水平井增产措施(分段压裂)
水平井分段压裂技术总结1500字

水平井分段压裂技术总结1500字水平井分段压裂技术是一种通过在水平井井段内使用多级裂缝进行地层压裂改造的方法。
它通过将井段划分为多个小段,并在每个小段上进行裂缝射孔和压裂作业,从而提高油气产能。
本文将对水平井分段压裂技术进行总结。
水平井分段压裂技术的核心思想是将整个井段分为多个小段,并在每个小段上进行裂缝射孔和压裂作业。
这样可以使得裂缝能够更加均匀地分布在整个井段内,提高了裂缝面积和长度,从而提高了井段的产能。
在水平井分段压裂技术中,裂缝射孔和压裂作业的关键是选择合适的射孔位置和压裂参数。
射孔位置的选择应该考虑地层特征、裂缝扩展和井段结构等因素,以确保裂缝能够垂直扩展到地层目标部位。
压裂参数的选择应该考虑地层岩性、孔隙度、渗透率和裂缝面积等因素,以确保裂缝能够有足够的面积和长度,提高产能。
水平井分段压裂技术的优点是能够提高水平井井段的产能。
由于裂缝能够更加均匀地分布在整个井段内,使得裂缝面积和长度得到提高,从而提高了油气的渗透能力,增加了产量。
同时,水平井分段压裂技术还能够降低地层的压力损失和油气的开采成本。
水平井分段压裂技术的实施过程中还存在一些问题和挑战。
首先是射孔和压裂作业的技术难度较大,需要高精度的射孔仪器和压裂设备,以及专业的作业人员。
其次是裂缝的水平扩展和垂直扩展的控制较为困难,需要通过合理的射孔位置和压裂参数的选择来进行控制。
此外,水平井分段压裂技术还存在着一定的环保和地质风险,例如地层变形和油气泄漏等问题。
总之,水平井分段压裂技术是一种通过在水平井井段内使用多级裂缝进行地层压裂改造的方法。
它能够提高井段的产能,降低地层压力损失和油气的开采成本。
然而,实施过程中还存在一些技术难题和挑战,需要进一步的研究和改进。
40油水井增产增注措施之压裂

油水井增产增注措施之压裂使用地面高压泵组将带有支撑剂的液体注入地下岩层压开的裂缝中,形成具有一定长度、宽度及高度的填砂裂缝的采油工艺称为压裂。
(压裂现场)人们在地面排水时通常采用挖沟开渠的方法,沟渠越深、越宽,排水能力就越强。
而在几千米深的地下怎样增强排油能力,提高油井产量呢?人们发明的压裂工艺技术就是方法之一。
压裂是人为地使地层产生撑开裂缝,地下的这些裂缝就相当于地面的沟渠,可大大改善油在地下的流动环境,使油井产量增加。
水力压裂,是靠地面高压泵车车组将流体高速注入井中,借助井底憋起的高压使油层岩石破裂产生裂缝。
为了防止泵车停止工作后压力下降,裂缝又自行合拢,人们在地层破裂后的注入液体中混人比地层砂大数倍的核桃壳、石英砂、玻璃球、金属球或陶瓷颗粒等支撑剂,同流体一并压入裂缝,并永久停留在裂缝中,支撑裂缝长期处于开启状态,从而保持高导流能力,使油气畅通,油流环境长期得以改善。
当前水力压裂技术已经非常成熟,油井增产效果明显,早已成为人们首选的常用技术。
特别对于油流通道很小,也就是渗透率很低的油层增产效果特别突出。
(压裂示意图)油井压裂后,原油的流动性和产量得到了改善。
此时,在线原油含水分析仪可用于监测压裂前后原油含水率的变化,从而间接评估压裂效果。
如果压裂成功,原油含水率可能会下降,反映出油井产油量的增加。
油井压裂技术与在线原油含水分析仪的结合使用,有助于优化油田开采流程,提高开采效率。
作为原油含水率测量和油气产量计量的专业厂家,杭州飞科电气有限公司研发生产的ALC05系列井口原油含水分析仪(可选配自动加药装置和气液旋流分离器)、FKC01系列插入式原油含水分析仪、FKC02系列管段式原油含水分析仪,已成为各油井单位实时监测原油含水率变化,及时发现并解决生产中的问题,确保油田持续稳定生产的一份科技助力。
水平井分段压裂技术总结

