⼩数, 则Cantor集的做法中去掉的点为⼩数位出现1的数的全体, 从⽽Cantor集为⼩数位只是0,2的点的全体,做对应X∈P→x=∞∑k=1a k3k(ak=0,2).说明:三等分的端点有必要特殊考虑, 因为它有两种表⽰,0.100000...=0.022222..., 0.200000...=0.122222...对x∈C, 令A={k|a k=0},则A⊂N+.对应关系x→A构成了C到P(N+)的⼀⼀映射.第⼀章集合与点集第六节点集间的距离定义1.16 设E⊂R n, f是定义在E上的实值函数, x0∈E, 若∀ε>0,∃δ>0,使得x∈E∩B(x0,δ)时候,|f(x)−f(x0)|<ε.称为f在x0点处连续.注:若f在E上连续, ⽽E0⊂E, 则f在E0连续.定理1.22 若E1,E2是闭集, f定义于E1∪E2上, 且分别在E1,E2上连续, 则f相对于E1∪E2也⼀定连续.证明:若x∈E1∪E2. 不妨设它为聚点, 因为E1,E2为闭集, 则E1∪E2内任⼀以x0为极限的点列{y k}只能有两种情况:其⼀, 从某⼀项起, 全部y k属于E1或E2(相应x0∈E1或x0∈E2.)容易证明.其⼆, {y k}由两个分别属于E1,E2的⽆穷⼦列组成, 此时, x0∈E1∪E2, 因为lim因此\lim\limits_{k\to\infty} f(y_k)=f(x_0).定理1.23 设f是\mathbb{R}^n中有界闭集E上的连续函数, 则(1) f在E上有界(2) f在E上取得最⼤值和最⼩值(3) f在E上⼀致连续定理1.24 设E\subset\mathbb{R}^n, f_1,f_2,\cdots是E上的连续函数列, 且k\to\infty时, \{f_k\}在E上⼀致收敛到函数f, 则f在E上连续.例20 对于任意的x_0\in\mathbb{R}^n, E\subset\mathbb{R}^n, 定义x_0到E的距离为d(x_0,E)=\inf\{d(x_0,y)|y\in E\}.证明:(1)若E是闭集, 则存在y_0\in E, 使得d(x_0,y_0)=d(x_0,E).对于任意点集A, B, 定义A, B之间的距离为d(A,B)=\inf\{d(x,y)|x\in A,y\in B\}.证明:(2)若A和B都是闭集, 其中⾄少有⼀个有界, 则存在x_0\in A, y_0\in B, 使得d(x_0,y_0)=d(A,B).集合的简单写法:{x\in E|f(x)>a}:=E(f>a).定理1.25 若函数f在E上连续, 则对任意的实数a, 存在开集G_a\subset\mathbb{R}^n, 使得E(f>a)=G_a\cap E.也存在开集H_a\subset\mathbb{R}^n, 使得E(f<a)=H_a\cap E.证明:对任意x\in E(f>a), 由于f在E上的点x连续, 必存在\delta=\delta(x,a)>0,使得y\in E\cap B(x,\delta)时, f(y)>a.因此若令G_a=\bigcup_{x\in E(f>a)} B(x,\delta), 则G_a是开集, 并且E(f>a)=G_a\cap E.同理可证, H_a.推论1 若函数f在E上连续, 则对任意的实数a, 存在闭集F_a\subset\mathbb{R}^n, 使得E(f\geq a)=F_a\cap E.也存在开集K_a\subset\mathbb{R}^n, 使得E(f\leq a)=K_a\cap E.推论2 若f在开集E连续, 则对于任意实数a, E(f>a)和E(f<a)是开集, 若函数f在闭集E上连续, 则对于任意实数a, E(f\geq a), E(f\leq a)是闭集.定理1.26 若f是\mathbb{R}^n的函数, 则对于任意实数a, E(f>a), E(f<a)总是开集, 则f在\mathbb{R}^n上连续. (开集与开集的交是开集,闭集与闭集的交为闭集)连续延拓定理引理:若F_1,F_2是\mathbb{R}^n中的两个不交的⾮空闭集, 则有连续函数f(x), 使得(1) 0\leq f(x)\leq 1(x\in\mathbb{R}^n);(2) F_1=\{x: f(x)=1\}, F_2=\{x: f(x)=0\}.证明:构造函数f(x)=\frac{d(x,F_2)}{d(x,F_1)+d(x,F_2)}, x\in\mathbb{R}^n.定理1.27 连续延拓定理:若F是\mathbb{R}^n中的闭集, f(x)是F上的连续函数, 且|f(x)|\leq M(x\in F),则存在\mathbb{R}^n上的连续函数g(x)满⾜|g(x)|\leq M, g(x)=f(x), x\in F.证明:把F分成三个点集:A=\{x\in F:M/3\leq f(x)\leq M\},B=\{x\in F:-M\leq f(x)\leq -M/3\},C=\{x\in F:其他\}.并作函数g_1(x)=\frac{M}{3}\cdot\frac{d(x,B)-d(x,A)}{d(x,B)+d(x,A)},x\in\mathbb{R}^n.Loading [MathJax]/jax/element/mml/optable/BasicLatin.js。
Cantor集的结构及应用

八个 区间的每 一个 再 进 行 十等 分 , 去掉 各 自的第
七个 左开 右 闭区间 以 及第 八 个 左 闭 右 开 区 间 , 即 又去 掉一 个大 的开 区间 。 于是表 示式 中 a =6或
E={ ∈[ 0 , 1 ] : =∑a n / 1 0 ,
要 特 例 的基 础 .
