(20秋)六数举一反三第3周课件“简便运算(二)”
小学六年级奥数举一反三

1
编辑ppt
2
定义新运算是指运用某种特殊符号来表示特定的意义,从而 解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义, 然后严格按照新定义的计算程序,将数值代入,转化为常规 的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是 一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中 的“+、-、×、÷”不同的。
2.规定,
那么8*5=________。
3.如果 2*1=1/2, 3*2=1/33,4*3=1/444,那么( 6*3)÷ (2*6)=________。多少分?
编辑ppt
9
【例题4】规定②=1×2×3,③=2×3×4 ,④=3×4×5,⑤ =4×5×6,……如果1/⑥-1/⑦ =1/⑦×A,那么,A是几?
编辑ppt
66
【练习2】用两种方法解答下面各题: 1.一堆黄沙30吨,第一次用去总数的1/5,第二次用去的是 第一次的1又1/4倍,第二次用去黄沙多少吨?
3.设a*b=3a-b×1/2,求(25*12)*(10*5)。
编辑ppt
5
【例题2】 设p、q是两个数,规定:p△q=4×q-(p+q)÷2。 求3△(4△6)。 【思路导航】根据定义先算4△6。在这里“△”是新的运算 符号。3△(4△6) =3△【4×6-(4+6)÷2】 =3△19 =4×19-(3+19)÷2 =76-11 =65
编辑ppt
13
第2周 简便运算(一)
编辑ppt
14
根据算式的结构和数的特征,灵活运用运算法则、定律、性 质和某些公式,可以把一些较复杂的四则混合运算化繁为简, 化难为易。
小学奥数六年级举一反三1-5

第一周 定义新运算专题简析:定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些特殊算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、等,这是与四则运算中的“∆、#、*、·”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
例题1。
假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
13*5=(13+5)+(13-5)=18+8=26 5*4=(5+4)+(5-4)=1013*(5*4)=13*10=(13+10)+(13-10)=26练习11..将新运算“*”定义为:a*b=(a+b)×(a-b).求27*9。
2.设a*b=a 2+2b ,那么求10*6和5*(2*8)。
3.设a*b=3a -12×b ,求(25*12)*(10*5)。
例题2。
设p 、q 是两个数,规定:p △q=4×q-(p+q)÷2。
求3△(4△6). 3△(4△6).=3△【4×6-(4+6)÷2】 =3△19=4×19-(3+19)÷2 =76-11 =65 练习21. 设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。
2. 设p 、q 是两个数,规定p △q =p 2+(p -q )×2。
求30△(5△3)。
3. 设M 、N 是两个数,规定M*N =M N +N M ,求10*20-14。
例题3。
如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44。
小学奥数六年级举一反三1-5

精心整理第一周定义新运算专题简析:定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些特殊算式的一种运算。
练习11..将新运算“*”定义为:a*b=(a+b)×(a-b).求27*9。
2.设a*b=a2+2b,那么求10*6和5*(2*8)。
3.设a*b=3a-×b,求(25*12)*(10*5)。
例题2。
设p、q是两个数,规定:p△q=4×q-(p+q)÷2。
求3△(4△6). 3△(4△6).=3△【4×6-(4+6)÷2】=3△19210*2=210+210210=210420练习31.如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,…..那么,4*4=?,18*3=?2.规定a*b=a+aa+aaa+aaa+aaaa……..a,那么8*5=?(b-1)个a×7,…..如果⑩)+=×□,那么□=?。
3.如果1※2=1+2,2※3=2+3+4,….5※6=5+6+7+8+9+10,那么x※3=54中,x=?例题5设a⊙b=4a-2b+ab,求x⊙(4⊙1)=34中的未知数x。
4⊙1=4×4-2×1+×4×1=16X⊙16=4x-2×16+×x×16=12x-32X=5.5=13-11=2练习1计算下面各题。
1.6.73-2+(3.27-1)2.7-(3.8+1)-13.14.15-(7-6)-2.1254.13-(4+3)-0.75 例题2。
计算333387×79+790×66661原式=333387.5×79+790×66661.25计算:1.45×2.08+1.5×37.62.52×11.1+2.6×7783.48×1.08+1.2×56.84.72×2.09-1.8×73.6 例题4。
小学奥数举一反三(六年级)1-20