水平井分段压裂技术总结篇一:水平井分段压裂技术及其应用水平井分段压裂技术及其应用摘要:水平井分段压裂工艺技术为改善水平井水平段渗流条件、提高单井产量提供了技术支持。
本文从我国水平井分段压裂技术的发展现状入手,以应用最为广泛的裸眼水平井封隔器分级压裂技术为重点,以该技术在长庆油田苏里格气田苏75区块的现场应用为例,对水平井压裂技术及其现场应用情况进行了分析与总结。
关键词:水平井分段压裂封隔器苏里格气田水平井因其具有泄油面积大、单井产量高、穿透度大、储量动用程度高等优势,在薄储层、低渗透、稠油油气藏及小储量的边际油气藏等的开发上表现出了突出的优势,成为提高油气井产量和提升油田勘探综合效益的重要手段之一,近年来在我国得到了快速的发展。
然而在低渗透油藏开采中因其渗透率较低、渗透阻力大、连通性较差,导致水平井单井产量也难以提升,难以满足经济开发的要求,水平井增产改造的问题便摆在了工程技术人员的面前。
而水平井分段压裂工艺技术的推广应用为改善水平井水平段渗流条件、提高单井产量提供了技术支持。
一、我国水平井分段压裂技术现状我国的水平井分段压裂技术及配套工具的研究起步较晚,国内三大石油公司对于水平井分段压裂技术开展广泛的研究开始与“十一五”期间,近几年得到了大力的推广应用。
目前国内应用规模较大的水平井分段压裂技术主要包括以下三种:1.裸眼封隔器分段压裂技术。
20XX年我国在四川广安002-H1-2井第一次实施了裸眼封隔器分段压裂试验,当时是由Schlumberger提供的技术。
目前该技术在我国的现场应用仍然以国外技术为主,主要采用由BakerHughes、weatherford、Packersplus等公司提供的装置系统,我国应用总规模约300~500口,占去了水平井分段压力工艺实施的1/3左右,分段数最多达到20段。
我国在该技术方面上处于研发和现场试验阶段,现场试验分段数能达到10段,所采用的压裂材质、加工工艺等方面和国外相比还有一定差距。
水平井连续油管分段压裂技术研究

水平井连续油管分段压裂技术研究
水平井连续油管分段压裂技术是一种在水平井中使用连续油管进行分段压裂的技术。
水平井连续油管分段压裂技术是目前油气勘探开发领域中常用的技术之一,其通过利用连续油管在水平井段中进行压裂操作,可以有效地提高裂缝长度和产能,改善井筒流体动力性质,优化油藏开发效果。
水平井连续油管分段压裂技术的关键步骤包括:确定井段压裂顺序、连续油管布置和固井,以及压裂液的选择和注入。
需要根据油藏特征和开发需求,确定井段的压裂顺序。
通常,选择先压裂油藏压力较高的井段,然后逐渐向压力较低的井段移动。
接下来,根据井段的压裂顺序,确定连续油管的布置位置和数量。
连续油管的布置位置应尽量靠近待压裂井段,并保证井段之间的封堵效果。
然后,需要进行连续油管的固井工艺,以保证连续油管的稳定和密封性。
选择适合的压裂液进行注入,压裂液的选择应根据油藏特征和开发需求,包括压力、温度、油气含量等因素。
压裂液的注入方式可以采用压裂泵进行注入,也可以通过连续油管进行注入。
浅析水平井分段压裂工艺技术及展望

浅析水平井分段压裂工艺技术及展望摘要:随着油田开发进入后期,产油量下降,含水量大幅上升,开采难度增大。
大力开采低渗透油气藏成为增加产量的主要手段。
而水平井分段压裂增产措施是开采低渗透油气藏的最佳方法。
水平井分段压裂技术的应用可以大幅提高油田产量,增加经济效益,实现油气的高效低成本开发。
本文介绍国内水平井分段压裂技术,并对水平井分段压裂技术进行展望。
关键词:水平井;分段压裂;工艺技术1水平井技术优势目前水平井已成为一种集成化定向钻井技术,在油田开发方面发挥着重要作用。
