一元二次方程解法知识整理
一元二次方程解法知识点总结

一元二次方程解法知识点总结一元二次方程是高中数学中重要的概念之一,解一元二次方程是解决实际问题中的关键步骤。
在本文中,我将总结一元二次方程解法的主要知识点。
以下是详细介绍:一、一元二次方程的定义和一般形式一元二次方程指形如ax² + bx + c = 0的方程,其中a、b和c是已知常数,且a ≠ 0。
二、求一元二次方程的解的三种方法1. 因式分解法因式分解法是解一元二次方程的一种简单方法,适用于方程可以因式分解的情况。
2. 完全平方式当一元二次方程无法因式分解时,我们可以使用完全平方式解方程。
公式为:x = (-b ± √(b² - 4ac)) / (2a)。
3. 直接法(配方法)当一元二次方程无法因式分解且也不适用完全平方式时,我们可以使用配方法解方程。
通过变形将一元二次方程转化为一个平方的求解问题。
三、一元二次方程解的判别式判别式用于判断一元二次方程的解的性质。
判别式的公式为:Δ = b² - 4ac,其中Δ≥0且Δ<0代表不同的解的情况。
四、一元二次方程解的特殊情况1. 重根情况:当判别式Δ = 0时,方程仅有一个解,此时方程的两个解重合。
2. 无解情况:当判别式Δ < 0时,方程无实数解。
五、一元二次方程解法的应用一元二次方程解法的应用非常广泛,例如可以用来解决关于运动、生活中的数学题目,比如求解物体下落时间、销售利润最大化等。
六、例题与解析为了更好地理解一元二次方程解法,以下是两个例题的详细解析:例题1: 解方程x² - 5x + 6 = 0。
解析:首先计算判别式Δ = b² - 4ac = (-5)² - 4*1*6 = 25 - 24 = 1。
由于判别式Δ > 0,方程有两个不相等的实数解。
接下来使用公式 x = (-b ± √Δ) / 2a 计算解,得到:x₁ = (5 + √1) / 2 = 3x₂ = (5 - √1) / 2 = 2所以,方程的解为x₁ = 3和x₂ = 2。
一元二次方程复习知识点梳理

一元二次方程总复习考点1:一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是2,且系数不为 0,这样的方程叫一元二次方 程.一般形式:ax 2+bx+c=0(a ≠0)。
注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。
考点2:一元二次方程的解法1.直接开平方法:对形如(x+a )2=b (b ≥0)的方程两边直接开平方而转化为两个一元一次方程的方法。
X+a=±b∴1x =-a+b 2x =-a-b2.配方法:用配方法解一元二次方程:ax 2+bx+c=0(k ≠0)的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a )2=b 的形式;⑤如果b ≥0就可以用两边开平方来求出方程的解;如果b ≤0,则原方程无解.3.公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是aac b b x 242-±-=(b 2-4ac ≥0)。
步骤:①把方程转化为一般形式;②确定a ,b ,c 的值;③求出b 2-4ac 的值,当b 2-4ac ≥0时代入求根公式。
4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:若ab=0,则a=0或b=0。
步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.因式分解的方法:提公因式、公式法、十字相乘法。
5.一元二次方程的注意事项:⑴ 在一元二次方程的一般形式中要注意,强调a ≠0.因当a=0时,不含有二次项,即不是一元二次方程.⑵ 应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a ,b ,c 的值;②若b 2-4ac <0,则方程无解.⑶ 利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x +4)2 =3(x+4)中,不能随便约去x +4。
一元二次方程的解法

