新余四中初一数学竞赛选拔试卷(二)

合集下载

初中数学江西初一竞赛测试测试考试卷考点.doc

初中数学江西初一竞赛测试测试考试卷考点.doc

初中数学江西初一竞赛测试测试考试卷考点姓名:_____________ 年级:____________ 学号:______________题型选择题填空题解答题判断题计算题附加题总分得分一、计算题评卷人得分20.(本小题6分)先化简,再求值:x-2(x -)+(-+)的值,其中x=-2,y=-119.21.解方程:(1)(2)19.计算(1)|﹣2|﹣(2﹣π)0++(﹣2)3(2)(﹣2x3)2•(﹣x2)÷[(﹣x)2]3(3)(x+y)2(x﹣y)2(4)(x﹣2y+3z)(x+2y﹣3z)20.如果一个圆锥的体积是4立方分米,那么与它等底等高的圆柱的体积是12立方分米。

()21.如图所示,点在线段的延长线上,且,是的中点.看图说话:(1)图形中共有_____条线段.(2)若,求的长.解:,,是的中点,(中点定义).19.化简:(1)(2)17.画图题:如图,(1)画AE⊥BC于E,AF⊥DC于F.(2)画DG∥AC交BC的延长线于G.(3)经过平移,将△ABC的AC边移到DG,请作出平移后的△DGH.19.-, 0, 4,-3, 2.519.-3a2x-1b与5aby+4能合并成一个单项式,则(x-2)2016+(y+2)2017 =________. 15.。

4.–3的绝对值是______________,倒数是________,相反数是_______.9.写出一个解为x=2的一元一次方程______________.11.苹果每千克元,梨每千克元,则整式表示购买______________.12.把10.26°用度、分、秒表示为().A.10°15′36″B.10°20′6″C.10°14′6″D.10°2″3.(-21)÷7的结果是()A.3B.-3C.D.1.据统计,2015年某省机动车保有量突破280万辆,对数据“280万”的理解错误的是( )A.精确到万位B.这是一个近似数C.这是一个准确数D.科学记数法表示为2.80×1065.如图,下列说法不正确的是()A.OC的方向是南偏东30°B.OA的方向是北偏东45°C.OB的方向是西偏北30°D.∠AOB的度数是75°5.已知代数式x+2y的值是3,则代数式2x+4y+1的值是()A.1B.4C.7D.不能确定2.若等腰三角形有两条边的长度为2和5,则此等腰三角形的周长为()A.9B.12C.9或12D.101.代入法解方程组有以下步骤:(1)由①,得2y=7x-3③;(2)把③代入①,得7x-7x -3=3;(3)整理,得3=3;(4)∴x可取一切有理数,原方程组有无数组解.以上解法造成错误步骤是( ) A.第(1)步B.第(2)步C.第(3)步D.第(4)步10.在同一平面上,若∠BOA=60.3°,∠BOC=20°30′,则∠AOC的度数是( )A.80.6°B.40°C.80.8°或39.8°D.80.6°或40°8.由四舍五入法得到的近似数6.8×103,下列说法正确的是().A.精确到十分位B.精确到个位C.精确到百位D.精确到千位14.下列各式中,是方程的个数为()(1)-3-3=-7 (2)3x-5=2x+1 (3)2x+6(4)x-y=0 (5)a+b>3 (6)a2+a-6=0A.1个B.2个C.3个D.4个21.如图是一个正方体的展开图,标注了字母A的面是正方体的正面,如果正方体的左面与右面所标注式子的值相等,求x的值.23.请根据小明和小红的对话解答下面的问题:小红:如图是由边长分别为a,b的两个正方形拼成的图形;小明:阴影部分的面积等于图中两个正方形的面积和减去3个不同的直角三角形的面积.(1)用含有a,b的整式表示如图所示的阴影部分的面积;(2)当a=3 cm时,求这个阴影部分的面积.22.化简求值:5(3a2b-ab2)-(ab2+3a2b),其中|a-1|+(b+2)2=019.先化简再求值:5(3a2b﹣ab2)﹣2(ab2+3a2b),其中a=﹣,b=.。

新余四中初一数学段考试题

新余四中初一数学段考试题

新余四中初一数学段考试题一、选择题(每小题1分,共10分)1. 下列关于单项式的说法正确的是()A. 系数是3,次数是2B. 系数是次数是2C. 系数是,次数是3D. 系数是-,次数是32. 下列事件中,不确定事件的个数为()①若x是有理数,则②丹丹每小时可以走20千米③从一副扑克牌中任意抽取一张,这张扑克牌是大王。

④从装有9个红球和1个白球的口袋中任意摸出一个球,这个球是红球A. 1个B. 2个C. 3个D. 4个3. 要把人类送上火星,还有许多航天技术问题需要解决,如:已知一个成年人平均每年呼吸氧气6.57×升,而目前飞船飞往火星来回一趟需2年时间,如果飞船上有3名宇航员,那么来回一趟理论上需要氧气()克,(氧气是1.43克/升,结果用科学记数法表示,保留三位有效数字)A. B. C. D.4. 钝角三角形的三条高所在直线的交点在()A. 三角形内B. 三角形外C. 三角形边上D. 不能确定5. 下列不能用平方差公式计算的是()A. B.C. D.6. 在西部山区有位希望中学的学生站在镜子面前,那么他的校徽在镜子里的成像是()7. 小马虎在下面的计算中,只做对了一道题,他做对的题目是()A. B.C. D.8. 在△ABC中,∠ABC与∠ACB的平分线交于点I,∠ABC+∠ACB=100°,则∠BIC的度数为()A. 80°B. 50°C. 100°D. 130°9. 如下的四个图中,∠1与∠2是同位角的有()①②③④A. ②③B. ①②③C. ①②④D. ①10. 一根蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h(厘米)与燃烧时间t(小时)的关系用图像表示为()二、填空题(每小题2分,共20分)1. 多项式有()项,次数为()次.2. 下列数据是近似数的有()。

