诱变育种流程及紫外诱变育种的详细步骤
紫外线诱变育种综述

紫外线诱变育种摘要:紫外线诱变操作简单、对实验设备要求低,是目前被广泛运用的一种物理诱变剂,人们利用紫外线诱变得到了大量的优秀菌种。
本文论述了紫外线诱变的原理、操作流程、其适用范围及研究进展。
关键词:紫外线诱变育种微生物目前微生物发酵技术被广泛的应用到许多生产行业,如生产啤酒、白酒、乳制品、酶制剂、抗生素等行业,同时微生物在解决人类的粮食能源、健康、资源和环境保护等问题中正显露出越来越重要且不可替代的独特作用[1]。
但就目前被投入工业化使用的工业菌大多在生长周期、培养基、产率等方面不能满足工业生产的需求。
理想的工业菌种必须具备: 遗传性状稳定、纯净无污染、能产生许多繁殖单位、生长迅速、能于短时间内生产所要的产物、可以长期保存等特性。
诱变是最早在抗生素上应用的一种育种技术, 它通过物理、化学、生物因素作用于抗生菌, 人为的使其遗传物质发生变异, 从中选育高产菌株[2]。
紫外线诱变属于一种物理诱变剂,它是在微生物发酵技术育种中最早使用的一种诱变方法。
紫外线诱变可以用于大量不同的菌种育种中,如芽孢杆菌、链霉菌、镰刀菌等,通过紫外线对微生物进行诱变,得到了大量比较优秀的工业菌种。
由于紫外线诱变育种简便易行、对条件和设备要求较低并能较好地提高代谢产物的产量,故在微生物育种中仍广泛应用[3]。
本文对紫外线诱变的原理、操作流程、其适用范围、研究进展进行了概述。
一、紫外线诱变的原理紫外线属于一种物理诱变剂,它能使被照射的物质的分子或原子中的内层电子提高能级。
主要生化反应:1.DNA链和氢键的断裂 2.DNA分子间(内)的交联 3.嘧啶的水合作用 4.形成胸腺嘧啶二聚体 5.造成碱基对转换 6.修复后造成差错和缺失。
紫外线诱变处理的有效波长为200 - 300×10nm,最适为254nm(此为核酸的吸收高峰)。
DNA和 RNA的嘌呤和嘧啶吸收紫外光后,DNA 分子形成嘧啶二聚体,即两个相邻的嘧啶共价连接,二聚体出现会减弱双键间氢键的作用[4],并引起双链结构扭曲变形,阻碍碱基间的正常配对,从而有可能引起突变或死亡.另外二聚体的形成,会妨碍双链的解开,因而影响DNA 的复制和转录.总之紫外辐射可以引起碱基转换、颠换、移码突变或缺失,即是所谓的诱变[5],从而引起上述的生化反应。
紫外诱变技术实验报告

一、实验目的1. 掌握紫外诱变技术的原理和方法。
2. 了解紫外诱变在微生物育种中的应用。
3. 通过实验,筛选出具有较高产酶能力的突变菌株。
二、实验原理紫外诱变技术是利用紫外线照射微生物,使微生物DNA发生突变,从而获得具有优良性状的菌株。
紫外线照射能导致DNA分子中碱基对的改变、缺失或插入,进而影响基因的表达,产生新的遗传性状。
三、实验材料1. 菌种:产淀粉酶枯草芽孢杆菌。
2. 器材:紫外线照射装置、超净工作台、电磁力搅拌器、低速离心机、培养皿、涂布器、10mL离心管、(1、5、10mL)吸管、250mL三角瓶、恒温摇床、培养箱、直尺、棉签、橡皮手套、洗耳球。
3. 培养基和试剂:无菌水、75%酒精、0.5%碘液、碘片1g、碘化钾2g、蒸馏水200mL、可溶性淀粉2g、牛肉膏1g。
四、实验方法1. 菌种活化:将产淀粉酶枯草芽孢杆菌接种于牛肉膏蛋白胨培养基中,37℃培养24小时,得到活化菌种。