一元二次方程的解法一元二次方程的解法一、知识要点:一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是今后学习数学的基础,应引起同学们的重视。
一元二次方程的一般形式为:ax2+bx+c=0, (a≠0),它是只含一个未知数,并且未知数的最高次数是2的整式方程。
解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。
一元二次方程有四种解法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。
二、方法、例题精讲:1、直接开平方法:直接开平方法就是用直接开平方求解一元二次方程的方法。
用直接开平方法解形如(x-m)2=n (n≥0)的方程,其解为x=m± .例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接开平方法解。
(1)解:(3x+1)2=7×∴(3x+1)2=5∴3x+1=±(注意不要丢解)∴x=∴原方程的解为x1=,x2=(2)解:9x2-24x+16=11∴(3x-4)2=11∴3x-4=±∴x=∴原方程的解为x1=,x2=2.配方法:用配方法解方程ax2+bx+c=0 (a≠0)先将常数c移到方程右边:ax2+bx=-c将二次项系数化为1:x2+x=-方程两边分别加上一次项系数的一半的平方:x2+x+( )2=- +( )2方程左边成为一个完全平方式:(x+ )2=当b2-4ac≥0时,x+ =±∴x=(这就是求根公式)例2.用配方法解方程3x2-4x-2=0解:将常数项移到方程右边3x2-4x=2将二次项系数化为1:x2-x=方程两边都加上一次项系数一半的平方:x2-x+( )2= +( )2配方:(x-)2=直接开平方得:x-=±∴x=∴原方程的解为x1=,x2= .3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a, b, c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。
一元二次方程的解法(知识梳理)

一元二次方程的解法
1、知识要点:一元二次方程和一元一次方程都是整式方程
一元二次方程的一般形式为:ax2+bx+c=0, (a≠0),它是只含一个未知数,并且未知数的最高次数是2的整式方程。
解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。
一元二次方程有四种解法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。
2、方法
1、直接开平方法:
直接开平方法就是用直接开平方求解一元二次方程的方法。
用直接开平方法解形如(x-m)2=n (n≥0)的方程,其解为x=m±
.
2.配方法:用配方法解方程ax2+bx+c=0 (a≠0) 先将常数c移到方程右边:ax2+bx=-c
将二次项系数化为1:x2+
x=-
方程两边分别加上一次项系数的一半的平方:
x2+
x+(
)2=-
+(
)2方程左边成为一个完全平方式:(x+
)2=
当b2-4ac≥0时,x+
=±
∴x=
(这就是求根公式)
3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a, b, c的值代入求根公式x=
(b2-4ac≥0)就可得到方程的根。
4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。
这种解一元二次方程的方法叫做因式分解法。
一元二次方程的解法总结

x a 0或x a 0
x1 a
形如
2
x2 a
的式子运用完全平方公式得:
x2 2ax a 2 0
( x a) 0 x1 x2 a 或 x1 x2 a
例题讲解
例1 解下列方程
16(2 x) 9 0 (1) 解:原方程变形为: 9 2 (2 x) 16
解:提公因式得:
(3x 2)( x 6) 0
(3x 5)( x 2) 0
3x 5 0或x 2 0
3x 2 0或x 6 0
2 x1 3
5 x1 3
x2 6
x2 2
平方差公式与完全平方公式
形如
x2 a2 0 运用平方差公式得:
2
(2) x( x 2) 1 0 解:原方程变形为:
直接开平方得:
x2 2 x 1 0
( x 1)2 0