通过对现有文献进行调研,发现水平井存在以下技术优势:水平井井眼穿过储层的长度长,极大地增加了井筒与储层接触面积,提高了储层采收率;仅需要少数的井不但可以实现最佳采收率,而且在节约施工场地面积的同时降低生产成本,以此提高油田开发效果;水平井压力特征与直井相比,压力降低速度慢,井底流压更高,当压差相同时,水平井的采出量是直井采出量的4~7倍;当开发边底水油气藏时,若采用直井直接进行开采虽然初期产量高但后期含水上升快,而水平井泄油面积大,加上生产压差小,能够很好的控制含水上升速度,有效抑制此类油藏发生水锥或气锥;能够使多个薄层同时进行开采,提高储层的采出程度。
2水平井压裂增产原理水平井压裂增产的过程:利用高压泵组将高黏液体以大大超过地层吸液能力的排量由井筒泵送至储层,当达到地层的抗张强度时,地层起裂并形成裂缝,随着流体的不断注入,裂缝不断扩展并延伸,使得储层中裂隙结构处于沟通状态,从而提高储层的渗流能力,达到增产的目的。
水平井压裂增产原理主要包括以下四方面:增加了井筒与储层的接触面积,提高了原油采收率;改变了井底附近渗流模式,将压裂前的径向流改变为压裂后的双线性流,使得流体更容易流人井筒,降低了渗流阻力;沟通了储层中的人造裂缝和天然裂缝,扩大了储层供油区域,提高了储层渗流能力。
降低了井底附近地层污染,提高了单井产量。
3国内水平井分段压裂技术3.1水平井套管限流压裂对于未射孔的新井,应采用限流法分段压裂技术。
水平井分段压裂技术总结_焊工个人技术总结

水平井分段压裂技术总结_焊工个人技术总结
水平井分段压裂技术是一种非常重要的技术,是油田开发过程中必不可少的一部分。
通过对水平井进行分段压裂,可以增加产量,改善油藏。
以下是我对水平井分段压裂技术的总结。
首先,在进行分段压裂前要进行充分的储备。
这包括实验室实验和现场试验。
实验室实验是确定井下岩石的物理和力学特性的一种方法。
通过掌握岩石的物理和力学特性,可以选择适合岩石性质的压裂液体和压裂缝材料。
现场试验是对岩石性质和岩石裂缝进行直接观察和调查的过程。
现场试验不仅可以确定岩石的性质和状态,还可以评估井筒和井下环境的条件,选择合适的压裂液体和压裂缝材料。
其次,在确定合适的压裂液体和压裂缝材料后,需要对井筒进行清洗。
通过将清洗剂注入井底并加压,可以清洗管壁和孔隙,为压裂作业做好准备。
清洗剂的选择应考虑到其对地层和水源的环境影响,同时要考虑到其对压裂液体和压裂缝材料的影响。
最后,在进行分段压裂作业时,需要注意以下几点:首先,要确保井筒和油管的完整性和质量,避免泄漏和故障发生。
其次,在注入压裂液体时,应使用适当的方法和设备,使压裂液体能够顺利地进入井下。
注入压裂液体时,要注意流量、压力和时间。
然后,要加强现场监督和管理,及时处理突发事件和意外事故。
最后,要进行良好的控制、管理和记录,以确保压裂作业的成功和安全。
总之,水平井分段压裂技术是一项高效的增产技术,但它也具有一些挑战,需要高端的技术和专业的知识和经验来操作。
通过充分的准备和储备,选择合适的压裂液体和压裂缝材料,注意现场操作和管理,可以使水平井分段压裂技术得到高效和有效的应用。
水平井连续油管分段压裂技术研究

水平井连续油管分段压裂技术研究随着石油勘探开发逐渐深入,传统的采油方式已经不能满足对油气资源的需求,于是针对水平井连续油管分段压裂技术进行了深入研究。
水平井连续油管分段压裂技术是一种利用高压流体对水平井管道进行压裂处理的技术,可以提高产能、改善采收率,对于油气资源的开发具有重要意义。
本文将对水平井连续油管分段压裂技术进行深入探讨,并就该技术的发展趋势进行分析,旨在为相关研究和应用提供参考。
一、技术原理及工艺流程1. 技术原理水平井连续油管分段压裂技术是将井筒分成若干段,并在每段管道中进行高压液体的注入,从而使岩石产生裂缝,增加油气流通通道,提高采收率的一种技术。
该技术依靠高压液体对井筒进行水平压裂,从而改善油井的产能和采收率。
