转动参照系分解共74页文档
转动参照系

例:一光滑直管中有一质量为 m 的 一光滑直管中有一质量为 小球,直管以匀角速度绕一端旋转。 小球,直管以匀角速度绕一端旋转。 初始条件: 初始条件:小球距转轴为 a, 球相对 于管子的速度为零。分析小球的运 于管子的速度为零。 动规律和受到的约束反作用力。 动规律和受到的约束反作用力。 z
y
ω
N F离 x
& x = Aωeωt − Bωe−ωt
[ 例 ]( 续)
& 初始条件: 当 t = 0 时,x = a, x = 0 初始条件:
A= B = a/ 2
a ω t −ω t 于是得到小球的运动规律: 于是得到小球的运动规律: x = (e + e ) 2 & Nz = −2mωx = −maω2 (eωt − e−ωt )
F科
v v v v & F = −2mω ×v' = 2mω x k 科 v v v v v && = mg + F + F + N mr C 科 离
m&& = mω2 x x m&& = 0 = Ny − mg y & m&& = 0 = 2mω x + Nz z
v v 2v 2 F = mω r = mω x i 离
特殊情况:定轴转动,恒定角速度
v dω ≡0 dt
M
三、 相对 平衡
v v v v v 2 ma' = F + mω R − 2mω × v'
三、相对平衡 质点相对于转动参照系静止不动的问题,
ω R
P
θ
O
v v 即 v' = 0, a' = 0 v v v v v v v v v v & × r − m(ω⋅ r )ω + mω2r − 2mω × v' = 0 ma' = F − mω
四章转动参考系-PPT精选文档

)的瞬时加速度。
牵连加速度vt也可以看成是在该瞬时将P点固结在动参考刚体
上,跟随动参考刚体一起运动时所具有的加速度,即受动参考
刚2体0s‘s的系系拖中中带的的或观观牵察察连者者而只只产能能生观观的测测加到到速v度v和 观和 。无a测a法不区到分 中v 的v 、 v e 、 va 和 、 a vt和 ea c
v
a ( x y y ) i ( y x x ) j ( x y ) d i ( y x ) d j
牵
3、 (y ix j)由 于 平r 板作变角速度转动所引起
连 加
的加速度,切向加速度
速
度
第四章
? 4、2 ( y i x j ) 2 k 称v 为 科2 里 奥v 利加速度
方向垂直于与 v构成的平面,在平板平面内。
第四章
OP =R 时的速度
动点-P
定系-地面OXY
动系-直管oxy
绝对速度 va=?
相对速度 vr =u=ui 牵连速度 ve =(Rω) j
yY
va x
vr P
X
O
P
v a v e v r v e j v r i R j u i
第四章
二、加速度合成公式
牵连速度ve是动参考系(平面转动参考系)上与点P重
合的点(称为牵连点)的瞬时速度。
牵连速度ve也可以看成是在该瞬时将P点固结在
动参考刚体上,跟随动参考刚体一起运动时所具 有的速度,即受动参考刚体的拖带或牵连而产生 的速度。
高中物理转动参照系

高中物理转动参照系高中物理转动参照系物体有相对运动,参考系之间也有相对运动。
参考系相对参考系S的相对运动可分解为以O为代表的平动和S系绕O的转动t,参考系S′绕O′的转动角速度设有一任意矢量A,在S系中的分量表示式为,在S′系中的分量表示式为。
在S系中对时间的变化率为对时间的变化率为如何建立起对时间的变化率与对时间的变化率的关系呢对时间的变化率不但坐标变其方向基矢也同样变所以有,,。
所以有①①式的含义是有两个参考系且ω,则中描绘出的矢量中中描绘出的矢量中中描绘出的矢量中。
两个参考系P的运动,质点P的位置矢量分别为和且有②在S系中对②式两边时间求导。