1 / p 的 同心开 区 间 ; 第 三步 , 在 留存 的 四个 闭区 间
中再 移去 长 度 为 1 / p 的 同 心 开 区间 ; …・ 一 . 继 续
此过 程 , 可得 一列 移 去 的 开 区间 , 记 其 并 集 为 G ( 开集 ) , 则 G 的总 长 度 为 . 我们 称 C 。= [ 0 , 1 ] \ G为类 C a n t o r 集 ( 当P=3 时, C 。 就是 C a n t o r
两 个 闭 区间各 三 等分 , 去掉 中间的 两个 开 区间 , 即
更 一般 的 , 已有 文献 对 [ 0, 1 ]做 相关 的构
造, 所得 到 的点集 也 具 有 C a n t o r 三 分 集完 全 相 同
( 吉 , 吾 ) , ( 吾 , 詈 ) . 一 般 地 , 当 进 行 到 第 n 次 时 , 一 3 C a n t o r 集构 造拓展后 的应用
共去掉 2 个开区间, 剩下 2 个 长 度 是 3 的互
的奇特 实数 都 可 以唯一 地 表示 为 p 进位 正规 表示 J , 其 中 p是 任 意 的 大 于 1的正 整 数. C a n t o r 三分 集 与三 进 位 中用 不 着 数 字 1的小 数集 之 间有对 应 关 系 . 将[ 0 , 1 ]中 的实 数 按 三进 位小 数展 开 , 则 C a n t o r 集 中点 与 下 述 三进 位 小
康托尔集的性质及应用

康托尔集的性质及应用1 Cantor集的概念及性质1.1 Cantor集的概念我们先来回忆一下康托尔集的作法。
12将闭区间三等分,去掉中间的开区间,剩下两个闭区间[0,1](,)3312。
又把这两个闭区间各三等分,去掉中间的两个开区间,即[0,],[,1]33 1278n,1n。
一般地,当进行到第n次时,一共去掉个开区间,剩下个22(,),(,)9999n,n长度是的相互隔离的闭区间,而在第n+1次时,再将这2个闭区间各三等分,3并去掉中间的一个开区间,如此继续下去,就从去掉了可数个互不相交(而[0,1]且没有公共端点)的开区间。
剩下的集合称为康托尔集,记为P。
Cantor集是一个完全集,为具有连续基数的点集和不可数的零测度集,其性质在对许多问题的讨论中都起着很大的作用,也常是构造反例的基础,其特殊的构造过程和算术结构使它有许多奇特的性质.1.2 集合的性质Cantor集具有如下性质:非空有界闭集;具有连续基数,其基数为c;完备集,亦即为无孤立点的闭集,被挖去的开集G没有相邻接的构成区间;疏朗集;可测集且异常的公式结尾函数Lebesgue可积且积分值为零;P上的任何函数均是可测函数,零测度集上的任何函数均是可测函数。
下面我们从康托尔集合的做法中讨论一下它的性质,仅供读者学习实变函数论之参考。
2 Cantor集性质的应用2. 1 研究集合的有关性质为了推广区间长度的概念,对一般点集建立一种能反映集合的“容量”与长度概念相当的度量,这种度量既要发展长度的概念,又必须保留长度概念的某些最基本的性质,也就是集合的“测度”,测度理论是建立新型积分理论的基础.,定理1 对任何非负数,,,可作[,]ab的一个完备疏朗集E,0,,,llba,,使。
mE,,证明按下面的步骤完成E的构造:,,lG[,]ab第1步:在的中心处挖去的长度为的开区间,该开区间记为; 13l,,1第2步:在余下的两个闭区间中分别挖去其中心处的长度为,的开区33 G间,这些开区间的并记为; 2………l,,1n,1n,12第n步:在余下的个闭区间中,分别挖去其中心处的长度为的开,()33n,1G2区间,记这个互不相交的开区间之并为。
cantor函数开题报告

cantor函数开题报告Cantor函数开题报告一、引言在数学领域中,有一类特殊的函数引起了学者们的广泛关注,它们被称为分形函数。
分形函数以其独特的性质和形式引发了无数的研究和探索。
其中,Cantor函数是一种经典的分形函数,具有许多有趣的性质和应用。
本报告旨在介绍Cantor函数的定义、性质和应用,以及相关的研究进展。
二、Cantor函数的定义Cantor函数最早由德国数学家Georg Cantor在19世纪末提出。