2. 工艺流程水平井连续油管分段压裂技术的工艺流程通常包括以下几个步骤:(1)确定井筒划分:根据水平井的地质条件和井下的情况,确定井筒的划分段数。
(2)管道预处理:对将进行压裂的管道进行清洗、除锈等预处理工作,保障压裂效果。
(3)压裂液体配置:根据地质条件和需要进行压裂的管段数,配置适量的高压液体。
(4)压裂操作:将配置好的高压液体通过压裂设备注入到对应的管段中,对井筒进行压裂处理。
(5)监测评估:对压裂效果进行实时监测和评估,确定是否需要进行进一步的处理。
二、技术关键及难点水平井连续油管分段压裂技术的关键在于对压裂液体的配置和注入技术的控制。
压裂液体的配置需要根据地质条件和井下情况进行精确的计算,以保证压裂的效果。
注入技术的控制也是关键,需要确保高压液体能够均匀注入到井筒的各个管段中,使压裂效果达到最佳状态。
2. 技术难点水平井连续油管分段压裂技术的难点主要在于井下条件的不确定性。
由于水平井通常处于地下较深处,地质条件较为复杂,加之井下环境具有一定的危险性,因此对于井下情况的监测和控制是技术的难点所在。
对于井下管道的清洁和预处理工作也是技术的难点之一。
三、技术发展现状目前,水平井连续油管分段压裂技术已经在一些具有先进采油工艺的油田得到应用,并取得了一定的成效。
国内外水平井分段压裂技术研究进展

国内外水平井分段压裂技术研究进展水平井分段压裂技术是一种提高油气产能的重要技术手段。
在国内外的研究中,已经取得了一系列的进展,下面将对其进行详细介绍。
一、国内研究进展:1.分段压裂方法改进:在分段压裂技术中,国内研究者提出了多种改进方法,例如,钻井、完井等工艺的优化,使得裂缝能够更好地传导到目标储层,提高了井段的综合产能。
2.压裂液的优化:国内研究者对水平井压裂液的优化进行了深入研究,提出了多种添加剂,例如纳米颗粒、膨润土等,可以有效改善水平井的裂缝长度和宽度,提高了压裂效果。
3.分段压裂模拟研究:国内研究者开展了水平井分段压裂的数值模拟研究,通过模拟压裂过程中的地应力分布、裂缝扩展等情况,可以为优化分段压裂方案提供科学依据。
二、国外研究进展:1.压裂模拟软件的使用:国外研究者发展了多种压裂模拟软件,例如FracPro、SIMulFrac等,可以模拟水平井分段压裂中的流体流动、裂缝扩展等过程,为实际操作提供了指导。
2.分段压裂技术的改进:国外研究者通过改进分段压裂技术,提高了油气井的产能。
例如,引入了纳米颗粒添加剂、微型孔隙控制技术等,可以更好地调控裂缝的尺寸和分布。
3.裂缝监测技术的发展:国外研究者开发了多种裂缝监测技术,例如微地震监测、核磁共振等,可以实时监测水平井分段压裂的效果,为优化施工和调整投产策略提供了依据。
总结起来,国内外在水平井分段压裂技术的研究中,通过改进方法、优化压裂液、分段压裂模拟、引入监测技术等手段,取得了一系列重要的进展,为提高水平井的产能、降低勘探开发成本提供了可靠的技术支持。
随着技术的不断创新和应用推广,相信水平井分段压裂技术将在油气勘探开发中发挥越来越重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Most Common
Result for Openhole Hydraulic Fracturing—最常用裸眼井液压压 裂
Longitudinal Hydraulic Fractures
(Along Wellbore Axis) 纵向液压压裂(与井眼轴同步)
Transverse Hydraulic Fractures
SurgiFracSM (Surgical Fracturing外科手术一样的压裂)
外部压裂 Horizontal Well Stimulation
水平井增产措施
Outline
• What is Surgifrac? —什么是Surgifrac ?
