臭氧高级氧化废水处理实验
臭氧高级氧化技术在废水处理中的研究进展

达 到 50 00K。高 温 将 气 泡 内 的 气 液 界 面 的 介 质
裂 解产 生 强 氧化 性 的 自由基 Ⅲ 。 】 J
印染废水多含有芳香族偶 氮化合物 , 其性质 稳定 , 用传统方法很难处理。胡文容b用超声强化 ]
臭氧 氧化技 术 对 偶 氮 染 料—— 偶 氮 胂 I 的脱 色 效 能进行 了研 究 。研 究结 果表 明 : 超声 处理 并不 单独 能 降解 偶 氮胂 I但 超 声对 臭 氧 氧化 偶 氮胂 I 明 , 有 显的 强 化 作 用 。控 制 臭 氧 气 体 浓 度 为 70 gL .7m / , 外加 8 的超声 , 超声 协 同臭 氧 强化 处 理 偶 氮 0w 是 胂I 的最 佳组合 , 可 以满 足在 1 i 既 1 n内脱 色率达 m
作者简 介: 春芳 (9 2 , , 西蒲城 人 , 刘 16 一)女 陕 高级 工程 师 , 已 发表论文 4篇 。
J12 0 u .0 2
绿 色化 工 (7 2 8~2 0 8)
臭 氧 高 级 氧 化 技 术 在 废 水 处 理 中 的研 究 进 展
刘春 芳
( 中国石油兰州石化公 司 石油化 工研究院 , 甘肃 兰州 706 ) 300
摘要: 综述 了近几 年来 臭氧氧 化技术与其 他水处理技 术组合 的高级氧与活性炭协 同作用处 理技术 、 臭氧, 过氧 化氢和臭 氧, 外辐射 等技 术在废 水 处理方面 的 应 紫 用 。臭 氧高级氧化技 术的机 理基于臭氧 氧化与其他 水处 理技术 的组 合 , 形成 了氧化 能力 极强 的羟 基 自
收 稿 日期 :0 1 2 6 修 回 日期 "02—0 2 0 —1 —0 ; -0 2 3—1 8
定功率的超声波辐射水溶液时 , 中的微 小泡 水
废水臭氧氧化处理技术及工程实例

臭氧具有强氧化性,而且可以分解产生更强氧化性的-OH ,臭氧清洁、无二次污染目前在工业废水处理领域的应用越来越广泛。
(一)医药废水处理用臭氧处理医药废水,用在前端做预处理的,为了提高生化性,打开长链的大分子,现已安装完毕。
(二)印染废水处理市政污水规模大,需要使用臭氧发生器规格就大,估计一般设备生产家做不了,再个运行成本市政污水处理单位也接受不了。
有一个印染废水处理项目在生化前和二沉池出水都采用了臭氧处理,处理规模8000吨/天,1吨水要4-5元成本。
(三)焦化废水的深度处理臭氧+BAF 做焦化废水的深度处理,投加方式是采用臭氧发生器直接曝气与废水接触,密闭池体停留时间2小时,COD 直接去除率不高,改性效果还可以。
当时项目处理量较大,如果不受投资影响,停留时间再加大一些,估计效果还能有所提高。
(四)煤化工项目污水处理煤化工项目污水处理工程的工艺,臭氧多用在二次生化后,BAF 前,主要为提高废水的生化性,部分氧化降低COD,主要采用微孔曝气盘曝气,,水体接触高度不小于4米。
具体氧化性略低,COD降低效率约在25%左右,主要作用为提高B/C比,据做过的项目的化验结果,B/C比值约在0.45到0.53之间。
(六)臭氧高级氧化的实验室试验1、水深要达到一定高度,才能提高臭氧利用率,看过有的项目用臭氧对饮用水进行消毒,反应器做到了5米,直径才50cm;而且我们实验室试验发现,40cm和80cm的高度对比,反应结果和臭氧投加量简直是质的差别。
2、臭氧在水中的扩散最好是用微孔曝气,但是考虑到实际工程反应器较大,可以选择开孔,但优先开始考虑微孔3、材质316L,必须的。
304不满足长时间运行,这个可以百度适合臭氧的材质。