它是一个定义在闭区间[0,1]上的函数,其定义如下:1. 在[0,1]的中间点1/3处,函数值为1/2;2. 在[0,1]的中间点2/3处,函数值为1/2;3. 在[0,1]的其他点上,函数值按照以下规则递归定义:a) 如果该点在[0,1]的左1/3处,则函数值为前一点的函数值的1/2;b) 如果该点在[0,1]的右1/3处,则函数值为前一点的函数值的1/2加上1/2。
三、Cantor函数的性质Cantor函数具有多个引人注目的性质,其中一些是:1. 介值性:Cantor函数的值域是[0,1],它能够覆盖整个区间;2. 不连续性:Cantor函数在[0,1]的无理数点上处处不连续,只在有理数点上连续;3. 严格递增性:Cantor函数在[0,1]上是严格递增的,即对于任意x1<x2,有f(x1)<f(x2);4. 可微性:Cantor函数在[0,1]的大部分点上都不可微,只在少数点上可微。
四、Cantor函数的应用Cantor函数作为一种特殊的分形函数,在实际应用中有着广泛的用途。
以下是一些Cantor函数的应用案例:1. 数据压缩:Cantor函数可以用于数据的压缩和编码,通过将数据映射到Cantor函数的值域上,实现数据的高效存储和传输;2. 图像处理:Cantor函数可以用于图像的压缩和分形编码,通过对图像的每个像素点应用Cantor函数,实现图像的分形压缩和重构;3. 金融建模:Cantor函数可以用于金融市场的建模和预测,通过分析金融时间序列数据的Cantor函数特征,提供对市场波动和趋势的预测;4. 模拟算法:Cantor函数可以用于模拟算法的设计和优化,通过利用Cantor函数的性质,提高模拟算法的收敛速度和精度。
广义Cantor集

广义Cantor 集张北一中 郭彦军摘要:本文考察了包括直线上的各种广义Cantor 集,由相似变换导出它们的级数表达式,给出它们维数的定义及计算方法,并考察了它们的性质。
关键词:广义Cantor 集;迭代函数系;Hausdorff 维数 1.定义:选取[]1,0区间作为初始元,然后进行m 等分,从中选取l 个小闭区间作为生成元,如此生成的分形集我们称之为广义Cantor 集,记作C 。
2.迭代函数系:广义Cantor 集C 的构造过程可描述为迭代函数系ma x m x f ma x m x f ma x m x f l l +=+=+=1)(1)(1)(2211[]1,0=∈I x其中i a 取}{1,2,1,0-m 中的某些值,l i ,2,1=。
即广义Cantor 集满足l 个相似变换: ma mf x ii +==ξξ)( l i ,2,1= , 10≤≤x ,10≤≤ξ。
3.将[]1,0区间推广到任意区间[]b a ,: 首先我们给出这样一个一一对应:x a b a y )(-+= []1,0=∈I x则mb a a a m m a a b a m b i i i i +-=-+=)()( 下面给出任意区间[]b a ,上的相似变换:mb mag y ii +-==ηη)( b a ≤≤η b y a ≤≤ i b 取}{b m a b a m ma )1(,)1(,-++- 中的某些值。
4.广义Cantor 集的级数表示:首先回顾一下广义Cantor 集的定义过程:第一次生成l 个闭区间⎥⎦⎤⎢⎣⎡++=m m a ma F i i i 1,0)1()1(,1 {}l i a a a a ,,21)1(∈区间长度为mL 11=。
第二次对每个小闭区间i F ,1进行m 等分,从中选取l 个闭区间,得2l 个闭区间2)2()1()2()1()1()1(*)1(ma m a m a m a m m a m a i i i i i i +=-++ 则⎥⎦⎤⎢⎣⎡+++=22)2()1(2)2()1(,21,m m a m a m a m a F i i i i i }{l i i a a a a a ,,,21)2()1(∈区间长度为=2L 21m 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Cantor 集与Cantor 函数【摘要】:本文详细分析并证明cantor 集与cantor 函数的定义与性质,具体内容有:cantor 集的完备性,具有连续统势;cantor 函数的性质,解决了课堂上的小问题(关于cantor 函数的连续性与稠密性);并借助于cantor 集,给出一个孤立点集,它的导集是一个完备集;最后给出了一些常见的分形。
