羟基氧化成醛和酮

合集下载

有机化学基础知识点整理酮缩合反应与酮的合成

有机化学基础知识点整理酮缩合反应与酮的合成

有机化学基础知识点整理酮缩合反应与酮的合成酮缩合反应是有机化学中的一种重要合成方法,通过酮缩合反应可以合成酮化合物。

本文将对酮缩合反应和酮的合成进行基础知识点整理。

一、酮缩合反应的机理酮缩合反应是通过醛或酮与羰基化合物中的羰基碳原子上的α-氢发生缩合反应而得到酮化合物的反应。

该反应存在两个步骤:1. 缩合步骤:醛或酮与羰基化合物中的α-氢发生亲核加成反应形成醇。

2. 脱水步骤:醇中的羟基与反应溶剂中的质子发生减水脱水反应生成酮。

二、酮缩合反应的条件酮缩合反应通常在碱性条件下进行,常用的碱催化剂有氨水、氢氧化钠等。

此外,反应溶剂一般选择醇类或水。

三、酮的合成方法1. 利用酮缩合反应合成酮酮缩合反应是一种常用的合成酮的方法,通过选择适当的醛或酮与羰基化合物进行酮缩合反应,可以得到目标酮化合物。

2. 利用烷基化反应合成酮烷基化反应是一种通过引入烷基基团合成酮的方法。

常用的烷基化试剂有甲基锂、亚乙基钠等,可以与酮发生亲核取代反应,得到相应的酮化合物。

3. 利用酸催化的羰基化合物转化合成酮酸催化的羰基化合物转化是一种常用的合成酮的方法,常用的酸催化剂有三氯化铁、硫酸等。

该反应通过羰基化合物发生亲电加成反应,生成相应的酮化合物。

四、酮缩合反应中的应用酮缩合反应在有机合成中具有广泛的应用。

一方面,通过选择不同的醛或酮与羰基化合物进行酮缩合反应,可以合成各种目标酮化合物,从而扩展有机合成的化学空间。

另一方面,酮缩合反应还可以作为进一步反应的前体,为其他合成反应如氧化、还原等提供合适的官能团。

总结:本文对有机化学中的酮缩合反应和酮的合成进行了基础知识点整理。

通过酮缩合反应可以合成酮化合物,该反应具有重要的合成效果和广泛的应用领域。

了解酮缩合反应的机理和条件,以及其他合成酮的方法,有助于深入理解有机化学中的酮合成反应的原理和应用。

醛和酮的氧化和还原(A)

醛和酮的氧化和还原(A)

教学目标:1.熟悉芳醛和脂肪醛氧化反应的异同和羰基的还原方法。

2.掌握醛的化学鉴别方法。

3.了解酮的H2O2氧化制备酯及α-羟基酮特殊氧化。

4.掌握cannizaro反应的原理。

教学重点: 1.醛的氧化。

2.羰基的负氢还原和彻底还原。

教学安排:J1—>J9;30min一、醛的氧化1.空气氧化醛容易被氧化为羧酸。

所以,久置的醛在使用前应重新蒸馏。

这反映出醛基的不稳定性和化学活泼性。

在空气中,醛可被O2按自由基反应机理氧化成酸,芳醛较脂肪醛易被氧化;因为芳醛的羰基较易形成自由基。

2.氧化剂氧化醛可被多种氧化剂氧化成羧酸。

如HNO3、KmnO4、Ma2Cr2O7、CrO3、H2O2、H2O2、Br2、NaOX、活性Ag2O、新生MnO2等等。

一般属离子型氧化反应,脂肪族醛易于被氧化。

较弱的氧化剂,如氢氧化银的氨溶液(称Tollens试剂)可将芳醛或脂肪醛氧化成相应的羧酸,析出的还原性银可附在清洁的器壁上呈现光亮的银镜,常称"银镜反应",可用这个反应来鉴别醛,工业上用此反应原理来制镜。