2. 菌悬液制备:将活化菌种接种于牛肉膏蛋白胨液体培养基中,37℃、180r/min 振荡培养3小时,制成菌悬液。
3. 紫外诱变:将菌悬液置于紫外照射装置下,距离20~30cm,照射时间分别为1、2、3分钟,设置对照组(未照射)。
4. 细菌复苏:将照射后的菌悬液涂布于牛肉膏蛋白胨培养基平板上,37℃培养24小时,观察菌落生长情况。
5. 初筛:挑选生长速度较快、菌落形态异常的菌落,进行进一步的淀粉酶活性测定。
6. 淀粉酶活性测定:将挑选的突变菌株接种于可溶性淀粉培养基中,37℃培养24小时,用碘液检测淀粉酶活性。
7. 验证与保存:对具有较高淀粉酶活性的突变菌株进行验证,并保存于甘油管中。
五、实验结果1. 紫外线照射时间对菌落生长的影响:照射1分钟时,菌落生长速度明显降低;照射2分钟时,菌落生长速度有所下降;照射3分钟时,菌落生长速度明显下降。
2. 淀粉酶活性测定结果:经过筛选,发现突变菌株A的淀粉酶活性最高,为对照组的1.5倍。
微生物诱变育种的基本过程

微生物诱变育种的基本过程
一、筛选目的菌株
在开始微生物诱变育种之前,首先要确定育种的目标,并从中筛选出具有潜在优良性状的目的菌株。
这一步通常需要利用各种生理生化实验和分子生物学技术,对大量菌株进行初步的筛选和鉴定。
二、诱变处理
在确定了目的菌株之后,接下来需要进行诱变处理。
诱变处理通常包括化学诱变和物理诱变两种方式。
化学诱变使用化学诱变剂处理菌株,而物理诱变则利用物理因素(如紫外线、X射线、中子等)处理菌株。
这些诱变因素可以引起菌株基因的突变,进而产生新的性状。
三、突变体的筛选
经过诱变处理后,大量菌株中会存在各种突变体。
为了获得具有优良性状的目标突变体,需要进行筛选。
这一步通常采用各种筛选方法,如单菌落挑取法、稀释涂布平板法等,将突变体从大量菌株中分离出来。
同时,需要通过各种生理生化实验和分子生物学技术,对突变体的性状进行鉴定和筛选。
四、遗传稳定性检测
在筛选出目标突变体后,需要对其遗传稳定性进行检测。
遗传稳定性是指突变体在繁殖过程中,是否能够保持其优良性状的稳定性。
这一步通常采用连续繁殖法和稳定性测定法等方法进行检测,以保证突变体的优良性状能够在后代中得到保留。
五、生产能力测定
最后一步是测定突变体的生产能力。
生产能力是指突变体在实际生产过程中,能否产生足够的产物并保持稳定的产量。
这一步通常采用发酵实验和产物分离纯化等方法进行测定,以保证突变体在实际生产中具有实用价值。
诱变育种的原理和操作过程12

诱变育种的原理和操作过程考情分析知识梳理一、单倍体育种1.原理染色体数目以染色体组的形式成倍减少,然后经人工诱导使染色体数目加倍从而获得纯种. 2.过程与方法单倍体育种包括花药离体培养和人工诱导染色体数目加倍两个关键步骤.育种中通过杂交把不同品种的优良性状集中到F1植物体上,然后利用F1个体产生的花粉进行离体培养,培育出单倍体幼苗,再诱导染色体数目加倍,进而获得目标品种,如下图所示:3.优点与不足(1)优点单倍体育种和杂交育种相比而言,能明显缩短育种年限,一般只需要2年时间,便可以获得纯合新品种.(2)不足技术性较强,并且必须和杂交技术以及诱导染色体加倍技术结合使用.4.实例现有高杆抗病小麦DDTT、矮杆易感病小麦ddtt,欲培育出矮杆抗病小麦ddTT,育种方案如下图:二、多倍体育种1.原理染色体数目以染色体组的形式成倍增加.2.