注意在②中和中描绘出的矢量是中描绘出的矢量在中描绘出的矢量求导要用到的结论所以有③即④④的物理意义是:是PS的速度,是相对于是相对于是PS′的速度。
在S系中对④式两边时间求导。
注意在④中和中描绘出的矢量和是中描绘出的矢量在中描绘出的矢量求导要用到的结论所以有即是PS系是相对于是相对于是向心加速度是变化引起的切向加速度是PS′运动速度引起的科里奥利加速度是PS′的加速度。
第35届全国中学生物理竞赛复赛理论考试试题第五题五、(40分)塞曼发现了钠光D线在磁场中分裂成三条,洛仑兹根据经典电磁理论对此做出了解释,他们因此荣获1902年诺贝尔物理学奖。
假定原子中的价电子(质量为m,电荷量为-e,e>0)受到一指向原子中心的等效线性回复力–mω02r(r为价电子相对于原子中心的位矢)作用,做固有圆频率为ω0的简谐振动,发出圆频率为ω0的光。
现将该原子置于沿z轴正方向的匀强磁场中,磁感应强度大小为B (为方便起见,将B参数化为)(1)选一绕磁场方向匀角速转动的参考系,使价电子在该参考系中做简谐振动,导出该电子运动的动力学方程在直角坐标系中的分量形式并求出其解;(2)将(1)问中解在直角坐标系中的分量形式变换至实验室参考系的直角坐标系;(3)证明在实验室参考系中原子发出的圆频率为ω0的谱线在磁场中一分为三;并对弱磁场(即ωL<<ω0)情形,求出三条谱线的频率间隔。
转动参考系

第四章转动参照系本章应掌握①转动参照系中的速度、加速度计算公式及有关概念;②转动参照系中的动力学方程;③惯性力的有关概念、计算公式;④地球自转产生的影响。
第一节平面转动参照系本节应掌握:①绝对运动、相对运动、牵连运动的有关概念及相互关系;特别是科里奥利加速度的产生原因;②平动转动参照系中的速度和加速度。
一、绝对运动、相对运动、牵连运动有定系οξηζ,另一平面以角速度ω绕轴旋转,平板上固定坐标系oxyz,oz轴与οζ轴重合。
运动质点P相对板运动。
由定系οξηζ看到的质点的运动叫绝对运动;动系oxyz看到的质点运动叫相对运动;定系上看到的因动系转动导致质点所在位置的运动叫牵连运动。
绝对速度、加速度记为;相对速度、加速度记为V',a'。
二、平动参照系中的速度、加速度1、v和a的计算公式速度:(为牵连速度)加速度:其中,牵连加速度a l为:(转动加速度+向心加速度)科里奥利加速度:2、科里奥利加速度a c①它产生条件是:动系对定系有转动;质点相对动系的运动速度不为零,而且运动方向与转轴方向不平行。
②它产生原因是:科氏加速度的产生在于牵连运动与相对运动的相互影响:从静止系看来,一方面牵连运动使相对速度发生改变,另一方面,相对运动也使牵连速度中的发生改变,两者各贡献,结果科氏加速度为。
三、平面转动参照系问题解答例关键是分清定系,动系和运动物体;然后适当选取坐标系,按公式计算。
[例1]P263 4.1题等腰直角三角形OAB,以匀角速ω绕点O转动,质点P以相对速度沿AB边运动。
三角形转一周时,P点走过AB。
求P质点在A 点之速度、加速度(已知AB=b)解:(1)相对动系(直角三角形)的速度v r=b/T=b/(2π/ω)=bω/2π(方向)A点的牵连速度(方向垂直)由V=V r+V e,利用矢量合成法则,得到(2)加速度,因匀速,所以相对加速度α'=0 又匀角速转动,所以角加速牵连加速度,大小,方向沿科氏加速度注意到,所以其大小方向与AB边垂直(见图4.1.1)由,利用矢量合成法则则得到:与斜边的夹角第二节空间转动参照系本节要求:①掌握空间转动参照系中绝对、相对、牵连变化率等概念;②掌握空间转动参照系中的速度V、加速度a的计算公式。
理论力学第四章 转动参照系

2 v
j
v
科里奥利加速度
科氏加速度2 v 是由牵连运动 和相对运动相互影响产 生的。
P
O
z
i k
x
2 a a' r r 2 v '
相对加速度 牵连加速度 科里奥利加速度