【关键词】:Cantor 集、Cantor 函数、分形、点集、完备集1 Cantor 集与Cantor 函数的定义1.1 Cantor 集的定义将基本区间A=[0,1]三等分,除去中间的开区间)3231(11,,=I ,记其剩余部分为⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=1,323101Y ,E ;再将1E 中的两个闭区间各三等分,然后分别去掉中间的开区间)3837()3231(222,2221,2,,,==I I ,然后记其剩余部分为⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=1383732313231022222,,,,Y Y Y E 。
如此继续下去,在第n 步时,去掉的开区间为)313323()3837()3231(12,2,1,n n n n n n n n n n n n I I I --===-,,,,,,Λ。
其余部分为n 2个长为n 31的闭区间,令Y Y n m k k m n mI G 1121,=-==又令Y Y k n k n n n I G G ,,1==∞=,G C \]10[,=,则称所得的C 为Cantor 集。
1.2 Cantor 函数的定义将基本区间A=[0,1]三等分,并除去中间的开区间,同时令把余下的两个闭区间各三等分,并除去中间的开区间)3837()3231(222,2221,2,,,==I I 同时令然后再将余下的四个闭区间用同样的方法处理。
这样,当进行到n次时,一共去掉了个开区间此时令下面我们定义如下函数:f=这个函数f(x)就是Cantor函数。
2 Cantor集与Cantor函数的基本性质2.1 Cantor集的性质2.1.1 完备性Cantor集是完备集:引理:F G,则F是完备集的充分必要条件是是至多可数个两两不相交且无公共端点的开区间的并,即两两不相交且无公共端点。
证明:Cantor集C明显满足上述条件G=[0,1]\C故:R-C=G而:G=(,)∪(,)∪(,)∪(,)∪(,)∪(,)∪(,)∪......为两两不相交且没有公共端点的开区间的并。
故C为完备集2.1.2 Cantor集是疏集,没有内点证明:假设是C的内点,则存在,使得这样含于[0,1]中且这个开集的各个构成区间互不相交,这些区间的长度之和大于1,矛盾。
由C是疏集。
2.1.3 G=[0,1]\C是[0,1]中的稠密集即证明证明:易得,下面证明反证法,任取x且x,则存在x的一个邻域,其中不含有G 的点。
可得这个领域在C内。
又,故x C,所以x是C中的内点。
与C是疏集矛盾。
所以。
故,G是[0,1]中的稠密集,证毕。
2.1.4 C具有连续统势由上述性质,似乎Cantor完备集中没有多少点了!但事实上不然,下面证明其有连续统势。
证明:由定理可得,(0,1)与无限n元数列全体等价。
所以,(0,1)中每一点x,有惟一的一个无限三元数列,使(1)现在对中所有的点x必定,对及中所有的点x必定,中所有的点x必定,等等。
即对G中所有的点x,(1)中所有对应的中必有等于1的项。
因此(1)中仅由0和2构成的无限三元数列所对应的x都在C 中。
而这样的全体有连续统势。
证毕.2.2 Cantor函数的性质(关于课堂小问题:Cantor函数的连续性和稠密性)2.2.1 Cantor函数是[0,1]上的单增函数由其构造方法易得这个性质,在这里就不证明了2.2.2 Cantor函数是[0,1]上的连续函数引理:f是[a,b]单增实值函数,f([a,b])是区间[f(a),f(b)]的稠子集,则f连续证明引理:首先证明f在x=a连续。
由假设知对于任意的,存在y,使得利用f的单调性知道:当a x y时这样f在x=a连续,同理可证明f在x=b连续。
现在取我们只要证明:明显:,假如二者不相等,则有这样我们可以取数和,使得这个,但是对于任意的x这和f([a,b])在[f(a),f(b)]中稠密矛盾。
同理可证明。
证明Cantor函数是[0,1]上的连续函数:因为:对任意的x,的一个自然数n.不妨设,则。
故:在[0,1]中稠密,因此f([0,1])是[0,1]的稠密子集。