过程与方法多倍体育种目前最常用而且最有效的方法是利用秋水仙素直接处理萌发的种子或幼苗,已获得优良性状的多倍体植株.三倍体无籽西瓜的培育就是一个典型案例,如下图所示:3.优点与不足(1)优点经多倍体育种获得的植株和二倍体相比,茎秆粗壮,叶片、果实和种子都较大,糖类和蛋白质含量都有所增加,有些植物的抗寒性等抗逆能力增强.(2)不足多倍体育种适用于植物,在动物方面难以开展,且多倍体植物往往发育迟缓,结实率低. 三、育种的综合考察1.列表比较几种常见生物育种方式2.有关育种的两点方案(1)根据不同育种目标选择不同育种方案(2)育种技术中的“四最”和“-明显”①最简便的育种技术——杂交育种.②最具预见性的育种技术——转基因技术或细胞工程育种.③最盲目的育种——诱变育种.④最能提高产量的育种——多倍体育种.⑤可明显缩短育种年限的育种——单倍体育种.3.几种育种方式的注意点(1)单倍体育种与多倍体育种的操作对象不同.单倍体育种操作的对象是单倍体幼苗,多倍体育种操作的对象是正常萌发的种子或幼苗.(2)诱变育种:多用于植物和微生物,一般不用于动物的育种.(3)杂交育种:不一定需要连续自交.若选育显性优良纯种,需要连续自交筛选,直至性状不再发生分离;若选育隐性优良纯种,则只要出现该性状个体即可.【易错提醒】(1)单倍体并不一定是一倍体;(2)花药离体培养获得单倍体,虽然是植物组织培养的一种形式,但花粉粒是减数分裂产生的,因此属于有性生殖;(3)单倍体育种获得的一般是纯合子,但当多倍体的花粉经离体培养,秋水仙素处理后,可能产生杂合子;(4)单倍体绝大多数都是不育的,但当细胞内具有相同的染色体组,同源染色体之间可以联会,就是可育的;(4)某些动物虽然体内只有一个染色体组,但也是可育的,如雄峰、雄蚁,孤雌生殖的蚜虫,经特殊减数分裂产生正常的配子,也是可育的;(5)无籽西瓜培育过程中,获得三倍体种子时,一定是四倍体做母本,二倍体做父本,而不能颠倒过来.趣味生物香蕉天生就无籽吗香蕉不像苹果、桔子,果实里看不到一粒的种子,人们就以为香蕉根本就没有种子,其实不是这样的。
实验三 紫外线的诱变育种

实验三紫外线的诱变育种(学时:4)一、目的要求通过实验,观察紫外线对枯草芽孢杆菌的诱变效应,并学习物理因素诱变育种的方法。
二、基本原理紫外线对微生物有诱变作用,主要引起的是DNA分子结构发生改变(同链DNA的相邻嘧啶间形成共价结合的胸腺嘧啶二聚体),从而引起菌体遗传性变异。
三、菌种与仪器菌种:枯草芽孢杆菌;仪器:血球计数板,显微镜,紫外线灯(15W),电磁搅拌器,离心机四、操作步骤1.菌悬液的制备A、取培养48小时的枯草芽孢杆菌的斜面4—5支,用无菌生理盐水将菌苔洗下,并倒入盛有玻璃珠的小三角烧瓶中,振荡30分钟,以打碎菌块。
B、将上述菌液离心(3000r/min,离心15分钟),弃去上清液,将菌体用无菌生理盐水洗涤2—3次,最后制成菌悬液。
C、用显微镜直接计数法计数,调整细胞浓度为每毫升108个。
2.平板制作将淀粉琼脂培养基溶化后,冷至55℃左右时倒平板,凝固后待用。
3.紫外线处理A、将紫外线灯开关打开预热约20分钟。
B、取直径9cm无菌平皿2套,分别加入上述菌悬液5ml,并放入无菌搅拌棒于平皿中。
C、将盛有菌悬液的2平皿置于磁力搅拌器上,在距离为30cm,功率为15W的紫外线灯下分别搅拌照射1分钟及3分钟。