aa a at ac
真实性
质点的相对运动微分方程式
o1 是惯性坐标系(定系),oxyz 是非惯性坐标系(动系),
M 为所研究的质点(动点)。
牛顿第二运动定律相对惯性系适用
maa F
引入 Se mae
aa ae ar ac
(牵连惯性力) (科氏惯性力)
mar F mae mac
牵
o
Ny Nz
vz
v
x
z f 2mx c
f t mx vx
mg
由运动微分方程第1式得
dx dx dx 2x x x dx dt dx
xdx xdx
2
对xdx xdx 两边同时积分
2
x
0
dx xdx x
2 ma' F m R 2m v '
(3)相对平衡
z
O
x
2mx
P
Rz
m 2 x
x
a 0 A B t 0, x a, x 2 a t x e e t ach t 2
a t 2m Rz 2mx e e t 2ma 2 sht 2
2
Ry mg
第4章 转动参照系

第四章 转动参照系 §4.1 平面转动参照系考虑一旋转的平面参照系oxy ,记为S ′(如平板),其角速度ω沿轴,其原点与静止坐标系(z S ξηo )的原点重合。
令单位矢量、固着在平板上的o i j x 轴和轴上,ω可表为y k ωω=。
再考虑平板上的运动质点P (想象为一小虫),其位矢为j i r y x += 严格应为:)()()()()(t t y t t x t j i r +=d d d x y x y dt dt dt ==+++r i j v i j ) ()(xy y x ωω=++−+i j i j 其中v j i ′=+y x 应为相对速度(即对转动参照系而言);0v r ωj i =×=+−x y ωω应为点所在处的牵连速度 P 于是,点的速度为:P r ωv v ×+′=与刚体力学中定轴转动公式r ωv ×=比较可见此处多出了相对速度这一项,原因是刚体上的质点相对刚体是没有相对运动的。
v ′ya j i ′=+yx 为相对加速度; r j i 222ωωω−=−−y x 为平板转动引起的向心加速度;(方向由点指向o 点)P r ωj i ×=+− x y ωω为平板作变角速转动引起的切向加速度(方向与r 垂直,在平板上。
匀速转动时为0);向心加速度 + 切向加速度 = 牵连加速度;(用表示)t a v ωj i ′×=+−222x yωω为科里奥利加速度。
(用表示)c a 故上式又可写成v ωr r ωa a ′×+−×+′=22ω 或简写为t c ′=++a a a a与平动情况相比,不仅牵连加速度项不同,这里还多了一项,这是转动参照系所特有的。
c a 必须明确两点:1. 平面转动参照系是非惯性系。
这是因为对固结在平面上的点来说,0,0′′≡=v a 。
这时,质点的加速度就等于牵连加速度,所以是非惯性系。
转动参考系
b.轨道磨损和河岸冲刷 当物体在地面运动时, 在北半球 (sin>0) 科里奥利 力的水平分量指向运动的右侧, 这样长年累月的作用, 使得北半球河岸右侧冲刷比左侧厉害, 因为比较陡峭. 而在南半球 (sin<0) 情况与此相反, 是左侧磨损或者 冲刷比较厉害. 双轨单行列车也是同样的问题.
c.落体偏东问题 假定质点由高度h自由下落,认为重力不变,且不受其他 外力, 显然有
如果质点固定在转动系中, v ' 0, 故a ' 0, ac 0, 则
2 F mat F m r ' r r 0
即当质点在非惯性系中处于平衡时, 主动力、约束反作 用力和由牵连运动而引起的惯性力的矢量和等于零. 我 们通常把这种平衡叫做相对平衡.
相对加速度 P相对平板
向心加速度 平板转动
切向加速度 平板变速转动
科里奥利加速度 牵连和相对纠缠
也可以简写为
a a'
相对加速度
at
牵连加速度
ac
科里奥利加速度
科里奥利加速度, 简称科氏加速度.