小学奥数举一反三(六年级)1-20六年级数学奥数举一反三(上册)第1讲定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】这题新运算被定义为:a*b等于a和b两数之和加上两数之差。
这里“*”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在13*(5*4)中,就要先算小括号里的(5*4)。
练习1:1.将新运算“*”定义为:a*b=(a+b)×(a-b).。
求27*9。
2.设a*b=a2+2b,那么求10*6和5*(2*8)。
3.设a*b=3a-b×1/2,求(25*12)*(10*5)。
【例题2】设p、q 是两个数,规定:p△q=4×q-(p+q)÷2。
求3△(4△6)。
【思路导航】根据定义先算4△6。
在这里“△”是新的运算符号。
练习2:1.设p、q是两个数,规定p△q=4×q-(p+q)÷2,求5△(6△4)。
2.设p、q 是两个数,规定p△q=p2+(p-q)×2。
求30△(5△3)。
3.设M、N是两个数,规定M*N=M/N+N/M,求10*20-1/4。
【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
六年级奥数(举一反三版)

- 1 -第1讲 定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】这题的新运算被定义为:a*b 等于a 和b 两数之和加上两数之差。
这里的“*”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在13*(5*4)中,就要先算小括号里的(5*4)。
练习1:1.将新运算“*”定义为:a*b=(a+b)×(a-b).。
求27*9。
2.设a*b=a2+2b ,那么求10*6和5*(2*8)。
3.设a*b=3a -b ×1/2,求(25*12)*(10*5)。
【例题2】设p 、q 是两个数,规定:p △q=4×q-(p+q)÷2。
求3△(4△6)。
【思路导航】根据定义先算4△6。
在这里“△”是新的运算符号。
练习2:1.设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。
2.设p 、q 是两个数,规定p △q =p2+(p -q )×2。
求30△(5△3)。
3.设M 、N 是两个数,规定M*N =M/N+N/M ,求10*20-1/4。
【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
六年级奥数(举一反三版)

第1讲 定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】这题的新运算被定义为:a*b 等于a 和b 两数之和加上两数之差。
这里的“*”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在13*(5*4)中,就要先算小括号里的(5*4)。
练习1:1.将新运算“*”定义为:a*b=(a+b)×(a-b).。
求27*9。
2.设a*b=a2+2b ,那么求10*6和5*(2*8)。
3.设a*b=3a -b ×1/2,求(25*12)*(10*5)。
【例题2】设p 、q 是两个数,规定:p △q=4×q-(p+q)÷2。
求3△(4△6)。
【思路导航】根据定义先算4△6。
在这里“△”是新的运算符号。
练习2:1.设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。
2.设p 、q 是两个数,规定p △q =p2+(p -q )×2。
求30△(5△3)。
3.设M 、N 是两个数,规定M*N =M/N+N/M ,求10*20-1/4。
【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
六年级举一反三A版 word版

第一周 定义新运算例1。
假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
练习11..将新运算“*”定义为:a*b=(a+b)×(a-b).求27*9。
2.设a*b=a 2+2b ,那么求10*6和5*(2*8)。
3.设a*b=3a -12×b ,求(25*12)*(10*5)。
例2。
设p 、q 是两个数,规定:p △q=4×q-(p+q)÷2。
求3△(4△6).练习21. 设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。
2. 设p 、q 是两个数,规定p △q =p 2+(p -q )×2。
求30△(5△3)。
3. 设M 、N 是两个数,规定M*N =M N +N M ,求10*20-14。
例3。
如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44。
那么7*4=?,210*2=?练习31. 如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,…..那么,4*4=?2. 规定a*b=a+aa+aaa+aaa+aaaa ……..a,那么8*5=?(b-1)个a3. 如果2*1=12 ,3*2=133 ,4*3=1444 ,那么(6*3)÷(2*6)=?例题4 规定②=1×2×3,③=2×3×4 ,④=3×4×5,⑤=4×5×6,……如果1⑥ -1⑦ =1⑦ ×A ,那么A 是几?练习41. 规定:②=1×2×3,③=2×3×4,④=3×4×5,⑤=4×5×6,……..如果1⑧ -1⑨ =1⑨ ×A ,那么A=?。
小学六级奥数举一反三精品PPT课件