(填序号)①小红班上有15个男生:②珠穆朗玛峰高出海平面8844.43米。

2024届江西省新余市第四中学初中数学毕业考试模拟冲刺卷含解析

2024届江西省新余市第四中学初中数学毕业考试模拟冲刺卷含解析

2024学年江西省新余市第四中学初中数学毕业考试模拟冲刺卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分) 1.对于实数x ,我们规定[]x 表示不大于x 的最大整数,例如,,,若x 4510+⎡⎤=⎢⎥⎣⎦,则x 的取值可以是( ) A .40 B .45C .51D .56 2.在代数式3mm- 中,m 的取值范围是( ) A .m≤3B .m≠0C .m≥3D .m≤3且m≠03.如图,已知////AB CD EF ,那么下列结论正确的是( )A .AD BCDF CE= B .BC DFCE AD= C .CD BCEF BE= D .CD ADEF AF= 4.某机构调查显示,深圳市20万初中生中,沉迷于手机上网的初中生约有16000人,则这部分沉迷于手机上网的初中生数量,用科学记数法可表示为( ) A .1.6×104人B .1.6×105人C .0.16×105人D .16×103人5.下列运算正确的是( ) A .﹣3a+a=﹣4a B .3x 2•2x=6x 2 C .4a 2﹣5a 2=a 2D .(2x 3)2÷2x 2=2x 4 6.如图,ABC ∆的三边,,AB BC CA 的长分别为20,30,40,点O 是ABC ∆三条角平分线的交点,则::ABO BCO CAO S S S ∆∆∆等于( )A.1∶1∶1 B.1∶2∶3 C.2∶3∶4 D.3∶4∶57.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有()A.1种B.2种C.3种D.4种8.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.9.某市6月份日平均气温统计如图所示,那么在日平均气温这组数据中,中位数是()A.8 B.10 C.21 D.2210.下列命题是真命题的是()A.如果a+b=0,那么a=b=0 B.16的平方根是±4C.有公共顶点的两个角是对顶角D.等腰三角形两底角相等二、填空题(共7小题,每小题3分,满分21分)11.如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tan∠AOC=43,反比例函数y=kx的图象经过点C,与AB交于点D,若△COD的面积为20,则k的值等于_____________.12.如图,在Rt△ABC中,AB=AC,D、E是斜边BC上的两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①∠EAF=45°;②△AED≌△AEF;③△ABE∽△ACD;④BE1+DC1=DE1.其中正确的是______.(填序号)13.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,且AC=CD,∠ACD=120°,CD是⊙O的切线:若⊙O 的半径为2,则图中阴影部分的面积为_____.14.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,3),则点C的坐标为_____.15.在△ABC中,AB=AC,BD⊥AC于D,BE平分∠ABD交AC于E,sinA=35,BC=210,则AE=_______.16.因式分解:3a2-6a+3=________.17.若一个多边形的内角和为1080°,则这个多边形的边数为__________.三、解答题(共7小题,满分69分)18.(10分)如图,∠BCD=90°,且BC=DC,直线PQ经过点D.设∠PDC=α(45°<α<135°),BA⊥PQ于点A,将射线CA绕点C按逆时针方向旋转90°,与直线PQ交于点E.当α=125°时,∠ABC=°;求证:AC=CE;若△ABC的外心在其内部,直接写出α的取值范围.19.(5分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).如果小明第一题不使用“求助”,那么小明答对第一道题的概率是.如果小明将“求助”留在第二题写出答案)20.(8分)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD 方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)21.(10分)丁老师为了解所任教的两个班的学生数学学习情况,对数学进行了一次测试,获得了两个班的成绩(百分制),并对数据(成绩)进行整理、描述和分析,下面给出了部分信息.①A、B两班学生(两个班的人数相同)数学成绩不完整的频数分布直方图如下(数据分成5组:x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):②A、B两班学生测试成绩在80≤x<90这一组的数据如下:A班:80 80 82 83 85 85 86 87 87 87 88 89 89B班:80 80 81 81 82 82 83 84 84 85 85 86 86 86 87 87 87 87 87 88 88 89③A、B两班学生测试成绩的平均数、中位数、方差如下:平均数中位数方差A班80.6 m 96.9根据以上信息,回答下列问题:补全数学成绩频数分布直方图;写出表中m、n的值;请你对比分析A、B两班学生的数学学习情况(至少从两个不同的角度分析).22.(10分)如图,在直角坐标系中,矩形的顶点与坐标原点重合,顶点分别在坐标轴的正半轴上, ,点在直线上,直线与折线有公共点.点的坐标是;若直线经过点,求直线的解析式;对于一次函数,当随的增大而减小时,直接写出的取值范围.23.(12分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y(件)与销售单价x(元)之间存在一次函数关系,如图所示.求y与x之间的函数关系式;如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.24.(14分)如图,点A、B在⊙O上,点O是⊙O的圆心,请你只用无刻度的直尺,分别画出图①和图②中∠A的余角.(1)图①中,点C在⊙O上;(2)图②中,点C在⊙O内;参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解题分析】解:根据定义,得x45<5110+≤+∴50x4<60≤+解得:46x<56≤.故选C.2、D【解题分析】根据二次根式有意义的条件即可求出答案.【题目详解】由题意可知:30mm-≥⎧⎨≠⎩解得:m≤3且m≠0故选D.【题目点拨】本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式有意义的条件,本题属于基础题型.已知AB∥CD∥EF,根据平行线分线段成比例定理,对各项进行分析即可.【题目详解】∵AB∥CD∥EF,∴AD BC DF CE.