4、在采用80cm高度的反应器进行试验时,10min色度基本脱完,30-60minCOD去除速率最快,过了60min,去除速率下降,我们用垃圾渗滤液稀释至400-500进行臭氧处理,出水能降到60以下,用芬顿最多只能降到160(七)氧应用问题的探讨一般采用微孔曝气比较多,但好像是厂家专配的曝气盘,比如钛材类的。
臭氧氧化法处理印染废水

臭氧氧化法处理印染废水在我国工业废水中,印染废水占的比例较高,因其有机物含量高、碱性大、水质变化大、废水量大,而成为极难处理的工业废水之因具有很强的氧化能力(酸性溶液中氧化还原电位高达2.07V),一。
O3成为诸多难降解工业废水处理工艺的首选氧化剂。
Khadhraoui等在利用臭氧处理刚果红的研究中发现,在氧化初期,臭氧本身可以将刚果红完全氧化脱色,且该实验结果符合假一级反应动力学模型。
臭氧对直接、酸性、碱性、活性等亲水性染料脱色速度快,效果好;对于还原、纳夫妥、氧化、硫化、分散性染料等疏水性染料脱色效果较差,臭氧用量大;对于含铬染料废水,反而会生成六价铬离子,毒性更强。
通过高级氧化和活性炭负载催化剂来提高臭氧催化氧化性能。
1.臭氧氧化机理臭氧氧化有机物的途径有两种:直接反应和间接反应。
直接反应是臭氧通过环加成、亲电或亲核作用直接与污染物反应;间接反应是臭氧在碱、光照或其它因素作用下,生成氧化性更强(氧化还原电位为2.8eV)的羟基自由基(·OH),·OH可以通过不同的反应使溶解态无机物和有机物氧化,主要包括:电子转移反应、抽氢反应和·OH 加成反应。
臭氧直接作用于有机物时反应具有选择性,速度慢。
而臭氧溶于水后形成的·OH,可以无选择性地将水中的有机物矿化,或使结构复杂、有毒的大分子有机物发生断链、开环等反应,生成结构简单、无毒或低毒的小分子化合物,且速度较快。
臭氧的强氧化性能破坏染料分子中的—N==N—、C==C、C==O、—N==O等发色基团,使印染废水脱色。
费庆志等采用臭氧氧化法降解酸性嫩黄染料,发现在酸性条件下(pH=4)臭氧对该染料的脱色效果较好。
Zhang Hui等采用臭氧氧化法降解酸性橙7模拟染料废水时,加入氯化物屏蔽·OH,并未对染料的脱色率造成影响,从而得出了臭氧对该染料的脱色以直接氧化为主的结论。
而章飞芳等用臭氧氧化活性艳红KE-3B模拟染料废水,发现在碱性条件下(pH=10)脱色效果好,且脱色速度较快。
臭氧高级氧化技术报告

臭氧高级氧化技术报告一、引言臭氧高级氧化技术是一种先进且有效的水处理技术,能够高效地去除水中的有机污染物和微生物。
本文将介绍臭氧高级氧化技术的原理、应用和优势。
二、原理臭氧高级氧化技术利用臭氧与水中有机污染物发生氧化反应,生成多种氧化物,如过氧化氢、羟基自由基等。
这些氧化物具有高度活性,能够降解有机污染物,破坏微生物的细胞结构,从而实现水的净化和消毒。
三、应用 1. 污水处理:臭氧高级氧化技术广泛应用于污水处理厂,能够高效地去除有机污染物、重金属和微生物,提高出水质量。
2. 饮用水处理:臭氧高级氧化技术可以用于饮用水的消毒和净化,能够有效地去除水中的致病菌和有机物,提供安全的饮用水。
3. 工业废水处理:许多工业过程中会产生大量的废水,其中含有有机物和有毒物质。
臭氧高级氧化技术可以将这些有害物质降解为无害的物质,减少对环境的污染。
四、优势 1. 高效性:臭氧高级氧化技术具有高度活性的氧化物,能够快速降解有机污染物和微生物,处理效率高。
2. 安全性:臭氧高级氧化技术无需添加化学药剂,不会产生二次污染,对人体和环境无害。
3. 全面性:臭氧高级氧化技术能够去除多种有机污染物和微生物,对不同种类的水体污染都具有良好的处理效果。