3 2 x 4 11 5 x2 x1 4 4
x1 x2 1
2 十字相乘法
步骤:
1 二次项系数为1的情况:
将一元二次方程常数项进行分解成两个数(式)p , q的乘 积的形式,且p + q = 一次项系数。
例题讲解
例1. 用配方法解下列方程
x2+6x-7=0
解:
x 6x 7 2 x 6x 9 7 9 2 x 3 16 x 3 4 x1 1 x2 7
2
例题讲解
例2. 用配方法解下列方程
2x2+8x-5=0
5 解: x 4x 2 5 2 x 4x 4 4 2
一元二次方程四种解法

一元二次方程解法【知识梳理】1. 对一元二次方程的概念及根的考察;2. 一元二次方程的求解;一元二次方程的解法一元二次方程的求解的最根本的思路是“降次”.(1)直接开方法:()m x m m x ±=⇒≥=,02(2)配方法:02=++c bx ax 222442a ac b a b x -=⎪⎭⎫ ⎝⎛+⇒ (3)求根公式法:条件()04,02≥-≠ac b a 且 aac b b x 242-±-= (4)因式分解法:()()021=--x x x x一元二次方程的求解直接开方法:由应用直接开平方法解形如x 2=p (p ≥0),那么x=±p 转化为应用直接开平方法解形如(mx+n )2=p (p ≥0),那么mx+n=±p ,达到降次转化之目的.若p <0则方程无解。
(注:两边同时开平方的时候记得不要忘记加上±号,两根相等时记得要写成x 1=x 2=…;而不是x= ) 例1:直接开方解方程:2x 2-8=0 3592=-x ()0962=-+x配方法:1)现将已知方程化为一般形式;2)化二次项系数为1;3)常数项移到右边;4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;5)变形为(x+p)2=q 的形式,如果q ≥0,方程的根是x=-p ±q ;如果q <0,方程无实根. 例1:配方法解方程0462=++x x 03422=-+x x 0142=++x x例2. 试说明:无论x 取何值,代数式542+-x x 的值总大于0,再求出当x 取何值时,代数式542+-x x 的值最小?最小值是多少?公式法(用公式法解一元二次方程是记得要先把方程化成一般式)要点:找出a,b,c 判断:ac b 42-=∆ 应用:aac b b x 242-±-= 例1、用公式法解下列方程(1)解方程x 2-2x-1=0 (2)解方程:-x 2+3x-2=0;变式:用公式法解下列方程(1)3x 2+2x-5=0 (2) x 222-x+1=0.不解方程说明方程根的情况(1) x 2+x-3=0 (2)x (x+8)=16.因式分解的方法:提公因式法、公式法和十字相乘法.1.乘法公式:(1)平方差公式:22()()a b a b a b +-=-;(2)完全平方公式:222()2a b a ab b +=++;222()2a b a ab b -=-+.2.十字相乘法:(1)二次项系数为1的二次三项式2x px q ++中,如果能把常数项q 分解成两个因式b a ,的积,并且b a +等于一次项系数中p ,那么它就可以分解成:()()()b x a x ab x b a x q px x ++=+++=++22. 题型一:因式分解【例1】(1))()(3x 3x x +=+; (2) 016x 2=— (3)09a 1242=++a ;题型二:十字相乘法分解因式【例1】(1)232x x ++=0; (2)212x x --=0; (3)2215x x +-=0.题型三:解一元二次方程【例1】用适当的方法解下列方程:(1)2410x x ++=; (2)210x x +-=; (3)22310x x -+=.【变式练习1】解下列一元二次方程:(1)21304x x ++=; (2)2420x x -+=;(3)2200x x --=; (4)24920x x -+=.【作业布置】(时间:20分;总分:60)用合适的方法解下列方程.(1)3y 2-6y=0 (2)x 2+2x-3=0.(3)x 2+35=12x (4)(x-3)2+9(x-3)=0(5)220x x -=; (6)2430x x +-=;(7) 22)3(4)23(-=+x x (8) )2(5)2(3+=+x x x。
一元二次方程的解法归纳总结
