凹凸性、渐近线、作图30页PPT文档

合集下载

经济数学课件 4.3函数的凹凸性

经济数学课件 4.3函数的凹凸性

x
《经济数学基础》配套课件
定义4.3.3、4.3.4
若 lim f ( x) b,lim f ( x) b 或 lim f (x) b,
x
x
x
则称直线 y = b 为曲线 y = f (x) 的水平渐近线.
若 lim f (x) , lim f ( x) 或 lim f ( x) ,
0
0
f (x)
凹的∪
拐点 (0,1)
凸的∩
拐点 (2 3 ,1127)
凹的∪
凹区间为(,0《],经[2济3数,学基), 础凸》区配套间课为件[0, 2 3]
凹凸区间为(,0], [0, 2 3], [2 3 ,). 《经济数学基础》配套课件
例 求曲线
的拐点.
2
5
解:
y
1 3
x
3
,
y
2 9
x
3
x ( ,0) 0
2. 求
并求出 及
为 0 和不存在
的点 ;
3. 列表判别增减及凹凸区间 , 求出极值和拐点 ;
4. 求渐近线 ;
5. 确定某些特殊点 , 描绘函数图形 .
《经济数学基础》配套课件
例5. 描绘函数
的图形.
解: 1) 定义域为
图形对称于 y 轴.
2)
求关键点 y 1
2
x
e
x2 2
,
y
1
e
x2
2 (1
(0, )
y
不存在
y凹
0

因此点 ( 0 , 0 ) 为曲线
的拐点 .
《经济数学基础》配套课件
练习. 求曲线
的凹凸区间及拐点.

第8节 曲线的凹凸性及渐近线

第8节  曲线的凹凸性及渐近线

2
2
那么称在Ⅰ上的图形是(向上)凹的(或凹弧);
如果恒有
f ( x1 x2 ) f (x1) f (x2)
2
2
那么称在Ⅰ上的图形是(向上)凸的(或凸弧)。
定义:设函数 y f x在a,b内可导,则
1.如果曲线y f x在a,b内任意点的切线总位于 曲线的下方,则称曲线y f x在a,b上是凹的.
1.确定函数的定义域并求f x; 2.求出f x 0和f x不存在的点x0; 3.对于2中的每一个x0,检查f x在x0左、右两侧
邻近的符号.
例3.求曲线y 2x3 3x2 12 x 14的凹凸区间和拐点 .
解 函数的定义域为 (, ).
y y
6x2 0
6x 12, ,得x1
y 1 2
第八节 曲线的凹凸性及渐近线
一、曲线的凹凸性及拐点的判定定理 二、曲线的渐近线
一、曲线的凹凸性及其判别法
y y f (x)
y y f (x)
o
x x x1 x2 12
x
2
o x1 x1 x2 x2 x
2
定义 设在区间Ⅰ上连续,如果对Ⅰ上任意两点 x1, x2,
恒有 f ( x1 x2 ) f (x1) f (x2)
拐点是曲线凹与凸的分界点.由定理知,在拐点左右两侧
f x的符号必然异号,因而在拐点处有f x 0或者f x 不存在;反过来,f x 0的点和f x不存在的点可能是 曲线的拐点,究竟是否拐点,还要看该点处f x的符号是
否异号.
例1.判定曲线 y x3的凹凸性.
解 函数的定义域为 (, ).
y' 3x2 , y'' 6x. x 0 y'' 0.

函数的凹凸性与作图

函数的凹凸性与作图
机动 目录 上页 下页 返回 结束
6)绘图
x ( , 1) 1 (1,1)
y
1
无 定 义
(1, 3) 3
(3 , )
2
(极大)
0
(极小)
铅直渐近线 斜渐近线 特殊点
x 1 1 5 y x 4 4
( x 3) 2 y 4( x 1)
x
y
0 9 4
2 1 4
3) 判别曲线形态
x y y y
0 0
1 2
(0 , 1)
1
0
1 2 e
(1, )



(极大)
机动
(拐点)
目录 上页 下页 返回 结束
x y y y
0 0
1 2
(0 , 1)
1
0
1 2 e
(1, )



(极大)
(拐点)
4) 求渐近线
y
A
1 2
lim y 0
( k x b)
f ( x) b k lim [ ] x x x f ( x) k lim x x
(或 x )
f ( x) b lim x[ k ]0 x x x f ( x) b lim [ k ]0 x x x
b lim [ f ( x) k x]
y
C M
y f ( x)
y kxb
L
PN
有渐近线
但抛物线
x y 0 a b
无渐近线 .
o
y
x
x
o
机动
目录
上页
下页
返回
结束
1. 水平与铅直渐近线 若 则曲线