4. 灵活性:臭氧高级氧化技术可以与其他水处理技术相结合,形成多种复合工艺,提高整体处理效果。
五、臭氧生成装置臭氧高级氧化技术的关键是臭氧的生成。
常用的臭氧生成装置有电解法、紫外线法和冷等离子体法。
这些装置能够高效地产生臭氧,并将其溶解到水中,实现臭氧与水中污染物的接触和反应。
六、操作要点 1. 控制臭氧浓度:臭氧浓度过高会对设备和操作人员造成危险。
因此,在操作臭氧高级氧化技术时,需要控制好臭氧的浓度,确保安全操作。
2. 控制反应时间:反应时间是影响臭氧高级氧化技术处理效果的重要因素。
过短的反应时间可能导致污染物无法完全降解,而过长的反应时间则会浪费资源。
因此,需要根据实际情况控制反应时间,以达到最佳处理效果。
高级氧化技术 臭氧研究

臭氧分子
目前国内污水影响环境问题严重
内蒙古拉僧庙工业园 区每天大量的工业污水流 向黄河滩
兰州段黄河
污水处理主要方法分类
离心沉淀 物理法 重力沉淀 气浮法
化学沉淀法
化学法 氧化法 还原法
臭氧氧化技术
活性污泥法
生物法 生物膜法 自然生物处理法
臭氧高级氧化技术
臭氧高级氧化技术:是指通过化学和物理化 学的方法使臭氧分解产生羟基自由基,通过 羟基自由基将污水中的污染物转化成低毒的 易生物降解的中间产物,或将其直接矿化成 无机物。 优点:该技术具有高效、彻底、使用范围广、 无二次污染等特点。
臭氧在水中的分解机理
(2)Gordon,Tomiyasu,Fukutoml机理
链引发是两个电子传递过程或者臭氧的一个氧原子传递至氢 氧根离子,臭氧分解机理步骤如下: O3+OH-→ HO +O2 2
HO+ O3 → O + HO 2 2 3
HO + OH-→ O +H2O 2 2
臭氧氧化机理
臭氧通过两种不同的途径与物质反应分为:
直接氧化 和 间接氧化 不同的反应途径产生不同的氧化产物而且受不同动力 学机理控制: (1)臭氧分子通过亲电或亲核作用直接参与反应。
(2)水中的臭氧与碱等因素作用下分解产生活泼的 自由基,主要为•OH与污染物质的反应。
直接氧化
臭氧直接氧化有机物是一种有选择性、低反应速率的 反应。 反应机理分为:克里吉(Criegee)机理、亲电反应 亲核反应。 (1)克里吉机理 由于臭氧具有偶极结构,不饱和键与臭氧分子 的反应导致键的断裂。
O +O OC C O3 C C O C O OH O O C
污水处理高级氧化技术

污水处理高级氧化技术近年来,由于工业化发展的速度较快,致使工业企业的污水排放量剧增,造成的环境污染问题越来越严重。
在工业生产排放的废水中,有机废水的浓度较高、成分繁杂,且具有难降解、含毒性物质等特征。
因此,传统的污水处理技术已无法满足当今的污水处理要求,所以,有效处理此类工业废水已成为当务之急。
目前,先进的高级氧化法处理效果好、反应速度快、二次污染概率小且适用范围广。
因此,该技术已逐步应用于各种工业废水处理工艺中。
该技术按反应原理划分可分为臭氧氧化、光化学氧化、催化湿式氧化、电化学氧化、芬顿氧化等。
1、高级氧化法处理废水的研究进展1.1 臭氧氧化(1)臭氧氧化按照对污染物和臭氧的化学反应方式的不同,可分成二类。
一类是用臭氧直接和有机化合物反应,一般称为臭氧直接反应;另一类是臭氧先经过分解形成羟基自由基,再通过羟基自由基和有机产物进行直接化学反应,一般称为臭氧发生器间接化学反应。
在实际应用中,与臭氧的直接反应通常是通过打破有机物的双键结合,将大分子有机质转变为小分子,但总体氧化程度并不高,而破碎成小分子的有机物具备了较大的可生化性。