故选A.【题目点拨】本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.4、A【解题分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】用科学记数法表示16000,应记作1.6×104,故选A.【题目点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5、D【解题分析】根据合并同类项、单项式的乘法、积的乘方和单项式的乘法逐项计算,结合排除法即可得出答案.【题目详解】A. ﹣3a+a=﹣2a,故不正确;B. 3x2•2x=6x3,故不正确;C. 4a2﹣5a2=-a2,故不正确;D. (2x3)2÷2x2=4x6÷2x2=2x4,故正确;故选D.【题目点拨】本题考查了合并同类项、单项式的乘法、积的乘方和单项式的乘法,熟练掌握它们的运算法则是解答本题的关键.作OF⊥AB于F,OE⊥AC于E,OD⊥BC于D,根据角平分线的性质得到OD=OE=OF,根据三角形的面积公式计算即可.【题目详解】作OF⊥AB于F,OE⊥AC于E,OD⊥BC于D,∵三条角平分线交于点O,OF⊥AB,OE⊥AC,OD⊥BC,∴OD=OE=OF,∴S△ABO:S△BCO:S△CAO=AB:BC:CA=20:30:40=2:3:4,故选C.【题目点拨】考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.7、B【解题分析】首先设毽子能买x个,跳绳能买y根,根据题意列方程即可,再根据二元一次方程求解.【题目详解】解:设毽子能买x个,跳绳能买y根,根据题意可得:3x+5y=35,y=7-35 x,∵x、y都是正整数,∴x=5时,y=4;x=10时,y=1;∴购买方案有2种.故选B.【题目点拨】本题主要考查二元一次方程的应用,关键在于根据题意列方程.根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是D.【题目详解】解:观察图形可知图案D通过平移后可以得到.故选D.【题目点拨】本题考查图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.9、D【解题分析】分析:根据条形统计图得到各数据的权,然后根据中位数的定义求解.详解:一共30个数据,第15个数和第16个数都是22,所以中位数是22.故选D.点睛:考查中位数的定义,看懂条形统计图是解题的关键.10、D【解题分析】解:A、如果a+b=0,那么a=b=0,或a=﹣b,错误,为假命题;B的平方根是±2,错误,为假命题;C、有公共顶点且相等的两个角是对顶角,错误,为假命题;D、等腰三角形两底角相等,正确,为真命题;故选D.二、填空题(共7小题,每小题3分,满分21分)11、﹣24【解题分析】分析:如下图,过点C作CF⊥AO于点F,过点D作DE∥OA交CO于点E,设CF=4x,由tan∠AOC=43可得OF=3x,由此可得OC=5x,从而可得OA=5x,由已知条件易证S菱形ABCO=2S△COD=40=OA·CF=20x2,从而可得,由此可得点C的坐标为( ,这样由点C在反比例函数的图象上即可得到k=-24.详解:如下图,过点C作CF⊥AO于点F,过点D作DE∥OA交CO于点E,设CF=4x,∵四边形ABCO是菱形,∴AB∥CO,AO∥BC,∵DE∥AO,∴四边形AOED和四边形DECB都是平行四边形,∴S△AOD=S△DOE,S△BCD=S△CDE,∴S菱形ABCD=2S△DOE+2S△CDE=2S△COD=40,∵tan∠AOC=43,CF=4x,∴OF=3x,∴在Rt△COF中,由勾股定理可得OC=5x,∴OA==OC=5x,∴S菱形ABCO=AO·CF=5x·4x=20x2=40,解得:x=2,∴OF=32,CF=42,∴点C的坐标为(32?42)-,,∵点C在反比例函数kyx=的图象上,∴k=324224-⨯=-.故答案为:-24.点睛:本题的解题要点有两点:(1)作出如图所示的辅助线,设CF=4x,结合已知条件把OF和OA用含x的式子表达出来;(2)由四边形AOCB是菱形,点D在AB上,S△COD=20得到S菱形ABCO=2S△COD=40.12、①②④【解题分析】①根据旋转得到,对应角∠CAD=∠BAF,由∠EAF=∠BAF+∠BAE=∠CAD+∠BAE即可判断③在△ABE ∽△ACD 中,只有AB =AC 、∠ABE =∠ACD =45°两个条件,无法证明④先由△ACD ≌△ABF ,得出∠ACD =∠ABF =45°,进而得出∠EBF=90°,然后在Rt △BEF 中,运用勾股定理得出BE 1+BF 1=EF 1,等量代换后判定④正确【题目详解】由旋转,可知:∠CAD =∠BAF .∵∠BAC =90°,∠DAE =45°,∴∠CAD+∠BAE =45°,∴∠BAF+∠BAE =∠EAF =45°,结论①正确;②由旋转,可知:AD =AF在△AED 和△AEF 中,=45AD AF DAE EAF AE AE ===⎧⎪∠∠︒⎨⎪⎩∴△AED ≌△AEF (SAS ),结论②正确;③在△ABE ∽△ACD 中,只有AB =AC ,、∠ABE =∠ACD =45°两个条件,无法证出△ABE ∽△ACD ,结论③错误;④由旋转,可知:CD =BF ,∠ACD =∠ABF =45°,∴∠EBF =∠ABE +∠ABF =90°,∴BF 1+BE 1=EF 1.∵△AED ≌△AEF ,EF =DE ,又∵CD =BF ,∴BE 1+DC 1=DE 1,结论④正确.故答案为:①②④【题目点拨】本题考查了相似三角形的判定,全等三角形的判定与性质, 勾股定理,熟练掌握定理是解题的关键13、23π- 【解题分析】试题分析:连接OC ,求出∠D 和∠COD ,求出边DC 长,分别求出三角形OCD 的面积和扇形COB 的面积,即可求出答案.连接OC ,∵AC=CD ,∠ACD=120°,∴∠CAD=∠D=30°,∵DC 切⊙O 于C ,∴OC ⊥CD ,∴∠OCD=90°,∴∠COD=60°,在Rt △OCD 中,∠OCD=90°,∠D=30°,OC=2,∴S △OCD ﹣S 扇形COB =12×2×23﹣2602360π⨯=23﹣23π,故答案为23﹣23π.考点:1.等腰三角形性质;2.三角形的内角和定理;3.切线的性质;4.扇形的面积.14、(﹣3,1)【解题分析】如图作AF ⊥x 轴于F ,CE ⊥x 轴于E .∵四边形ABCD 是正方形,∴OA=OC ,∠AOC=90°,∵∠COE+∠AOF=90°,∠AOF+∠OAF=90°,∴∠COE=∠OAF ,在△COE 和△OAF 中,90CEO AFO COE OAF OC OA ⎧∠=∠=⎪∠=∠⎨⎪=⎩,∴△COE ≌△OAF ,∴CE=OF ,OE=AF ,∵A (13),∴CE=OF=1,3∴点C 31),故答案为(3-1).点睛:本题考查正方形的性质、全等三角形的判定和性质等知识,坐标与图形的性质,解题的关键是学会添加常用的辅助线,构造全等三角形解决问题,属于中考常考题型.