一元二次方程的解法归纳总结一元二次方程是高中数学中的重要内容之一,它可以通过求解来确定方程的根或解。
解一元二次方程的方法有多种,包括公式法、配方法、图像法等。
本文将对这些方法进行归纳总结,以便读者更清晰地理解和应用一元二次方程的解法。
一、公式法公式法是解一元二次方程最常用的方法之一,它基于一元二次方程的标准形式ax^2 + bx + c = 0。
一元二次方程的解可通过求根公式得到。
求根公式:对于一元二次方程ax^2 + bx + c = 0,其中a、b、c为已知常数,且a ≠ 0。
1. 判别式D = b^2 - 4ac。
- 当D > 0时,方程有两个不相等的实根。
- 当D = 0时,方程有两个相等的实根。
- 当D < 0时,方程没有实根。
2. 根据判别式的情况,求解一元二次方程的根。
- 当D > 0时,方程的两个根为 x1 = (-b + √D)/(2a) 和 x2 = (-b -√D)/(2a)。
- 当D = 0时,方程的两个根为 x1 = x2 = -b/(2a)。
- 当D < 0时,方程没有实根。
公式法适用于所有一元二次方程,但需注意的是,当D < 0时,方程没有实数解,因此解为复数,需要用复数域来表示。
二、配方法对于一些特殊形式的一元二次方程,如完全平方差、平方差、求负等,可以通过配方法将其转化成更容易求解的方程,进而求得解。
1. 完全平方差形式对于形如(x ± a)^2 = b的方程,可利用完全平方差公式,将其转化为(x ± a) = √b的形式,然后解得解x。
2. 平方差形式对于形如x^2 - a^2 = b的方程,可通过配方法将其转化为(x + a)(x -a) = b的形式,然后选取合适的值求解。
3. 求负对于形如x^2 + px = q的方程,可通过将方程两边同乘以负一进行转化,变为x^2 - px = -q的形式,然后应用配方法解方程。
配方法是解特殊形式一元二次方程的有效方法,通过将方程转化为更简单的形式,能够简化解的过程。
一元二次方程解法总结
一元二次方程解法总结一元二次方程是指形如ax^2+bx+c=0的方程,其中a、b、c为已知实数,x为未知数。
解一元二次方程的方法有以下几种:公式法、配方法、因式分解法和图像法。
1. 公式法:公式法是解一元二次方程最常用的方法。
对于一元二次方程ax^2+bx+c=0,它的解可以用下面的公式表示:x = (-b±√(b^2-4ac))/(2a)。
这个公式称为一元二次方程的求根公式,通过将方程中的a、b、c带入公式中,可以计算出方程的两个解x1和x2的值。
其中,b^2-4ac称为判别式,通过判别式的值可以判断方程的解的性质:- 当判别式大于0时,方程有两个不相等的实数解;- 当判别式等于0时,方程有两个相等的实数解;- 当判别式小于0时,方程没有实数解,有两个共轭的复数解。
2. 配方法:配方法是一种通过将方程变形的方法来解一元二次方程的方法。
对于一元二次方程ax^2+bx+c=0,可以通过配方法将其变形为(x+p)^2=q的形式,然后通过开平方的方式求解。
具体步骤如下:- 将方程移到等号右边,即ax^2+bx=-c;- 对方程进行配方,即在方程两边同时加上一个适当的常数p,使得左侧可以完全平方;- 然后再次移项得到(x+p)^2=q的形式,其中q=c-(b^2)/(4a);- 对方程两边同时开平方,得到x=-p±√q;通过配方法得到的解与公式法得到的解是一致的。
3. 因式分解法:对于一元二次方程ax^2+bx+c=0,如果能够将它因式分解为(a1x+b1)(a2x+b2)=0的形式,那么方程的解就可以通过因式分解得到。
具体步骤如下:- 对方程进行因式分解,即将方程因式分解为(a1x+b1)(a2x+b2)=0的形式;- 然后求解方程(a1x+b1)=0和(a2x+b2)=0,得到x的值;由于一元二次方程的解要满足原方程,因此需要将求得的x值代入原方程进行检验。
4. 图像法:图像法是通过观察一元二次方程在坐标系上的图像来解方程的方法。
《一元二次方程》知识梳理及经典例题
《一元二次方程》知识梳理及经典例题【知识梳理】考点一、概念(1)定义:①只含有一个未知数........,并且②未知数的最高次数是.........2.,这样的③整式方程....就是一元二次方程。