第2周 简便运算(一)
根据算式的结构和数的特征,灵活运用运算法则、定律、性 质和某些公式,可以把一些较复杂的四则混合运算化繁为简, 化难为易。
【例题1】 计算4.75-9.63+(8.25-1.37) 【思路导航】 先去掉小括号,使4.75和8.25相加凑整,再运用减法的性质: a-b-c = a-(b+c),使运算过程简便。所以 原式=4.75+8.25-9.63-1.37 =13-(9.63+1.37) =13-11 =2
3.设a*b=3a-b×1/2,求(25*12)*(10*5)。
【例题2】 设p、q是两个数,规定:p△q=4×q-(p+q)÷2。 求3△(4△6)。 【思路导航】根据定义先算4△6。在这里“△”是新的运算 符号。3△(4△6) =3△【4×6-(4+6)÷2】 =3△19 =4×19-(3+19)÷2 =76-11 =65
定义新运算是指运用某种特殊符号来表示特定的意义,从而 解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义, 然后严格按照新定义的计算程序,将数值代入,转化为常规 的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是 一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中 的“+、-、×、÷”不同的。
【练习1】计算下面各题。
【例题2】
计算 3333871 ×79+790×666611
2
4
原式=333387.5×79+790×66661.25
=(33338.75+66661.25)×790
=100000×790
=79000000
【练习2】
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【举一反三1】
小奥六年级
第3周
1. 23456+34562+45623+56234+62345 222220
2. 45678+56784+67845+78456+84567 333330
3. 124.68+324.68+524.68+724.68+924.68 2623.4
小奥六年级
第3周
【例题2】简便计算 24 ×23.4+11.1×57.6+6.54×28
5
【思路导航】
原式=2.8×23.4+2.8×65.4+11.1×8×7.2 =2.8×(23.4+65.4)+88.8× 7.2 =2.8×88.8+88.8×7.2 =88.8×(2.8+7.2) =88.8×10 =888
小奥六年级
第3周
亚历山大 黄老师
1
小奥六年级
第3周
计算过程中,我们先整体地分析算式的特点, 然后进行一定的转化,创造条件运用乘法分配律来 简算,这种思考方法在四则运算中用处很大。
小奥六年级
第3周
【例题1】 计算:1234+2341+3412+4123
【思路导航】
注意到题中共有4个四位数,每个四位数中都包含 有1、2、3、4这几个数字,而且它们都分别在千位、 百位、十位、个位上出现了一次,根据位值计数的原则, 可作如下解答:
小奥六年级
【举一反三3】计算下面各题。
第3周11小 Nhomakorabea六年级第3周
【例题4】有一串数1,4,9,16,25,36…它们是按
一定的规律排列的,那么其中第2000个数与2001个数
相差多少?
【思路导航】
a2-b2=(a+b) ×(a -b)
20012-20002=2001×2001-20002 =2001×(2000+1)-20002 =2001×2000+2001×1-20002 =2001×2000-20002 +2001 =(2001-2000)×2000 +2001 =1×2000+2001 =2000+2001 =4001
【思路导航】
第3周
原原式式==((原11119999式99992323=++++1111(9)9)99112×2×99××9911239191++99991149499)4-4-92×11×19199494-1 ==11919199992929×3×3+=1+119199199999491249+29+×21×91×931991+991491949-994-9494121+×1919949-4 1 ==11 =1
第3周
2
2.5
3
小奥六年级
第3周
13
小奥六年级
【举一反三4】计算:
1. 19912-19902 3981
2. 99992+19999 1 0000 0000
3. 999×274+6274 28 0000
第3周
小奥六年级
【例题5】 计算:(92 +72 )÷(5 +5 )
79
79
【思路导航】
第3周
小奥六年级
【举一反三5】 计算下列各题。
小奥六年级
【举一反三2】
1. 99999×77778+33333×66666 9999900000
2. 34.5×76.5-345×6.42-123×1.45 246
3. 77×13+255×999+510 256256
第3周
小奥六年级
【例题3】 计算 1993×1994-1
1993+1992×1994