相对速度 v '发生改变, 而相对运动 ( 即 v ' ) 又同时使 r r 牵连速度 中的 发生改变 , 即科里奥利加速度 2 v '是由牵连运动与相对运动相互影响所产生的. 其方向垂直于 及 v '所决定的平面并且依右手螺
2 ma ' F m R 2m v '
R 表示质点到转动轴的距离矢量.
a0 , 则 O的加速度为
如果转动系的原点O′不和静止系原点O重合, 且O′对
第四章转动参照系
第四章 转动参照系
2021/7/10
§4.1平面转动参照系
2021/7/10
1、速度
1、速度 设平面参照系(例如平板)S′以角速度 绕垂直于自身的轴转动,在
这参照系(平板)上取坐标系 o xy ,它的原点和静止坐标系 S 原点 O
重合,并且绕着通过 O 点并且垂直于平板的直线(即 z 轴)以角速度
M 点的绝对加速度 aM at aC a
at
aA
d
dt
AM
AM
aC 2 vr
a
r2
AM
Hale Waihona Puke R2 r2i(d 0)
dt
aM
aA
(
AM )
2 vr
R2 r
2i
R r 2i r2i 2R2i R2 2i
r
2021/7/10
3R
2r
R2 r
2i
§4.2空间转动参照系
于 及 v 所确定的平面,并按右手螺旋法则及负号决定指向.对于 平面转动参照系来讲,因为 恒为 v 垂直,故将 v 沿着 S 转动的 反方向转一直角,即可得出科里奥利力的方向(图 4.3.1 从 P 点指 向读者)
2021/7/10
[例]在一光滑水平直管中,有一质量为 m 的小球.此管以恒定角速
度 绕通过管子一端的竖直轴转动.如果起始时,球距转动轴的距
转动参照系
z
r
x
z'
P
r'
O'
y'
即 v vt r ' v ' ve v '
rt
O
x'
y
为静系观察者看到质点P的总角速度
绝对速度=相对速度 + 牵连速度
8
理论力学
第四章 转动参照系
许杰制作
质点速度合成原理 v vt r ' v ' ve v ' 各项物理含义:
静系和动系具有相对性
z
z'
P
r'
O'
r
x
y'
质点P在空间中运动,则:
r rt r '
绝对位矢 = 牵连位矢 + 相对位矢
rt
O
x'
y
3
理论力学
第四章 转动参照系
许杰制作
质点位矢合成原理
r rt r '
r 称为绝对位矢 挃静系中观察者所看到动点P的位矢 rt 称为牵连位矢 挃静系中观察者所看到动系原点O'的位矢 r ' 称为相对位矢 挃动系中观察者所看到动点P的位矢
正交分解式: r xi yj zk rt xt i yt j zt k r ' x ' i ' y ' j ' z ' k '
z
r
x
z'
P
r'
O'
第4章 转动参考系
⎧ x = −4ω 2 y sin λ ⎡ x sin λ + ( z − h ) cos λ ⎤ ⎣ ⎦ ⎪ ⎪ y = 2 gtω cos λ − 4ω 2 y ⎨ ⎪ z = − g − 4ω 2 cos λ ⎡ x sin λ + ( z − h ) cos λ ⎤ ⎣ ⎦ ⎪ ⎩
青岛科技大学数理学院
青岛科技大学数理学院
14
§4.4 地球自转所产生的影响
一 惯性离心力
考虑地球自转时,可以认为其角速度是沿着地轴的一个恒 矢量,即 ω = 0. 因此,只需考虑惯性离心力和科里奥利力 即可;若质点相对于地球静止,则只需考虑惯性离心力 . 惯性离心力产生的影响: a) 重力与引力大小不相等(两极除外). b) 重力与引力方向不一致(两极除外). 注 惯性离心力所产生的影响一般都比较小,当研究 质点相对于地球的运动时,惯性离心力的效应只要用重 力来代替引力即可 .
a ωt x = ( e + e −ωt ) = achωt 2
管对小球的竖直反作用力和水平反作用力分别为
Ry = mg
a ωt −ωt Rz = 2mω x = 2mω ( e − e ) = 2maω 2shωt 2
2
惯性系
⎧m r − rθ 2 = Fr = 0 ⎪ ⎨ ⎪m rθ + 2rθ = Rθ ⎩
所以质点 P 的绝对加速度可简写为
dω ⎧ at = × r + ω (ω ⋅ r ) − ω 2 r ⎪ ⎪ dt ⎨ d *r ⎪a = 2ω × = 2ω × v′ c ⎪ dt ⎩
青岛科技大学数理学院
a = a′ + at + ac
8
若 S ′系以匀角速度转动,则