(2)一般表达式:ax2+bx+c=0(a≠0)⑶难点:如何理解“未知数的最高次数是2”:①该项系数不为“0”;②未知数指数为“2”;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。
考点二、方程的解⑴概念:使方程两边相等的未知数的值,就是方程的解。
⑵应用:利用根的概念求代数式的值;考点三、解法⑴方法:①直接开方法;②因式分解法;③配方法;④公式法⑵关键点:降次类型一、直接开方法:x2=m(m≥0),⇒x=±√m对于(x+a)2=m,(ax+m)2=(bx+n)2等形式均适用直接开方法类型二、因式分解法:(x−x1)(x−x2)=0⇒x=x1,或x=x2方程特点:左边可以分解为两个一次因式的积,右边为“0”,方程形式:如(ax+m)2=(bx+n)2,(x+a)(x+b)=(x+a)(x+c),x2+2ax+a2=0类型三、配方法ax2+bx+c=0(a≠0)⇒(x+b2a )2=b2−4ac4a2在解方程中,多不用配方法;但常利用配方思想求解代数式的值或极值之类的问题。
类型四、公式法⑴条件:(a≠0,且b2−4ac≥0)⑵公式:x=−b±√b2−4ac2a,(a≠0,且b2−4ac≥0)类型五、“降次思想”的应用⑴求代数式的值;⑵解二元二次方程组。
.考点四、根的判别式b2−4ac根的判别式的作用:①定根的个数;②求待定系数的值;③应用于其它。
考点五、应用解答题⑴“握手”问题;⑵“利率”问题;⑶“几何”问题;⑷“最值”型问题;⑸“图表”类问题考点六、根与系数的关系⑴前提:对于ax2+bx+c=0而言,当满足①a≠0、②Δ≥0时,才能用韦达定理。
⑵主要内容:x1+x2=−ba ,x1x2=ca⑶应用:整体代入求值。
一元二次方程知识归纳总结
一元二次方程知识归纳总结一元二次方程是高中数学中的重要内容,也是解决实际问题的重要工具。
它的一般形式为:ax² + bx+ c= 0,其中a、b、c是已知实数,a≠ 0。
在本文中,我们将对一元二次方程的基本概念、性质以及解法进行归纳总结。
一、一元二次方程的基本概念一元二次方程是指只含有一个未知数的二次方程。
其中,a、b、c分别表示二次项系数、一次项系数和常数项。
二、一元二次方程的性质1. 解的存在性:一元二次方程必有两个解,或者一个解(二重解),或者无解。
2. 判别式:判别式Δ = b² - 4ac对于一元二次方程起到重要作用,它可以判断方程的解的情况。
- 当Δ > 0时,方程有两个不相等的实数解。
- 当Δ = 0时,方程有两个相等的实数解。
- 当Δ < 0时,方程无实数解。
3. 顶点坐标:一元二次方程的图像是一个抛物线,其中顶点坐标可以通过公式h = -b/2a 和 k = -Δ/4a求得。
三、一元二次方程的解法1. 因式分解法:对于可以因式分解的一元二次方程,我们可以通过将方程的左、右两边同时因式分解,然后利用“零乘法”将方程等号两边置零,得到方程的解。
2. 公式法:对于一般形式的一元二次方程ax² + bx + c = 0,我们可以利用求根公式x = (-b ± √Δ) / 2a求得方程的解。
- 当Δ > 0时,方程有两个不相等的实数解。
- 当Δ = 0时,方程有两个相等的实数解。
- 当Δ < 0时,方程无实数解。
3. 完全平方式:对于特殊的一元二次方程,可以通过将未知数的平方项转化为完全平方式,然后利用公式求解。
4. 图像法:通过观察和分析一元二次方程的抛物线图像,可以大致推测出方程的解的情况。
四、一元二次方程的应用一元二次方程不仅仅是一种数学形式,还具有广泛的应用。
它可以用来解决各种实际问题,例如物体的运动轨迹、汽车的行驶距离等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点 3 用判别式判断一元二次方程的根
对一元二次方程: ax2 + bx +c = 0(a≠0) •b2 - 4ac > 0时,方程有两个不相等的实数根. •b2 - 4ac = 0时,方程有两个相等的实数根. •b2 - 4ac < 0时,方程没有实数根. 我们把 b2 - 4ac 叫做一元二次方程 ax2 + bx +c = 0(a≠0), 的根的判别式,用符号“Δ”来表示.
有两个不等的实数根x1= p ,x2=- p; (2) 当p=0时,方程有两个相等的实数根x1=x2=0; (3) 当p<0时,因为对任意实数x,都有x2≥0,
所以方程无实数根.