得用上述引理,f是[0,1]是的连续函数。
3借助于Cantor集,给出一孤立点集,其导集是完备集Cantor集C的余集的构成区间的中点集合是孤立点集并且它的的导集是完备集。
证明:设G=[0,1]\C,则:G=(,)∪(,)∪(,)∪(,)∪(,)∪(,)∪(,)∪......设F是G的构成区间的中点组成的集合,对任意的x F,x是G中某个开区间E的中点,故必然存在中,而G是两两不相交的开区间的并,故区间中不会含有除x外的F中的点,由x的任意性,F是孤立点集。
下面证明对任意的x,x的任邻域中有F的无限个点,所以;反过来,我们记:记为构造Cantor集的过程中第二次去掉开区间后剩下的[0,1]区间中的部分,也就是说:一般地,记为构造Cantor集的过程中第n次去掉开区间后剩下的[0,1]区间中的部分,则表示的各个闭区间去掉中间1/3长度的开区间后剩下的部分,不难发现:假如,则对于任意的,以及满足的一个自然数n,由于,x一定属于组成的某个闭区间,注意到包含了G的无限多个构成区间,所以中有F的无限个点。
于是x,这样就证明了4从Cantor集到分形4.1 分形简介分形Fractal,来自拉丁文Fractals,意思是含有断裂和碎片。
它的创始人是美籍数学家曼德尔伯罗特。
他在1967年发表了题为《英国的海岸线有多长?》的著名论文。
海岸线作为曲线,其特征是极不规则、极不光滑的,呈现蜿蜒复杂的变化。
我们不能从形状和结构上区分这部分海岸与那部分海岸有什么本质的不同,这种几乎同样程度的不规则性和复杂性,说明海岸线在形貌上是自相似的,也就是局部形态和整体态的相似。
目前对分形还没有严格的数学定义,只能给出描述性的定义。
粗略地说:1.分形是对没有特征长度但具有一定意义下的自相似图形和结构的总称;2.分形是整体与局部在某种意义下的对称性的集合;3.分形是具有某种意义下的自相似集合;4.分形是其豪斯道夫维数严格大于其拓扑维数的集合。
分形可以是自然存在的,也可以是人造的。
树木、山川、云朵、闪电、星系、大脑皮层……都是典型的分形标准的自相似分形是数学上的抽象,迭代生成无限精细的结构,如Koch雪花曲线、谢尔宾斯基(Sierpinski)地毯曲线等。
4.2 分形的基本性质总的说来分形一般有以下特质:在任意小的尺度上都能有精细的结构;太不规则,以至难以用传统欧氏几何的语言描述;(至少是大略的或任意的)自相似;有着简单的递归定义。
(1)分形集都具有任意小尺度下的比例细节,或者说它具有精细的结构。
(2)分形集不能用传统的几何语言来描述,它既不是满足某些条件的点的轨迹,也不是某些简单方程的解集。
(3)分形集具有某种自相似形式,可能是近似的自相似或者统计的自相似。
(4)一般,分形集的“分形维数”,严格大于它相应的拓扑维数。
(5)在大多数令人感兴趣的情形下,分形集由非常简单的方法定义,可能以变换的迭代产生。
4.3 一些常见分形4.3.1 Koch 曲线给定线段,科赫曲线可以由以下步骤生成:1.将线段分成三等分。
2.以中间为底,向外或向内画出一个等边三角形。
3.将底边移去。
分别对每边重复步骤1-3.。
该曲线是第一个人为构造的具有局部与整体相似的结构,被称为自相似结构。
4.3.2 门格尔海绵门格尔海绵由以下步骤生成:从一个正方体开始。
把正方体的每一个面分成9个全等正方形。
这样,原正方体将会被分成27个小正方体。
把每一面的中间的正方体去掉,中间的正方体也去掉,这样留下20个小正方体。
把每一个留下的小正方体都重复第1-3个步骤。
4.3.3 塞宾斯基三角塞宾斯基三角有以下步骤生成:1.取一个实心的三角形。
(多数使用等边三角形)2.沿三边中点的连线,将它分成四个小三角形。
3.去掉中间的那一个小三角形。
4.对其余三个小三角形重复1-3。
4.3.4 塞宾斯基地毯。
生成方法:将一个实心正方形划分为9个小正方形,去掉中间的小正方形,再对余下的小正方形重复这一操作便能得到谢尔宾斯基地毯。
4.3.5 此外还有其他的分形,比如:三位谢氏塔、洛伦次曲线、四方内生树、曼德勃罗集等。
【参考文献】[1]胡国恩、王鑫、刘宏奎,实变函数,西安电子科技大学出版社,2014.8[2]周性伟、孙文昌,实变函数(第三版),科学出版社,2014.5[3]周民强,实变函数论[M] ,北京大学出版社,2001[4]百度文库。