注意:距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.15、5【解题分析】∵BD ⊥AC 于D ,∴∠ADB=90°,∴sinA=35BD AB =. 设BD=3x ,则AB=AC=5x ,在Rt △ABD 中,由勾股定理可得:AD=4x ,∴CD=AC-AD=x ,∵在Rt △BDC 中,BD 2+CD 2=BC 2,∴2229x x +=,解得1222x x ==-,(不合题意,舍去),∴AB=10,AD=8,BD=6,∵BE 平分∠ABD , ∴53AE AB ED BD ==, ∴AE=5. 点睛:本题有两个解题关键点:(1)利用sinA=35BD AB =,设BD=3x ,结合其它条件表达出CD ,把条件集中到△BDC中,结合BC=x ,从而可求出相关线段的长;(2)要熟悉“三角形角平分线分线段成比例定理:三角形的内角平分线分对边所得线段与这个角的两边对应成比例”.16、3(a -1)2【解题分析】先提公因式,再套用完全平方公式.【题目详解】解:3a 2-6a+3=3(a 2-2a+1)=3(a-1)2.【题目点拨】考点:提公因式法与公式法的综合运用.17、1【解题分析】根据多边形内角和定理:(n ﹣2)•110 (n ≥3)可得方程110(x ﹣2)=1010,再解方程即可.【题目详解】解:设多边形边数有x 条,由题意得:110(x﹣2)=1010,解得:x=1,故答案为:1.【题目点拨】此题主要考查了多边形内角和定理,关键是熟练掌握计算公式:(n﹣2)•110 (n≥3).三、解答题(共7小题,满分69分)18、(1)125;(2)详见解析;(3)45°<α<90°.【解题分析】(1)利用四边形内角和等于360度得:∠B+∠ADC=180°,而∠ADC+∠EDC=180°,即可求解;(2)证明△ABC≌△EDC(AAS)即可求解;(3)当∠ABC=α=90°时,△ABC的外心在其直角边上,∠ABC=α>90°时,△ABC的外心在其外部,即可求解.【题目详解】(1)在四边形BADC中,∠B+∠ADC=360°﹣∠BAD﹣∠DCB=180°,而∠ADC+∠EDC=180°,∴∠ABC=∠PDC=α=125°,故答案为125;(2)∠ECD+∠DCA=90°,∠DCA+∠ACB=90°,∴∠ACB=∠ECD,又BC=DC,由(1)知:∠ABC=∠PDC,∴△ABC≌△EDC(AAS),∴AC=CE;(3)当∠ABC=α=90°时,△ABC的外心在其斜边上;∠ABC=α>90°时,△ABC的外心在其外部,而45°<α<135°,故:45°<α<90°.【题目点拨】本题考查圆的综合运用,解题的关键是掌握三角形全等的判定和性质(AAS)、三角形外心.19、(1)13;(2)19;(3)第一题.【解题分析】(1)由第一道单选题有3个选项,直接利用概率公式求解即可求得答案;(2)画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案;(3)由如果在第一题使用“求助”小明顺利通关的概率为:18;如果在第二题使用“求助”小明顺利通关的概率为:19;即可求得答案.【题目详解】(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率=13;故答案为13;(2)画树状图为:共有9种等可能的结果数,其中两个都正确的结果数为1,所以小明顺利通关的概率为19;(3)建议小明在第一题使用“求助”.理由如下:小明将“求助”留在第一题,画树状图为:小明将“求助”留在第一题使用,小明顺利通关的概率=18,因为18>19,所以建议小明在第一题使用“求助”.【题目点拨】本题考查的是概率,熟练掌握树状图法和概率公式是解题的关键.20、这棵树CD的高度为8.7米【解题分析】试题分析:首先利用三角形的外角的性质求得∠ACB的度数,得到BC的长度,然后在直角△BDC中,利用三角函数即可求解.试题解析:∵∠CBD=∠A+∠ACB,∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,∴∠A=∠ACB,∴BC=AB=10(米).在直角△BCD中,CD=BCsin∠CBD=10×33(米).答:这棵树CD的高度为8.7米.考点:解直角三角形的应用21、(1)见解析;(2)m=81,n=85;(3)略.【解题分析】(1)先求出B班人数,根据两班人数相同可求出A班70≤x<80组的人数,补全统计图即可;(2)根据中位数的定义求解即可;(3)可以从中位数和方差的角度分析,合理即可.【题目详解】解:(1)A、B两班学生人数=5+2+3+22+8=40人,A班70≤x<80组的人数=40-1-7-13-9=10人,A、B两班学生数学成绩频数分布直方图如下:(2)根据中位数的定义可得:m=80822+=81,n=85852+=85;(3)从中位数的角度看,B班学生的数学成绩比A班学生的数学成绩好;从方差的角度看,A班学生的数学成绩比B班学生的数学成绩稳定.【题目点拨】本题考查了条形统计图、求中位数以及利用平均数、中位数、方差作决策等知识,能够从统计图中获取有用信息是解题关键.22、(1);(2);(3)【解题分析】(1)OA=6,即BC=6,代入,即可得出点B的坐标(2)将点B的坐标代入直线l中求出k即可得出解析式(3)一次函数,必经过,要使y随x的增大而减小,即y值为,分别代入即可求出k的值. 【题目详解】解:∵OA=6,矩形OABC中,BC=OA∴BC=6∵点B 在直线上,,解得x=8故点B 的坐标为(8,6)故答案为(8,6)(2)把点的坐标代入得, 解得:∴(3))∵一次函数,必经过),要使y 随x 的增大而减小 ∴y 值为∴代入, 解得. 【题目点拨】 本题主要考待定系数法求一次函数解析式,关键要灵活运用一次函数图象上点的坐标特征进行解题.23、(1)10700y x =-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解题分析】(1)可用待定系数法来确定y 与x 之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w 与x 的函数关系式,进而利用所获利润等于3600元时,对应x 的值,根据增减性,求出x 的取值范围.【题目详解】(1)由题意得:4030055150k b k b +=⎧⎨+=⎩ 10700k b =-⎧⇒⎨=⎩. 故y 与x 之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700≥240,解得x≤46,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x<50时,w随x的增大而增大,∴x=46时,w大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.【题目点拨】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.24、图形见解析【解题分析】试题分析:(1)根据同弧所对的圆周角相等和直径所对的圆周角为直角画图即可;(2)延长AC交⊙O 于点E ,利用(1)的方法画图即可.试题解析:如图①∠DBC就是所求的角;如图②∠FBE就是所求的角。