知识点 1 直接开平方法
知识点 1 直接开平方法 用直接开平方法解一元二次方程的步骤(三步法):
变形
将方程化为“含未知数的完全平方式=非负常数” 的形式
若方程的右边为非负数,则两边开平方求得方程 的根
知识点 3 用配方法解二次项系数为1的一元二次方程
字母表述:用配方法解形如x2 + px + q = 0的一元二次方程
①将常数项移到方程的右边.(注意:移项变号)
x2 + px = -q
②两边都加上一次项系数一半的平方.(注意:两边都加)
x2 + px + ( p )2 = ( p )2 - q
列方程(一般找出能够表达应用题主干含义的一个相等关系,
列
列代数式表示相等关系中的各个量,即方程)
解 求出所列方程的解
验 检验方程的解是否正确,能否保证实际问题有意义
答 根据题意,选择合理的答案作答
知识点 2 面积问题
解决面积问题可应用“等积变形”,若图形不规则应割或补成规 则图形,分散的图形应通过平移使之成为一个图形,以便求解
知识点 3 用判别式判断一元二次方程的根
根的判别式使用方法:
①化为一般式,确定a,b,c的值. ②计算 的值,确定 的符号. ③判别根的情况,得出结论.
知识点 3 用判别式判断一元二次方程的根
逆用根的判别式求方程中的未知数的值或取值范围: 一元二次方程有两个不相等的实数根 △>0 一元二次方程有两个相等的实数根 △= 0 一元二次方程无实数根 △<0
解题技巧
解一元二次方程方法的选择顺序: 先特殊后一般,即先考虑直接开平方法和因式分 解法,不能用这两种方法时,再用公式法,但对 于系数较大时,一般不适宜用公式法;没有特殊 要求的,一般不用配方法.其中配方法和公式法 适合于所有一元二次方程
解题技巧
解一元二次方程方法的口诀 ①方程没有一次项,直接开方最理想; ②如果缺少常数项,因式分解没商量; ③ b,c相等都为0 ,等根是0不要忘; ④ b,c同时不为0,因式分解或配方,
次项系数一半的平方等于16,即
m
2
16
,可得
2
m=±8.此处注意可为正,也可为负,不要遗漏
知识点 3 配方法的应用
利用配方构成非负数和的形式: 对于含有多个未知数的二次式的等式,求未知数 的值,解题突破口往往是配方成多个完全平方式 得其和为0,再根据非负数的和为0,各项均为0,
2.4用因式分解法 求解一元二次方程
知识点 1 因式分解法的依据
若两个因式的积为0,则这两个因式中至少有一 个等于0;反之,若两个因式中任何一个为0,则 它们的积也等于0.
a·b=0 a=0或b=0
注意
“二者中至少有一个为0”的意思,包括二者同
时为0;二者不能同时为0。
a·b=0
a=0或b=0
a=0,b≠0 a≠0,b=0
a=b=0
知识点 2 因式分解法的概念
因式分解法的概念: 当一元二次方程的一边是0,而另一边易于分解成 两个一次因式的乘积时,我们就可以用分解因式 的方法求解.这种用分解因式解一元二次方程的 方法称为因式分解法.
知识点 3 因式分解法的基本步骤
步骤
口诀
移项:整理方程,使其右边为0;
Hale Waihona Puke 开平方利用平方根的定义,将方程转化为两个一元一次 方程
求解
解一元一次方程,得出方程的根
知识点 2 配方
配方的基本思想:当一元二次方程二次项系数为 1时,方程两边都加上一次项系数一半的平方, 把原方程化为( x + m )2= n (n ≥ 0 )的形式
知识点 3 用配方法解二次项系数为1的一元二次方程
解所得到的一元一次方程,得出原方程的解
知识点 1 用配方法解二次项系数不为1的一元二次方程 用配方法解一元二次方程“五步法”口诀:
化、移、配、开、求
知识点 2 一元二次方程在生活中的应用
一元二次方程有两个根时,这些根虽然满足所列 的一元二次方程,但未必符合实际问题,因此,解 完一元二次方程之后,要按题意 检验 这些根
是不是实际问题的解.
知识点 3 配方法的应用
求最值或证明代数式的值为恒正(或负): 对于一个关于x的二次多项式通过配方成 a(x+m)2+n的形式后,(x+m)2≥0,n为常数, 当a>0时,可知其最小值; 当a<0时,可知其最大值.