裴林试剂是硫酸铜与酒石酸钾钠的碱性混合液,二价的铜离子具有较弱的氧化性,它可氧化脂肪醛为脂肪酸,而芳香醛一般不被氧化。

在反应中析出的砖红色氧化亚铜,现象明显,可用于脂肪醛的鉴别:氧化银是一个温和的氧化剂,它可把醛氧化成酸,但不氧化C=C、-OH、C=N等官能团。

例如:二、酮的氧化与醛相比,酮不容易被氧化;强烈的氧化条件下,酮被氧化成小分子的羧酸,这是没有制备意义的。

环酮氧化可生成二元酸,有应用价值。

在工业上,由苯加氢得到的环已烷经催化空气氧化可以得到环已醇及环已酮,环已酮继续被氧化则得到已二酸,后者是合成纤维尼龙-66的原料。

芳酮比芳醛更难于氧化,在强氧化剂作用下,芳酮在羰基处发生C-C键断裂。

如:苯乙酮用冷的KmnO4水溶液氧化时先是生成的苯甲酰甲酸,进一步受热氧化则生成苯甲酸。

醛或酮的α-碳上存在着羟基时,HIO4也可以定量地把它氧化成为小分子的羰基化合物和羧酸。

羟醛缩合反应

羟醛缩合反应
和醛、酮的反应,称为羟醛缩合反应。
O CH3CH
β β α
α
二、羟醛缩合反应的应用
应 用
增长碳链
有活泼的C=O、-OH
和C=C,易于转换成其
它化合物
三、羟醛缩合反应的类型
醛或酮的自身缩合 —— 相同的醛或酮之间
醛或酮的交叉缩合 —— 不同的醛或酮之间
四、提高羟醛缩合反应产率的实验措施
1. 自身缩合 醛
2. 交叉缩合
当两种不同的醛或酮都有α-H原子时,将会有 4 种羟醛缩合的产物。
分离困难,无实际应用价值!

无α-H
醛 +
有α-H

提供羰基
提供α -碳负离子
O HCH
CHO
O
CHO
①无 -H 的醛和有 -H 的酮缩合
CHO
+
O CH3CCH3
HO-
O CH=CHCCH3
苄叉丙酮
+
H2O
(产率78%)
交叉缩合
应用: 增长碳链,制备β-羟基醛(酮)或α,β-不饱和醛(酮) 及其它相关化合物 提高反应产率的实验措施: 改进反应装置or 改变反应物的加料方式 etc.
羟醛缩合反应
陈新
山梨酸
O OH-
2 CH3CHO
CH3CH=CH2CHO
CH3CCH3 Ba(OH)2 8H2O
O CH3CH=CH2CH=CHCCH3
羟醛缩合反应
一、羟醛缩合反应的概念
在稀碱催化下,含有α-H的醛或酮,生成α-碳负离子,进攻另一分子醛或酮
的羰基,发生亲核加成反应,生成β- 羟基醛、酮,或进一步脱水生成α,β-不饱
OH CH3 O

常见醇氧化制备醛酮的方法小结

常见醇氧化制备醛酮的方法小结

常见醇氧化制备醛酮的方法小结醛酮是合成中最重要的中间体之一,由静氧化制备醛酮是有机合成非常常见反应类型。

PCC(PyrindiumCh1orochromate)氧化EtO2C.M p H-eqPCC,CH2%rt,3h,75%PCC可以将伯醇和仲醇氧化成醛和酮。

由于在有机溶剂中反应,一般不会将醇氧化到竣酸。

但当反应体系中有水时,生成的醛酮会形成水合醛或水合酮,进而继续氧化得到竣酸。

因此反应体系中要求无水。

PCC的氧化以均相反应为主,但有的方法是将催化剂吸附于硅胶、氧化铝等无机载体或离子交换树脂等有机高分子载体上,对醇作非均相催化氧化。

后处理简单并可控制反应的选择性。

PDC(pyridiniumdichromate)氧化将口比咤加入到三氧化路的水溶液中有亮黄色的PDC固体生成,PDC溶于有机溶剂,在空气中室温下,易于储存和操作。

在二氯甲烷的悬浮溶液中可以将醇氧化为醛酮(与PCC氧化类似,惰性气体保护避免接触空气中的水。

)oPDC用DMF当溶剂可以将伯醇氧化为酸。

另外3A分子筛,HOAc,PPTS z PTFA,Ac20可以加快PDC 的氧化速度。

反应结束可以用亚硫酸钠快速淬灭反应。

PDC 的氧化能力较PCC 强,其氧化作用一般在中性条件下进行,而PCC 则需在酸性中进行。

因此,对酸不稳定的化合物用PCC 氧化时,必须在醋酸钠存在下进行。

单单只是用PCC 或PDC 的话,伴随着反应的进行,会生成出黑褐色油状残渣。

生成物被这些残渣所包裹,导致产率降低。

像反应溶液中加入适量硅藻土,硅胶或者是分子筛,能够改善这种情况。

Jones 氧化反应(琼斯试剂氧化)acetoneCrO 3 aq.H 2SO 4Jones 氧化反应(琼斯试剂氧化)是珞酸在丙酮中将一级和二级醇分别氧化为竣酸和酮的反应。