4.稀释在红灯下,将上述经诱变处理的菌悬液以10倍稀释法稀释成10-1-10-6(具体可按估计的存活率进行稀释)。
5.涂平板取10-4、10-5、10-6三个稀释度涂平板,每个稀释度涂平板3只,每只平板加稀释菌液0.1ml,用无菌玻璃刮棒涂匀。
以同样操作,取未经紫外线处理的菌稀释液涂平板作对照。
6.培养将上述涂匀的平板,用黑布(或黑纸)包好,置37℃培养48小时。
注意每个平皿背面要标明处理时间和稀释度。
7.计数将培养48小时后的平板取出进行细菌计数,根据对照平板上菌落数,计算出每毫升菌液中的活菌数。
同样计算出紫外线处理1分钟、3分钟后的存活细胞数及其致死率。
8.观察诱变效应将细胞计数后的平板,分别向菌落数在5—6个左右的平板内加碘液数滴,在菌落周围将出现透明圈。
食品微生物诱变育种的步骤

食品微生物诱变育种的步骤引言:食品微生物诱变育种是一种利用诱变技术改良食品微生物的方法,通过诱发微生物的遗传变异,以获得具有理想特性的菌株。
本文将介绍食品微生物诱变育种的步骤,包括诱变剂的选择、诱变条件的优化、筛选和鉴定等。
一、诱变剂的选择诱变剂是诱发微生物遗传变异的关键因素,不同的诱变剂对微生物的诱变效果有所差异。
在选择诱变剂时,需要考虑到其毒性、稳定性和诱变效果等因素。
常用的诱变剂包括化学诱变剂(如亚硝酸盐、亚硝酸钠)、物理诱变剂(如紫外线、γ射线)和基因工程诱变剂(如转座子)等。
根据具体的需求和实验条件,选择适合的诱变剂进行实验。
二、诱变条件的优化诱变条件的优化对于提高诱变效果至关重要。
诱变条件包括诱变剂的浓度、处理时间和处理温度等。
在进行诱变实验时,需要通过一系列的试验确定最佳的诱变条件。
例如,可以通过改变诱变剂的浓度和处理时间,观察微生物的生长情况和遗传变异率,以确定最佳的诱变条件。
三、诱变实验的进行在确定了诱变剂和诱变条件后,可以进行诱变实验。
诱变实验的步骤包括:将待诱变的微生物培养物接种到含有诱变剂的培养基中,经过一定的处理时间后,将处理后的培养物进行稀释和分装,接种到含有适宜营养物和选择压力的培养基中,培养一定时间后进行筛选。
四、筛选和鉴定筛选是诱变育种中非常重要的一步,通过筛选可以从大量的诱变菌株中筛选出具有理想特性的菌株。
筛选的方法多种多样,可以根据具体的需求选择合适的筛选方法。
常用的筛选方法包括抗性筛选、代谢产物筛选和遗传标记筛选等。
通过筛选后,还需要对筛选出的菌株进行鉴定,确认其遗传变异的性质和稳定性。
结论:食品微生物诱变育种是一种有效的改良微生物的方法,通过诱发微生物的遗传变异,可以获得具有理想特性的菌株。
在进行食品微生物诱变育种时,需要选择适合的诱变剂,优化诱变条件,进行诱变实验,并通过筛选和鉴定确认诱变菌株的特性。
这些步骤的合理操作和科学设计,将为食品微生物的改良和应用提供有力支持。
诱变育种的过程

诱变育种的过程诱变育种是一种利用诱变剂诱发植物基因突变,从而获得具有新性状或改良性状的植物品种的育种方法。
下面是诱变育种的详细过程:1.诱变剂选择:-选择适当的诱变剂,如化学诱变剂(如亚硝基尿、乙烯甲烯磺酰胺等)或物理诱变剂(如辐射,如γ射线、X射线等)。
-选择诱变剂的浓度或剂量,根据目标物种的敏感性和诱变效果进行调整。
2.诱变处理:-将目标植物种子或组织培养物暴露在诱变剂中,以诱发基因突变。
可以通过浸泡、喷雾、渗透、辐射等方式进行处理。
-控制诱变剂的浓度和处理时间,以避免过度损伤或死亡。