2022-2023学年江西省新余四中七年级上学期期中考试数学试卷及参考答案

2022-2023学年江西省新余四中七年级上学期期中考试数学试卷及参考答案

新余四中2022-2023学年度上学期新余四中初一年级试卷考试时间:120分钟 满分:120分一、选择题:(每题有四个选项,其中只有一个是正确的,每小题3分,共18分) 1.如果一个物体向东运动3m ,记为-3m ;那么该物体向西运动2m ,则记为( )(A )+2m (B )±2m (C )-2m (D )3m 2.单项式−x 2y 的系数和次数分别是( )(A )0,2 (B )−1 ,2 (C )−1 ,3 (D )1 ,3 3.下列式子中是一元一次方程的是( )(A )2x +y =3 (B )x =−1 (C )x 2−2x +1=0 (D )2x −1>0 4.下列说法中正确的是 ( )(A )每一个有理数有倒数 (B )平方等于本身的数是1 (C )若ac =bc ,则 a =b (D )每一个有理数的绝对值是非负数 5.一个四次多项式与一个二次多项式的和一定是( ) (A )四次多项式 (B )四次单项式(C )六次多项式 (D )四次多项式或四次单项式6.为了庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛,第一个“金鱼”用了8根火柴,如图所示:按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为 ( )(A )6n +2 (B )6n +8 (C )4n +4 (D ) 8n二、填空题:(每小题3分,共18分) 7.213的相反数是 .8.多项式 a 2b 2−2a 3b 2+3a 4−4的次数是 . 9.方程 −2x =6的解为x = .10. 已知a −2b =2,则6b −3a +5的值为 . 11.已知a 1=3,a 2=11−a 1,a 3=11−a 2,…,a n =11−an −1,则a 2022=________.12.关于x 的多项式(a +1)x 2+2x a +1+3x 3−a (x ≠0)合并后是三项式,则a 的值为 . (提示:当x ≠0时,x 0=1)三、解答题(本大题共5小题,每小题6分,共30分)13.(每小题3分,共6分) (1)计算:2−5−7+9 (2)化简: 3a +2b −(a −b )……14.下列八个数:−22,+3.5,1,−3,−−2,0,−(+0.33)0.6182将以上数填入下面适当的括号里:负分数集合:{ } ,负整数集合:{ }正分数集合:{ }.×215. 计算:−12+2×(−3)2−5÷1216. 先化简,再求值. 3x−1−2(2x−5),其中x=−2.17. 若整式 3x−4的值比整式−2x+5的值大1,求x的值.四、(本大题共3小题,每小题要有解题步骤,每小题8分,共24分)18.如果海拔每上升100米,气温就下降0.3℃,已知某山脚的海拔高度为1230米且温度为18℃,山顶的温度为16.2℃,求山顶的海拔高度.19.在东西走向的绿道上有一个岗亭,小明从岗亭出发以13km/h的速度沿绿道巡逻. 规定向东巡逻为正,向西巡逻为负,巡逻情况记录(单位:km)如下表:(2)小明巡逻共用时多少小时?20.关于x的方程1−ax=2x+2a的解比方程2x−3=1的解小3,求a的值.五、(本大题共2小题,每小题9分,共18分)21.马虎同学做一道数学题,“已知三个多项式A、B、C,A=?,B=4x2−5x+6,C=2x2−4x−2,试求A+B-2C”。