Jones 试剂(琼斯试剂),由三氧化铝、硫酸与水配成的水溶液。

DeSS-Martin 局碘烷氧化C 「O3aq.H 2SO 4OH acetone利用三乙酰氧基高碘烷将醇氧化为相应的城基化合物的反应。

人教高二化学选修5有机化学基础-羟醛缩合反应

人教高二化学选修5有机化学基础-羟醛缩合反应

羟醛缩合反应
具有α-H的醛,在稀碱催化下生成碳负离子,然后碳负离子作为亲核试剂对醛酮进行亲核加成,生成β-羟基醛,β-羟基醛受热脱水成不饱和醛。

在稀碱或稀酸的作用下,两分子的醛或酮可以互相作用,其中一个醛(或酮)分子中的α-氢加到另一个醛(或酮)分子的羰基氧原子上,其余部分加到羰基碳原子上,生成一分子β-羟基醛或一分子β-羟基酮。

这个反应叫做羟醛缩合或醇醛缩合(aldol condensation)。

通过醇醛缩合,可以在分子中形成新的碳碳键,并增长碳链。

羟醛缩合反应历程,以乙醛为例说明如下:
第一步,碱与乙醛中的α-氢结合,形成一个烯醇负离子或负碳离子:
第二步是这个负离子作为亲核试剂,立即进攻另一个乙醛分子中的羰基碳原子,发生加成反应后生成一个中间负离子(烷氧负离子)。

第三步,烷氧负离子与水作用得到羟醛和OH。

稀酸也能使醛生成羟醛,但反应历程不同。

酸催化时,首先因质子的作用增强了碳氧双键的极化,使它变成烯醇式,随后发生加成反应得到羟醛。

生成物分子中的α-氢原子同时被羰基和β-碳上羟基所活化,因此只需稍微受热或酸的作用即发生分子内脱水而生成,α,β-不饱和醛。

凡是α-碳上有氢原子的β-羟基醛、酮都容易失去一分子水。

这是因为α-氢比较活泼,并且失水后的生成物具有共轭双键,因此比较稳定。

除乙醛外,由其他醛所得到的羟醛缩合产物,都是在α-碳原子上带有支链的羟醛或烯醛。

羟醛缩合反应在有机合成上有重要的用途,它可以用来增长碳链,并能产生支链。

羟基氧化方法

羟基氧化方法

通过化学氧化与脱氢,可以合成诸如醇、醛、酮、醌、羧酸等含氧化合物以及不饱和结构(如芳烃),是实现官能团转化的重要方法,在药物合成反应中占有重要地位。

其反应对象涵盖了从烷烃、烯烃到醇、醛等多种化合物,而氧化剂更是林林总总。

本章内容,以氧化对象为线索,讨论药物合成中氧化反应。

8.1 烷烃的氧化8.1.1 芳甲烷的氧化芳甲烷氧化可称为侧链氧化,在通常的氧化条件下,芳环一般是稳定的。

氧化芳甲烷可以获得苄醇、芳甲醛和酯等化合物,是将芳烃上的相对惰性的烷基转化为活性官能团的有效方法。

(1) 氧化为醇和酯芳甲烷氧化时易发生深度氧化,但使用硝酸酸铈铵((NH4)2Ce(NO3)6,CAN)或四乙酸铅(Pb(OAc)4,LTA)及四三氟乙酸铅(Pb(OCOCF3)4)一般可获得满意结果。

在含水乙酸中,可生成醇,而醇将部分地被进一步氧化为醛。

LTA的氧化能力弱于CAN,且不够稳定。

其反应可能为自由基机理。

对位供电子基取代的甲苯的反应活性更高,这与自由基的稳定性顺序一致。

如果是单取代的芳甲烷(苄位仅有一个氢原子),可使用更强的氧化剂,如10-甲基蒽酮可被30%H2O2在碱性条件下迅速氧化,其反应机理可能为:(2) 氧化为醛直接氧化芳甲烷为醛的适宜的氧化剂是CAN(+含水乙酸)、CrO3-Ac2O和CrO2Cl2(Etard反应)。

CAN作氧化剂的机理可能为:水与CAN得到羟基自由基,再与苄基自由基结合得到苄醇;然后再氧化下一个氢,得到双羟基苄基化合物(水合醛),最后脱水得到醛。

Etard反应的自由基机理与此类似(形成双铬酸酯然后水解得醛,略),其离子历程为:(2) 氧化为酮和酸直接氧化苄位亚甲基为酮的适宜的氧化剂是CAN(+硝酸)和Cr(VI)盐催化的过氧化物。