臭氧直接氧化是由于其选择能力较强、化学反应速度慢、以及对污染物的全面净化难度较大等特点,但可以对工业废水进行预处理,以此提高废水的B/C比。
而臭氧的间接处理化学反应基本原理为:臭氧在水体内先溶解形成羟基自由基(OH),然后羟基自由基再去氧化有机物。
该方法一般不具备化学选择性,但由于反应速度快、氧化程度高、污水处理效率好等优点,在工业废水处理中取得了较普遍的运用。
在臭氧处理间接化学反应中,臭氧在水体形成羟基自由基主要采用两种路径:①在碱性条件下,臭氧迅速溶解形成羟基自由基,且在紫外线光的影响下,臭氧形成羟基自由基;②在各种金属催化的影响下,臭氧形成羟基自由基。
国内学者对催化剂展开研究,以负载式二氧化钛为催化剂,对臭氧化合物在强催化作用下氧化对水溶性元素腐殖酸的影响开展了深入研究,结果显示,利用二氧化物能够增加对臭氧的氧化效果,其效果增加到了29.1%,而最终的腐植酸氧化物去除率更高达84.9%。
臭氧高级氧化工程实例

化工行业废水臭氧生化处理技术及工程实例臭氧具有强氧化性,而且可以分解产生更强氧化性的-OH,臭氧清洁、无二次污染目前在工业废水处理领域的应用越来越广泛。
下面介绍一下臭氧实际应用中的一些问题。
首先说一下第二版工业排水中,曾提到按COD浓度的4倍来参考,这个量没法选,投加量太惊人了。
所以这个参考一定不要相信,你可以自己算一下投加量吓死人。
(一)臭氧在污水中的相关应用案例案例一:医药废水前段处理:用臭氧处理医药废水,用在前端做预处理的,为了提高生化性,打开长链的大分子,现已安装完毕。
案例二:印染废水成本高市政污水规模大,需要使用臭氧发生器规格就大,估计一般设备生产家做不了;再个运行成本市政污水处理单位也接受不了。
有一个印染废水处理项目在生化前和二沉池出水都采用了臭氧处理,处理规模8000吨/天,1吨水要4-5元成本。
案例三:焦化废水的深度处理用过臭氧+BAF做焦化废水的深度处理,投加方式是采用臭氧发生器直接曝气与废水接触,密闭池体停留时间2小时,COD直接去除率不高,改性效果还可以。
当时项目处理量较大,如果不受投资影响,停留时间再加大一些,估计效果还能有所提高。
案例四:煤化工项目污水处理根据我做过的几个煤化工项目污水处理工程的工艺,臭氧多用在二次生化后,BAF前,主要为提高废水的生化性,部分氧化降低COD。
1、主要采用微孔曝气盘曝气,按照青岛国林的说法,水体接触高度不小于4米。
2、具体氧化性略低,COD降低效率约在25%左右,主要作用为提高B/C比,据做过的项目的化验结果,B/C比值约在0.45到0.53之间。
3、应用案例很多,注意事项就是管道及相关设备的介质材质选用,臭氧用循环水的水量及温度。
臭氧的泄露(最好用封闭池体加尾气破坏器),空气气源的预处理的问题案例六:臭氧高级氧化的实验室试验看大家都在讨论,说说我们去年做了一年的臭氧高级氧化的实验室试验:1、水深要达到一定高度,才能提高臭氧利用率,看过有的项目用臭氧对饮用水进行消毒,反应器做到了5米,直径才50cm;而且我们实验室试验发现,40cm和80cm的高度对比,反应结果和臭氧投加量简直是质的差别。
臭氧—过氧化氢高级氧化法处理染色废水

臭氧—过氧化氢高级氧化法处理染色废水【摘要】目前印染废水处理技术中,混凝法、吸附法、膜分离法、光催化氧化法都存在各自的缺点,运行难度较大。
本文采用臭氧-过氧化氢-羟基氧化铁高级氧化法使染色废水脱色,取得了较好的结果。
【关键词】臭氧;过氧化氢;羟基氧化铁;脱色0 前言目前的印染废水处理技术中,混凝法只适于除去疏水性物质,而且产生的大量的化学污泥难以处理;吸附法与膜分离法因分别用到了活性炭和生物膜,因而投资造价高,且存在着再生性差的缺点;光催化氧化虽处理效率高,但技术尚未成熟,仍未能大规模应用。