初一数学竞赛选拔卷

初一数学竞赛选拔卷

初一数学竞赛选拔卷 一.选择题:(本大题共6小题,每小题4分,共24分) 1、已下列算式正确的是( ) A 、239-= B 、()1414⎛⎫-÷-= ⎪⎝⎭ C 、5(2)3---=- D 、()2816-=- 2、已知数轴上三点A 、B 、C 分别表示有理数a 、1、-1,那么1+a 表示( ) (A )A 、B 两点的距离 (B )A 、C 两点的距离 (C )A 、B 两点到原点的距离之和 (D )A 、C 两点到原点的距离之和 3、若5=a ,3=b ,那么b a ⨯的值有( )个 (A )4 (B )3 (C )2 (D )1 4、一商店将某种服装按成本提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是( ) A 、125元 B 、135元 C 、145元 D 、150元 5、观察下列算式:331=,932= ,2733=,8134=,24335=,72936=,218737=,656138=…………;那么20113的末位数字应该是( ) A 、 3 B 、 9 C 、 7 D 、 1 6、在一列数1,2,3,4,……,1000中,数字“0”出现的次数一共为( ) (A )182 (B )189 (C )192 (D )194 二.选择题(每小题4分,共32分) 7、蜗牛沿着10米高的柱子往上爬,每天从清早到傍晚向上爬5米,夜间又下滑3米,像这样,从某天清晨开始,蜗牛第________________天能爬到柱顶。

8、在数轴上,点A 、B 分别表示51,31-,则线段AB 的中点所表示的数是______。

9、有一列数,按照下列规律排列:1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6, 6,6,6,6,6,7,……这列数的第200个数是__________.10、若a ,b 互为相反数,m ,n 互为倒数,p 的绝对值为3,则22)(p mn pb a -++=______。

数学竞赛试卷七年级【含答案】

数学竞赛试卷七年级【含答案】

数学竞赛试卷七年级【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 如果一个数的平方根是9,那么这个数是:A. 81B. 9C. 3D. -92. 下列哪个数是有理数?A. √2B. √3C. √5D. √93. 下列哪个数是整数?A. 3.14B. 2.5C. 5.0D. -3.54. 下列哪个数是负数?A. -1B. 0C. 1D. 25. 下列哪个数是偶数?A. 21B. 23C. 25D. 27二、判断题(每题1分,共5分)1. 两个负数相乘的结果是正数。

()2. 两个正数相乘的结果是负数。

()3. 两个负数相除的结果是正数。

()4. 两个正数相除的结果是负数。

()5. 0乘以任何数都等于0。

()三、填空题(每题1分,共5分)1. 如果一个数的平方是16,那么这个数是______。

2. 如果一个数的平方根是4,那么这个数是______。

3. 两个负数相乘的结果是______。

4. 两个正数相乘的结果是______。

5. 0乘以任何数都等于______。

四、简答题(每题2分,共10分)1. 请解释有理数的概念。

2. 请解释整数的概念。

3. 请解释负数的概念。

4. 请解释偶数的概念。

5. 请解释奇数的概念。

五、应用题(每题2分,共10分)1. 计算下列各式的值:a) -3 + 7b) 5 (-2)c) -4 × 6d) -9 ÷ 3e) 14 ÷ (-2)2. 判断下列各式的符号:a) -(-5)b) -(+8)c) -(-12)d) -(+15)e) -(-20)3. 计算下列各式的值:a) √16c) √36d) √49e) √644. 判断下列各数是否为整数,并解释原因:a) 3.14b) 2.5c) 5.0d) -3.5e) 8.95. 判断下列各数是否为负数,并解释原因:a) -1b) 0c) 1d) 2e) -3六、分析题(每题5分,共10分)1. 请分析并解释为什么两个负数相乘的结果是正数。

初一数学竞赛选拔试卷

初一数学竞赛选拔试卷初一数学竞赛辅导班选拔试卷时间:40分班别学号姓名成绩选择题答案栏:题号1234567891011答案一.选择题1.(-1)_是()A.最大的负数B.最小的非负数C.最小的正整数 D.绝对值最小的整数2.若表示一个整数,则整数_可取值共有( ).(A)3个(B) 4个(C) 5个(D) 6个3._是任意有理数,则2_+_ 的值( ).(A)大于零(B) 不大于零(C)小于零(D)不小于零4.若a=4,b=2,且a+b=a+b, 那么a-b的值只能是( ).(A)2; (B) 2; (C) 6;(D)2或65.已知a.b.c都是负数,且,则_yz是………………………( )A负数B 非负数C 正数D 非正数6.如果+_-2=0,那么_的取值范围是………………………………………( )A _>2B _<2C _ 2D _27.已知:abc≠0,且M=,当a.b.c取不同的值时,M有( )A.惟一确定的值 B.3种不同的取值C.4种不同的取值 D.8种不同的取值8.某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20%,另一台亏本20%,则本次出售中商场……………………………………………………( )A不赔不赚 B 赚160元C 赚80元D 赔80元9.若a=,b=,c=则下列不等关系中正确的是………………( )A a<b<cB a<c<bC b<c<a Dc<b<a10.把前1992个数1,2,3,…,1992的每一个数的前面任意填上〝+〞号或〝-〞号,然后将它们相加,则所得之结果为( )(A) 正数;(B)偶数;(C)奇数;(D)有时为奇数;有时为偶数11.如果那么等于…………………………………………………( )(A) (B )(C )(D )二.填空题12.已知3=3,3=9,3=27,3=81,3=243,3=729,3=2187,3=6561…请你推测3的个位数是.13.如果某个月里,星期一多于星期二,星期六少于星期日,那么这个月共有天.14.把2,3,5,6四个数按从小到大的顺序排列.15.计算:1-2+3-4+5-6+7-8+……+4999-5000= .16.计算:若与互为相反数,则= .17.计算:……+,那么 (50).18.一个四位数能被9整除,去掉末位数字后,所得到的三位数恰好是4的倍数,这样的四位数中最大的一个的末位数字是19.下边横排有15个方格,每个方格中都有一个数字,若任何相邻三个数字之和都是16,则w代数的数字是.6w20.用一队卡车运一批货物,若每辆卡车装7吨货物,则尚余10吨货物装不完;若每辆卡车装8吨货物,则最后一辆卡车只装3吨就装完了这批货物,那么这批货物共有吨.。