知识点 3 配方法的应用
完全平方式中的配方:
如:已知x2-mx+16是一个完全平方式,所以一
2.2.1用直接开平方法与配方法解 二次项系数为1的一元二次方程
知识点 1 直接开平方法
一般地,对于形如 x2=p(p≥0)的方程, 利用平方根的定义,可得x1= p ,x2= - p 。 这种解一元二次方程的方法,叫做直接开平方法。
注意
一般地,对于方程 x2=p, (1) 当p>0时,根据平方根的意义,方程
从而求解.如:a2+b2-4b+4=0,则a2+(b-2)2=0,
即a=0,b=2.
2.3.1用公式法求解 一元二次方程
知识点 1 一元二次方程求根公式的推导 对于一元二次方程 ax2 + bx + c = 0(a ≠ 0), 当 b 2 - 4 ac ≥0 时,它的根是:
上面这个式子称为一元二次方程的求根公式. 用求根公式解一元二次方程的方法称为公式法
配方法:通过配成完全平方式的方法, 得到了一元二次方程的根, 这种解一元二次方程的方法称为配方法.
知识点 3 用配方法解二次项系数为1的一元二次方程 用配方法解二次项系数为1的一元二次方程的基本步骤:
移项 配方 开平方
把二次项和一次项移到方程的左边, 常数项移到方程的右边
方程两边都加上一次项系数一半的平方。 把原方程化为(x+m)2 = n 的形式
也可直接套公式,因题而异择良方.
法解二次项系数为1的一元二次方程的步骤求解.
知识点 1 用配方法解二次项系数不为1的一元二次方程 用配方法解一元二次方程“五步法”:
化1 方程的两边同除以二次项系数,把二次项系数化为1
移项 配方 开方 求解
把二次项和一次项移到方程的左边,常数项移到方程的右边
方程两边都加上一次项系数一半的平方。 把原方程化为(x+m)2 = n 的形式 若n≥0,则方程两边直接开平方得到一元一次方程; 若n<0,则原方程无解
2
2
③直接用开平方法求出它的解.(注意:常数项为非负数)
(x + p )2 = ( p )2 - q
2
2
2.2.2用配方法求解二次项 系数不为1的一元二次方程
知识点 1 用配方法解二次项系数不为1的一元二次方程
一般思路:用配方法解二次项系数不是1的一元二 次方程时,首先要把 二次项系数 化为1,也就是在 方程的两边同时除以 二次项系数 ,再按照配方
【注意】在已知方程根的情况下,利用根的判别式求字母系数的取值时,
注意结合其他的限定条件,如一元二次方程的四个特征等
2.3.2利用一元二次方程 解决面积问题
知识点 1 列一元二次方程解应用题的一般步骤
列方程解应用题“六步骤”: 审 审题要弄清已知量、未知量和问题中的等量关系
设 设未知数,有直接和间接两种设法,因题而异
知识点 2 用求根公式求解一元二次方程
用求根公式求解一元二次方程的一般步骤:
变形
把方程化成一般形式
确定系数 计算b2-4ac 判断求值
确定a、b、c的值
(注意不要丢掉各项系数的符号) b2-4ac的值
若b2-4ac ≥0,则把a、b及b2-4ac代入求根公式
求出方程的根;若b2-4ac<0,则方程没有实数根.
右化零
化积:将方程左边因式分解为两个一次因式的乘积; 左分解
转化:“根据至少有一个因式为0”令每个一次式分别 两因式
为0,得到两个一元一次方程;
求解:分别解这两个一元一次方程,它们的解就是 各求解
原方程的解
知识点 4 一元二次方程解法选择基本思路
1.一般地,当一元二次方程一次项系数为0时(ax2+c=0),应 选用直接开平方法; 2.若常数项为0( ax2+bx=0),应选用因式分解法; 3.若一次项系数和常数项都不为0 (ax2+bx+c=0),先化为一般 式,看一边的整式是否容易因式分解,若容易,宜选用因式分 解法,不然选用公式法; 4.不过当二次项系数是1,且一次项系数是偶数时,用配方法 也较简单.