因而,开发一种经济、高效的处理技术才能从根本上解决印染废水的处理问题。
臭氧氧化作为一种高级氧化技术,已被广泛应用于饮用水处理[1]。
臭氧氧化法的应用十分广泛,它在杀菌、消毒、脱色、除臭、氧化难降解有机物与改善絮凝效果方面有明显的优势。
由于臭氧不残留或产生二次污染物,所以在食品、制药、供水等行业得到广泛应用[2]。
1 反应机理废水中的染料发色是由于存在着发色基团,如偶氮基—N=N—,羧基>C=O ,乙烯基>C=C<,硝酸基—NO=C ,氧化偶氮基—N=NO—等,这些基团中均含不饱和键,O3通过产生的活泼的羟基自由基与有机物反应,将不饱和键断开,使染料氧化成分子质量较小的有机酸、醛类,从而失去发色能力,达到脱色和降解有机物的目的。
1.1 臭氧与过氧化氢反应机理链的终止反应为:1.2 过氧化氢与羟基氧化铁反应机理Joonseon Jeong等人通过实验,提出了过氧化氢与羟基氧化铁反应使染料脱色的机理[4]:2 实验流程2.1 实验条件及结果采用活性艳红染料(K-2BP)配制成溶液(0.1g/L)模拟污水,分别用聚合硫酸铁、三氧化二铁、硫酸亚铁、过氧化氢与臭氧搭配,按照表1实验流程进行实验,对比处理前后CODcr去除率(表1)、脱色效果(图1)、可见光谱图(图2):2.2 起始pH值及亚铁离子对脱色效果的影响由实验结果可以看出:在本实验中,起始条件为近中性时催化氧化脱色效果最好,为酸性时氧化脱色时间加长,而开始时pH值为碱性时,1h都不能脱色;此外,加入亚铁离子对氧化脱色有明显的促进作用,是因为亚铁离子又与过氧化氢形成FENTON试剂,提高了氧化效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
臭氧高级氧化废水处理实验
实验目的
掌握臭氧氧化处理废水的原理和方法
熟悉臭氧氧化处理废水技术的应用
实验原理
利用臭氧的强氧化性将废水中的有机物降解或部分降解
1. 臭氧的基本性质
臭氧(O3)由三个氧原子构成的,是氧气O2的同素异构体,常温常压下是具有鱼腥味的淡紫色气体。
臭氧很不稳定,在常温下即可分解为氧气。
臭氧共振杂化分子的四种典形型式
2.臭氧对有机物的氧化机理
ν夺取氢原子,并使链烃羰基化,生成醛、酮、醇或酸;芳香化合物先被氧化成酚,再氧化为酸。
ν打开双键,发生加成反应。
ν氧原子进入芳香环发生取代反应。
臭氧的应用
ν臭氧氧化反应之后的生成物是氧气,所以臭氧是高效的无二次污染的氧化剂。
ν去除水中的锰、铁、芳香族化合物、酚和胺类等。
ν灭活病毒
ν杀菌
实验主要装置
制氧机
臭氧发生器
电控箱
可见紫外分光光度计
COD快速消解测定仪
酸度计
影响反应系统的主要参数(臭氧在水中的利用率大概有多少?)
ν温度
ν压力
ν反应器的体积
ν反应器中臭氧在气相、液相中的浓度
ν液相中的pH值
ν气液流速
ν污染物的种类、浓度、以及液相的组成
实验步骤
ν依次打开进水阀门,水泵,流量计,调节进水流量(可考虑连续和间歇操作两种情况);
ν打开制氧机,臭氧发生器,调节氧气和臭氧流量;
ν测定进水浓度,COD。
根据进水水质,每隔一段时间从取样口取样一次,测定pH值,COD,至浓度和COD值基本稳定为止;ν结束实验,关闭气体流量计,制氧机和臭氧发生器;
ν关闭液体流量计,水泵,进水水阀;
ν排出反应器中的水。
实验结果与整理
ν绘制出水水质随时间变化曲线:浓度—时间曲线;COD—时间曲线;pH值—时间曲线;
ν计算浓度、COD去除率。