新余四中初一数学竞赛选拔试卷(二)

新余四中初一数学竞赛选拔试卷(二)一、选择题(6×5分=30分)1.观察下列等式122=,224=,328=,4216=,5232=,6264=,72128=,82256=,…根据规律,你认为402的末位数是( )A .2B .4C .6D .82.已知2326A a a =--,2236B a a =-+,2C a a =-,那么下面等式成立的是( ) A .A B C -= B .A C B -= C .2A C B +=D .5A B C += 3.已知32132m n n m --=-,则m 与n 的大小关系是( )A .m n >B .m n <C .m n =D .不确定4.若3x =是方程2223ax b b xa --=-的解,用b 的代数式表示a ,则a =( ) A .11277b + B .143b -- C .1493b -- D .11277b -5.如图,甲乙两人沿着边长为90米的正方形按A →B →C →D →A 的方向行走,甲从A 以65米/分的速度行走,乙从B 以72米/分 的速度行走,当乙第一次追上甲时,是在正方形边( ) A .AB 上 B .BC 上 C .CD 上 D .DA 上6.设,,,a b c d 都是非零有理数,那么,,,ab cd ac bd -这四个数中,正数有( ) A .4个 B .2个 C .1个或3个 D .不确定二、填空题(6×5分=30分)7.如果122x y -=,那么2y x +-= 8.在原有运算法则中补充新运算符号“*”如下:当a b ≥时,2a b b *=,当a b <时,a b a *=,则(12)(2)**-=9.小李在解方程513a x -=(x 为未知数)时,误将x -看作x +,解得方程的解2x =-,则原方程的解为 10.3个互不相等的有理数既可表示为1、a b +、a 的形式,又可表示为0、ba、b 的形式,则,a b 的值分别为 11.若质数..m 、n 满足57129m n +=,则m n += 12.计算23181920222222-----+=…三、解答题(3×8分=24分)13.解方程:1413[(23)]4324x x x --=14.已知关于x 的方程2(1)30m m x +++=是一元一次方程,求21m m --+的值。

七年级数学第二期竞赛试卷试题(共4页)

3题4题DC 边城(bi ān ch én ɡ)高级中学2021----2021学年度第二期七年级数学竞赛试卷满分是:100分 时间是:90分钟班级 姓名 得分一、选择题〔每一小题5分,一共20分〕∣m ∣是大于1的偶数,那么m 一定小于它的 〔 〕 A .相反数 B . 倒数 C .绝对值 D .平方2.点M 与点P 关于x 轴对称,点N 与点M 关于y 轴对称,假设点N 〔1,2〕,那么点P 的坐标为〔 〕A .〔-2,1〕B .〔1,-2〕C .〔-1,2〕D .〔2,-1〕 3.如图,在的正方形网格中,的大小关系是〔 〕.A .B .C .D .4.如图,在ΔABC 中,∠ACB=900,∠B=150, D 在BC 上,AD=BD ,E 为AB 的中点,AD 、CE 相交于点F ,∠DFE 等于〔 〕A .300B .450C .600D .750 二、填空题〔每一小题6分,一共24分〕5.,那么它在.6.12个人用15天完成了某项工程的一半,假如再增加工作效率一样的8个人(gèrén),那么完成这项工程,前后一共用了天.7.如图,在△ABC中,中线CM与高线CD三等分,那么= .8.甲用10000元购置了一些股票,随即他将这些股票转卖给乙,获利10%,而后乙又将这些股票反卖给甲,但乙损失了10%。

最后甲按乙卖给甲的价格的九折将这些股票卖给了丙.假设其它费用忽略不计,那么甲的盈亏情况为 .三、解答题〔一共56分〕9.〔12分〕计算:10.〔14分〕问当取何值时,获得最小值,并求出最小值.11.班买了3枝玫瑰,7枝康乃馨,1枝百合花,付了14元;乙班买了4枝玫瑰,10枝乃馨,1枝百合花,付了16元.假设丙班买上面三种花各3枝,求丙班应付多少元.12.〔16分〕小明(xiǎo mínɡ)在研究直角三角形的边长时,发现了下面的式子:①当三边长分别为3、4、5时,;②当三边长分别为6、8、10时,;③当三边长分别为5、12、13时,;……⑴从中小明发现了一个规律:在直角ΔABC中,假设∠B=900 ,那么它的三边长满足. 〔6分〕⑵长方形ABCD中AB=8,BC=5,E是AB的中点,点F在BC上,△DEF的面积为16,求点D到直线EF的间隔 .〔10分〕A C BD5 1685. 6. 24 7. 30 8. 盈利10元 9.10. 101103011.解:设玫瑰、康乃馨、百合花的单价分别为元,元,元,根据条件,列出方程组 消去,得. ③将③代入①,得.④ 由③,④得 .有.所以(su ǒy ǐ),丙班应付30元.12. 〔1〕(2)内容总结① ②。