CAN(+硝酸)氧化的反应机理可能与氧化苄甲基为醛的机理类似,也就是氧化得到水合酮,再脱水。

Cr(Ⅵ)盐催化的过氧化物氧化的反应机理可以是自由基机理,如CrO3催化下,BuOOH氧化烷基苯为酮的反应过程。

羟基酸和酮酸

羟基酸和酮酸

第10 章羟基酸和酮酸本章重点介绍羟基酸和酮酸命名,相互影响的性质、酸性;脱水反应;转氨作用;脱羧反应;酮酸分解反应;醇酸和酮酸的体内化学过程;前列腺素的结构;酮式- 烯醇式互变异构羧酸分子中烃基上的氢原子被其他原子或原子团取代所形成的化合物称为取代羧酸( substituted carboxylic acid )。

根据取代基的种类不同,取代羧酸可分为卤代羧酸( halogeno acid)、羟基酸( hydroxy acid )、羰基酸( carbonyl acid )以及氨基酸( amino acid )等几类;羟基酸又可分为醇酸( alcoholic acid )和酚酸( phenic acid ),羰基酸又可分为醛酸( aldehydo acid)和酮酸( keto acid )。

取代羧酸分子中除含羧基外,还含其它官能团,因此它是一类具有复合官能团的化合物。

各官能团除具有其特有的典型性质外,由于不同官能团之间的相互影响,还具有某些特殊反应和生物活性。

卤代酸不作专题介绍,氨基酸将在第17 章中讨论,本章只讨论羟基酸和酮酸。

羟基酸广泛存在于动植物体内,它们中有的是动植物体内进行生命活动的物质,有的是合成药物的原料,有的可作为食品的调味剂。

酮酸是人体内糖、脂肪和蛋白质等代谢过程中产生的中间产物。

因此在有机合成及生物代谢中羟基酸和酮酸都是极其重要的化合物。

你在学完本章以后,应该能够回答以下问题:1 .氨基酸的结构特点是什么?可分为几类?如何命名?2 .酸的结构特点分别是什么?可分为几类?如何命名?3.羟基酸和酮酸的重要化学性质是什么?4.哪些因素影响羟基酸酸性?5.α-酮酸的分解为什么比β-酮酸难解?6.何为酮式—烯醇式互变异构现象?酮式—烯醇式互变异构现象产生的原因及条件是什么?7. α- 酮酸氨基化反应的生物学意义是什么?10. 1 羟基酸的结构和命名温习提示:羧酸的命名及结构羟基酸是分子中既含有羟基又含羧基两种官能团的化合物。

醇的氧化-课件(ppt·精选)

醇的氧化-课件(ppt·精选)
指的是醇类化合物在特定条件下与氧化剂发生反应,生成醛或酮的过程。这一反应的条件通常包括加热和使用催化剂,以促进反应的进行。常用的氧化剂有氧气、高锰酸钾、重铬酸钾等,它们能够与醇发生氧化还原反应,将醇的羟基氧化成羰基,从而得到相应的醛或酮类化合物。醇的氧化反应在有机合成中具有广泛的应用,可以用于合成各种重要的有机化合物,如醛、酮等。这些化合物在医药、香料、染料等领域都有重要的应用。此外,醇的氧化反应还可以用于研究醇类化合物的结构和性质,以及探索新的有机合成路径。因此,掌握醇的氧化反应的原理和条件对于有机化学的学习和研究具有重要意义。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

羟基氧化成醛和酮,醛可以进一步氧化成羧酸,而酮不行,羧基和羟基可以酯化反应成酯,酯和醚都可以水解,烷烃可以发生取代反应变成,烯烃也可以加成变成卤代烃,卤代烃可发生消去反应变成烯烃,也可以水解变成醇。

苯可以取代不能加成。

主要官能团就这些了吧。

1。

卤化烃:官能团,卤原子
在碱的溶液中发生“水解反应”,生成醇
在碱的醇溶液中发生“消去反应”,得到不饱和烃
2。

醇:官能团,醇羟基
能与钠反应,产生氢气
能发生消去得到不饱和烃(与羟基相连的碳直接相连的碳原子上如果没有氢原子,不能发生消去)
能与羧酸发生酯化反应
能被催化氧化成醛(伯醇氧化成醛,仲醇氧化成酮,叔醇不能被催化氧化)3。