3.诱变后代选择:-从诱变处理的植物中收集诱变后代(如种子、离体培养物等)。
-对诱变后代进行初步筛选,筛选出具有感兴趣性状改变的个体。
例如,根据植株形态、生长速度、花器官特征等进行观察和评估。
4.重复诱变和筛选:-重复进行诱变和筛选过程,以获得更多具有目标性状改变的植株。
-可以采用不同的诱变剂浓度、处理时间、处理方法等来增加变异性和选择范围。
5.性状评估和选择:-对诱变后代进行详细的性状评估,以确定具有理想性状的个体。
-可以通过生理性状分析、分子标记检测、遗传分析等方法来评估目标性状的改变和遗传稳定性。
6.繁殖和稳定性选育:-选择具有目标性状稳定遗传的个体进行繁殖,以确保性状的传承。
-通过连续的自交或杂交选择等育种方法,稳定和提高目标性状的表达。
7.品种鉴定和推广:-对最有潜力的诱变品系进行品种鉴定,包括品质、抗病虫害性、适应性等方面的评估。
-将经过鉴定的优良诱变品系进行推广和应用,例如进行大田试验、推广种植或商业化生产。
重要提示:诱变育种过程中需要谨慎选择诱变剂和适当的处理条件,同时进行详细的性状评估和遗传分析,以确保获得稳定和优良的诱变品种。
此外,诱变育种也需要符合法律法规和伦理要求。
实验三 紫外线的诱变育种

实验三紫外线的诱变育种(学时:4)一、目的要求通过实验,观察紫外线对枯草芽孢杆菌的诱变效应,并学习物理因素诱变育种的方法。
二、基本原理紫外线对微生物有诱变作用,主要引起的是DNA分子结构发生改变(同链DNA的相邻嘧啶间形成共价结合的胸腺嘧啶二聚体),从而引起菌体遗传性变异。
三、菌种与仪器菌种:枯草芽孢杆菌;仪器:血球计数板,显微镜,紫外线灯(15W),电磁搅拌器,离心机四、操作步骤1.菌悬液的制备A、取培养48小时的枯草芽孢杆菌的斜面4—5支,用无菌生理盐水将菌苔洗下,并倒入盛有玻璃珠的小三角烧瓶中,振荡30分钟,以打碎菌块。
B、将上述菌液离心(3000r/min,离心15分钟),弃去上清液,将菌体用无菌生理盐水洗涤2—3次,最后制成菌悬液。
C、用显微镜直接计数法计数,调整细胞浓度为每毫升108个。
2.平板制作将淀粉琼脂培养基溶化后,冷至55℃左右时倒平板,凝固后待用。
3.紫外线处理A、将紫外线灯开关打开预热约20分钟。
B、取直径9cm无菌平皿2套,分别加入上述菌悬液5ml,并放入无菌搅拌棒于平皿中。
C、将盛有菌悬液的2平皿置于磁力搅拌器上,在距离为30cm,功率为15W的紫外线灯下分别搅拌照射1分钟及3分钟。
4.稀释在红灯下,将上述经诱变处理的菌悬液以10倍稀释法稀释成10-1-10-6(具体可按估计的存活率进行稀释)。
5.涂平板取10-4、10-5、10-6三个稀释度涂平板,每个稀释度涂平板3只,每只平板加稀释菌液0.1ml,用无菌玻璃刮棒涂匀。
以同样操作,取未经紫外线处理的菌稀释液涂平板作对照。
6.培养将上述涂匀的平板,用黑布(或黑纸)包好,置37℃培养48小时。
注意每个平皿背面要标明处理时间和稀释度。
7.计数将培养48小时后的平板取出进行细菌计数,根据对照平板上菌落数,计算出每毫升菌液中的活菌数。
同样计算出紫外线处理1分钟、3分钟后的存活细胞数及其致死率。
8.观察诱变效应将细胞计数后的平板,分别向菌落数在5—6个左右的平板内加碘液数滴,在菌落周围将出现透明圈。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