• Challenges of Horizontal fracturing—水平压裂的挑战 • Overview of Technology - How it works—技术概述-工 作流程 • Case Histories – Proof that it works—实例-证明其作 用 • Questions—问题
Time 时间
Six SurgiFrac Waterfracs performed consecutively for an Openhole Chart horizontal well bore—裸眼井水平井眼六种连续外部水力压裂
Annulus Pressure, Tubing Rate, & Annulus Rate
Barnett Shale Horizontal - Side View 巴尼特页岩水平线- 侧视图
stage1 stage2 stage3 stage4 stage5 stage6 stage7 stage8 stage9 stage10 stage11 stage12 stage13 stage14 stage15 stage16 stage17 stage18 stage19 stage20
2 holes 4 diam
2 holes 2 holes 1 hole 2 diam 1 diam
σ Hmin
High-Rate Uncemented Liner —高流量未固井的尾管 (Ported Sub - Limited Entry)
Dominant Transverse Frac 主要横向裂缝 Short, Longitudinal Fracs 短纵向裂缝
(Perpendicular to Wellbore) 横向液压压裂(与井眼垂直)
Frac BH Pressure Behavior—压裂BH压力性能
Conventional Frac Initiation Pressure Response 常规压裂初始压力反应
Wellbore Pressure 井眼压力 SurgiFrac Wellbore Pressure Response 分段压裂井眼压力反应 Pump Rate 泵级 Prop Conc.
All Stages
South-North (ft)
-1000 -1200 -1400 -1600 -1800 -2000 -2200 -2400
0
200
400
600
800
1000
1200
1400
1600
1800
2000
2200
West-East (ft)
2400
-200
5700 5900 6100 6300 6500 6700 6900
Idealistic Concept of Result for Longitudinal Hydraulic Fractures (Along Wellbore Axis)
纵向液压压裂结果的理想概念(井眼轴同平行)
Idealistic Concept of Result for Transverse Hydraulic Fractures (Perpendicular to Wellbore)横向液压压裂结 果的理想概念(与井眼垂直)
o o o o o o o o
o o
o
o o o o
o oo oo o
o o o oo o
Multi-Lateral
Multiple fracs in pre-perfed liner Multiple fracs in openhole
This is What You Want这是你想要的
Typical Implementations典型实施
o o o o o o o o
o o o o o o o o
o o o o o o o o
o o o o o o o o
o o o o o o o o
o o o o o o o o
o o o o o o o o
o o
o
o o o o
o o o o o o o o
High-Rate Waterfracs -- Open Hole 高速水力压裂—裸眼井
Barnett Shale Horizontal - Map View 巴尼特页岩水平线-地图
200 0 -200 -400 -600 -800 stage1 stage2 stage3 stage4 stage5 stage6 stage7 stage8 stage9 stage10 stage11 stage12 stage13 stage14 stage15 stage16 stage17 stage18 stage19 stage20
7/10/2003
10:00
11:00
12:00
13:00
14:00
15:00
16:00
17:00
Time
7/10/2003
(bpm)
(psi)
Creation of Longitudinal and Dominant Transverse Fractures 径度增长和显性横向压裂
Multiple holes 多眼 10 diam
A Annulus Pressure (psi) 3000
A Slurry Rate (bpm) C Flowback Rate (bpm) C
C 40 35
2500 30 2000
0.98 psi/ft
25 20 15 10
1500
1000
0.72 psi/ft
500 5 0 09:00 0 18:00