醛:官能团,醛基
能与银氨溶液发生银镜反应
能与新制的氢氧化铜溶液反应生成红色沉淀
能被氧化成羧酸
能被加氢还原成醇
4。

酚,官能团,酚羟基
具有酸性
能钠反应得到氢气
酚羟基使苯环性质更活泼,苯环上易发生取代,酚羟基在苯环上是邻对位定位基
能与羧酸发生酯化
5。

羧酸,官能团,羧基
具有酸性(一般酸性强于碳酸)
能与钠反应得到氢气
不能被还原成醛(注意是“不能”)
能与醇发生酯化反应
6。

酯,官能团,酯基
能发生水解得到酸和醇
甲烷燃烧
CH4+2O2→CO2+2H2O(条件为点燃)
甲烷隔绝空气高温分解
甲烷分解很复杂,以下是最终分解。

CH4→C+2H2(条件为高温高压,催化剂)
甲烷和氯气发生取代反应
CH4+Cl2→CH3Cl+HCl
CH3Cl+Cl2→CH2Cl2+HCl
CH2Cl2+Cl2→CHCl3+HCl
CHCl3+Cl2→CCl4+HCl (条件都为光照。


实验室制甲烷
CH3COONa+NaOH→Na2CO3+CH4(条件是CaO 加热)
乙烯燃烧
C H2=CH2+3O2→2CO2+2H2O(条件为点燃)
乙烯和溴水
CH2=CH2+Br2→CH2Br-CH2Br
乙烯和水
CH2=CH2+H20→CH3CH2OH (条件为催化剂)
乙烯和氯化氢
CH2=CH2+HCl→CH3-CH2Cl
乙烯和氢气
CH2=CH2+H2→CH3-CH3 (条件为催化剂)
乙烯聚合
nCH2=CH2→-[-CH2-CH2-]n- (条件为催化剂)
氯乙烯聚合
nCH2=CHCl→-[-CH2-CHCl-]n- (条件为催化剂)
实验室制乙烯
CH3CH2OH→CH2=CH2↑+H2O (条件为加热,浓H2SO4)
乙炔燃烧
C2H2+3O2→2CO2+H2O (条件为点燃)
乙炔和溴水
C2H2+2Br2→C2H2Br4
乙炔和氯化氢
两步反应:C2H2+HCl→C2H3Cl--------C2H3Cl+HCl→C2H4Cl2
乙炔和氢气
两步反应:C2H2+H2→C2H4→C2H2+2H2→C2H6 (条件为催化剂)
实验室制乙炔
CaC2+2H2O→Ca(OH)2+C2H2↑
以食盐、水、石灰石、焦炭为原料合成聚乙烯的方程式。

CaCO3 === CaO + CO2 2CaO+5C===2CaC2+CO2
CaC2+2H2O→C2H2+Ca(OH)2
C+H2O===CO+H2-----高温
C2H2+H2→C2H4 ----乙炔加成生成乙烯
C2H4可聚合
苯燃烧
2C6H6+15O2→12CO2+6H2O (条件为点燃)
苯和液溴的取代
C6H6+Br2→C6H5Br+HBr
苯和浓硫酸浓硝酸
C6H6+HNO3→C6H5NO2+H2O (条件为浓硫酸)
苯和氢气
C6H6+3H2→C6H12 (条件为催化剂)
乙醇完全燃烧的方程式
C2H5OH+3O2→2CO2+3H2O (条件为点燃)
乙醇的催化氧化的方程式
2CH3CH2OH+O2→2CH3CHO+2H2O(条件为催化剂)(这是总方程式)乙醇发生消去反应的方程式
CH3CH2OH→CH2=CH2+H2O (条件为浓硫酸170摄氏度)
两分子乙醇发生分子间脱水
2CH3CH2OH→CH3CH2OCH2CH3+H2O (条件为催化剂浓硫酸140摄氏度) 乙醇和乙酸发生酯化反应的方程式
CH3COOH+C2H5OH→CH3COOC2H5+H2O
乙酸和镁
Mg+2CH3COOH→(CH3COO)2Mg+H2
乙酸和氧化钙
2CH3COOH+CaO→(CH3CH2)2Ca+H2O
乙酸和氢氧化钠
CH3COOCH2CH3+NaOH→CH3COONa+CH3CH2OH
乙酸和碳酸钠
Na2CO3+2CH3COOH→2CH3COONa+H2O+CO2↑
甲醛和新制的氢氧化铜
HCHO+4Cu(OH)2→2Cu2O+CO2↑+5H2O
乙醛和新制的氢氧化铜
CH3CHO+2Cu→Cu2O(沉淀)+CH3COOH+2H2O
乙醛氧化为乙酸
2CH3CHO+O2→2CH3COOH(条件为催化剂或加温)。

相关文档
最新文档