七年级数学“应用与创新”竞赛选拔比赛二

七年级数学“应用与创新”竞赛选拔比赛二 一﹨选择题[每题4分,共24分]1.已知02=--++y y x y x ,在数轴上给出关于x ﹨y 七年级数学“应用与创新”竞赛选拔比赛二有( )A .1种B .2种C .3种D .4种 2.如图,有一条公路修到湖边时,需拐弯而过,如果第一次拐弯处∠A =120,第二次拐弯处∠B =150,第三次拐弯后道路恰好与第一次拐弯前的道路平行,则第三次拐弯处的∠C =[ ]A .150B .130C .140D . 1203.一个四位数能被9整除,去掉末位数字后所得的三位数恰好是4的倍数 ,这样的四位数中最大的一个的末位数字是[ ]A ﹨ 6B ﹨ 4C ﹨ 2D ﹨34.一个商店以每3盘16元的价值购进一批录音带,又从另外一处以每4盘21元的价格购进比前一批数量加倍的录音带,如果两种录音带合在一起以每3盘K 元的价格全部出售,可得到所投资的20%的收益,则K 的值等于[ ]A.17B.18C.19D.205.如图,一个边长为3的等边三角形被分成9个边长为1的小等边三角形,把数字1,2,3,4,…,9填入这9个小等边三角形中,使得图中每个边长为2的等边三角形内的4个数字的和相等,则这个和的最大值和最小值分别是[ ]x y x y xy O xyA .24,16B .23,17C .22,17D .23,166.在某班的新年晚会上,每个同学都写若干字条祝福他人,已知在任意四个人中,每一位都祝福其他三个人中的至少一位,那么该班中没有得到其他同学祝福的字条的同学最多有[ ]位。

A.1B.2C.3D.4二﹨填空题[每题5分,共50分]7.已知实数,,a b c 满足()()()0a b b c c a +++=且0abc <,则代数式a b c a b c++的值是8.研究15, 12, 10这三个数的倒数发现121101151121-=-,我们称15, 12, 10这三个数为一组调和数,现有一组数调和数x, 5, 3 (x>5),则x 的值是9.甲﹨乙﹨丙﹨丁四种商品的单价分别为 2 元,3 元,5 元和 7 元,现从中选购了 6 件共花 费了 36 元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新余四中初一数学竞赛选拔试卷
(二)
学校班级姓名学号
装订线内不得答题…………………………………………………装……………………订……………………线………………………………………………………
一、选择题(6×5分=30分)
1.观察下列等式
,,,,,,,,…根据规律,你认为的末位数是()
A.2 B.4 C.6 D.8
2.已知,,,那么下面等式成立的是()
A. B. C. D.
3.已知,则m与n的大小关系是()
A. B. C. D.不确定
4.若是方程的解,用b的代数式表示,则()
A. B. C. D.
5.如图,甲乙两人沿着边长为90米的正方形按A→B→C→D→A 的方向行走,甲从A以65米/分的速度行走,乙从B以72米/分
的速度行走,当乙第一次追上甲时,是在正方形边()
A.AB上 B.BC上
C.CD上 D.DA上
6.设都是非零有理数,那么这四个数中,正数有()
A.4个 B.2个 C.1个或3个 D.不确定
二、填空题(6×5分=30分)
7.如果,那么
8.在原有运算法则中补充新运算符号“”如下:当时,,当时,,则9.小李在解方程(为未知数)时,误将看作,解得方程的解,则原方
程的解为
10.3个互不相等的有理数既可表示为1、、的形式,又可表示为0、、的形式,则的值分别为
11.若质数m、n满足,则
12.计算
三、解答题(3×8分=24分)
13.解方程:
14.已知关于的方程是一元一次方程,求的值。

15.已知,,且的值与无关,求的值。

四、应用题(3×12分=36分)
16.将连续的自然数1~1001按如图的方式排成一个长方形阵列,用一个正方形框出16个数,要使这个正方形框出的16个数字之和分别等于
①2000 ②2080,这是否可能?若不能,试说明理由。

若可能,请写出框中16个数中最小的数。

1234567
891011121314
15161718192021
22232425262728
……………………………………
99599699799899910001001 17.丰收农机租赁公司共有50台联合收割机,其中甲型20台、乙型30台,现将这50台收割机派往A、B两地收割小麦,其中30台派往A地区,20台派往B地区,两地区与该农机租赁公司商定的每天的租赁价格如下表
每台甲型收割机的
租金每台乙型收割机的
租金
A地区1800元1600元
B地区1600元1200元
(1)设派往A地区台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),请用的代数式表示y,并写出的取值范围。

(2)要使农机租赁公司这50台联合收割机一天获得的租金总额不低于79600元,请书写出各种分配方案。

18.如图所示,有一个只允许单向通过的窄道口,通常情况下,每分钟可以通过9人。

一天,王老师到达道口时,发现由于拥挤,每分钟只能有3人通过道口,此时,自己前面还有36人等待通过(假定先到的先过,王老师过道口的时间忽略不计),通过道口后,还需7分钟到达学校。

(1)此时,若绕道而行,要15分钟到达学校,从节省时间考虑,王老师应选择绕道去学校,还是选择通过拥挤的道口去学校?
(2)若在王老师等人的维持下,几分钟后,秩序恢复正常(维护秩序期间,每分钟有3人通过道口),结果王老师比拥挤的情况提前了6分钟通过道口,问维持秩序的时间是多少?。

相关文档
最新文档