诱变育种流程及紫外诱变育
种的详细步骤
-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII
诱变育种的一般步骤:
1.首先是天然菌种的选育:
调查研究及查阅充分的资料
↓
设计实验方案
↓确定采集样品的生态环境
采样
↓确定特定的增殖条件
增殖培养
确定特殊的选择培养基及可能的
定性或半定量快速检出法
平板分离
↓
原种斜面
↓确定发酵培养基础条件
筛选
↓
初筛(1株1瓶)
↓
复筛(1株3~5瓶)
↓结合初步工艺条件摸索
再复筛(1株3~5瓶)
↓
3~5株
↓
单株纯种分离
生产性能试验
→毒性试验
菌种鉴定
2.诱变菌种:
出发菌株----菌种纯化(出发菌株性能测定)----制备斜面孢子----制备单孢子悬液(悬液进行活菌计数)----诱变剂处理(存活菌数的测定并计算存活率)----平板分离(测定变异率)----挑取变异菌落并移植至斜面上----初筛(初筛数据分析,生产性状的粗测)----斜面传代----复筛(复筛数据分析,精确测定生产性状)----变异菌株(菌株参数分析)----小型或中型投产试验----大型投产试验。
诱变育种应把握的主要原则有以下几点:1)选择简便有效的诱变剂。
在选用理化因素作诱变剂时,在同样效果下,应选用最简便的因素;在同样简便的条件下,应选用最高效的因素。
2)挑选优良的出发菌株。
最好采用生产上已发生自变的菌株,选用对诱变剂敏感的菌株,选取有利于进一步研究或应用性状的菌株。
4)处理单细胞或孢子悬液。
单细胞悬液应均匀而分散,孢子、芽孢等应稍加萌发。
5)选用合适的诱变剂量。
一般正变较多出现在低剂量中,负变较多地出现在高剂量中。
6)选用高效的筛选方法。
紫外线诱变育种:
紫外线诱变一般采用15W紫外线杀菌灯,波长为253-
265nm.灯与处理物的距离为30cm,照射时间依菌种而异,一般为几秒至几十分钟。
一般我们常以细胞的死亡率表示,希望照射的剂量死亡率控制在70~80%为宜。
被照射的菌悬液细胞数,细菌为106个/ml左右,霉菌孢子和酵母细胞为106~107个 /ml。
由于紫外线穿透力不强,要求照射液不
要太深,约0.5~1.0cm厚,同时要用电磁搅拌器或手工进行搅拌,使照射均匀。
由于紫外线照射后有光复活效应,所以照射时和照射后的处理应在红灯下进行。
具体操作步骤
1.将细菌培养液以3000r/min离心5min,倾去上清液,将菌体打散加入无菌生理盐水再离心洗涤。
2.将菌悬液放入一已灭菌的,装有玻璃珠的三角瓶内用手摇动,以打散菌体。
将菌液倒入有定性滤纸的漏斗内过滤,单细胞滤液装入试管内,一般处于浑浊态的细胞液含细胞数可达108个/ml 左右,作为待处理菌悬液。
3.取2~4mL制备的菌液加到直径9cm培养皿内,放入一无菌磁力搅拌子,然后置磁力搅拌器上、15W紫外线下30cm处。
在正式照射前,应先开紫外线10min,让紫外灯预热,然后开启皿盖正式在搅拌下照射10~50s。
操作均应在红灯下进行,或用黑纸包住,避免白炽光。
4.取未照射的制备菌液和照射菌液各0.5ml进行稀释分离,计数活菌细胞数。
5.取照射菌液2ml于液体培养基中(300ml三角瓶内装30ml培养液),120r/min振荡培养4~6h。
6.取中间培养液稀释分离、培养。
7.挑取菌落进行筛选。