《函数凹凸性》PPT课件

《函数凹凸性》PPT课件

y cos x sin x .
令 y 0,

x1
3 4
,
x2
7 4
.
f (3) 2 0, f (7) 2 0,
4
4
中值定理与导数的应用
10
在[0,2]内曲线有拐点为 (3 ,0), (7 ,0).
4
4
中值定理与导数的应用
11
二、渐近线
定义: 当曲线 y f ( x) 上的一动点 P 沿着曲线 移向无穷点时, 如果点 P 到某定直线 L 的距离 趋向于零, 那么直线 L 就称为曲线 y f ( x) 的 一条渐近线.
22
lim
x0
f
(x)
4( x 1)
lim[
x0
x2
2]
,
得铅直渐近线 x 0.
列表确定函数升降区间,凹凸区间及极值点和拐点:
x (,3) 3 (3,2) 2 (2,0) 0 (0,)
f ( x)
0 不存在
f (x)
0
f (x)
拐点
(3, 26) 9
极值点
3

断 点
中值定理与导数的应用
解 D : (,), 无奇偶性及周期性.
f ( x) (3x 1)(x 1), f ( x) 2(3x 1).
令 f ( x) 0, 得驻点 x 1 , x 1. 3
令 f ( x) 0,
得特殊点 x 1 . 3
补充点: A (1,0),
B (0,1), C (3 , 5). 28
f (x)在点 x0处二阶导数不存在 .
中值定理与导数的应用
6
例2 求曲线 y 3x4 4x3 1的拐点及
凹、凸的区间.

高等数学导数应用二凹凸拐点图形PPT课件

高等数学导数应用二凹凸拐点图形PPT课件

从而, 点 (x0, f (x0 )) 为曲线 y f (x) 的拐点 .
你能由以上的几个定理归纳出 求曲线拐点的步骤吗?
第28页/共56页
求拐点一般步骤
求曲线 y f (x) 拐点的一般步骤 : (1) 求 f (x) 的定义域 (或确定讨论区间 ) ; (2) 计算 f (x) , f (x) , (如需要可求出 f (x)) ; (3) 求拐点可疑点 : 使 f (x) 0 的点和 f (x) 不存在的点 ; (4) 根据定理判别可疑点是 否确为拐点 .
且仅在孤立点处出现 f (x) 0 .
第24页/共56页
于是 f (x) (x0 , x0x ) , f (x) (x0 x, x0 ) , 故 f (x) 在 x x0 处取极小值, 从而必有 f (x0 ) ( f (x)) xx0 0 .
使 f (x) 0 及 f (x) 不存在的点 ,
第26页/共56页
定理 ( 判别拐点的充分条件 )
设 f (x) C( I ) , f (x) 在 U(x0 ) (x0 I )内三阶可导. 若 f (x0 ) 0 , 且 f (x0 ) 0 , 则
点 (x0 , f (x0 )) 为曲线 y f (x) 的拐点 .
第27页/共56页
证 由于 f (x0 ) 0 , 故不妨设 f (x0 ) 0 .
成立 , 则称曲线
y f (x) 在区间 I 上是凹的 ;
第9页/共56页
例1
分析立方抛物线 y x3 的凹凸性.
分析
f ( x1 x2 ) x13 3x12 x2 3x1x22 x23
2
8
1( 2
f
(x1)
f
(x2 ))

3.5凹凸性与函数图形描绘PPT课件

3.5凹凸性与函数图形描绘PPT课件
3.5 曲线的凹凸性与函数作图
• 一.曲线的凹凸性及拐点 • 二.函数图形的描绘
一、凹凸性及拐点
y
y f (x) B

A
oa
bx
y f (x)
y
B

A oa
bx
1.定义 设函数f(x)在区间I上除端点外都可导,
x0为I的任一内点,若对 x I( x x0 ),恒有
f (x) f (x0 )(x x0 ) f (x0 ) ( f (x) f (x0)(x x0) f (x0)) 则称函数曲线 y 在f (区x)间I上是(向上)凹 的. (凸)
5 补充点,如与坐标轴的 交点、间断点、始点、 终点.
6 光滑连接各点,绘出函 数图形。
例5
作函数 ( x)
1
x2
e2
的图形.
2
解 1 [0,), (偶函数, 图形关于y轴对称)
2 ( x)
令 ( x) 0,
x
x2
e 2,
2
(
x)
(
x
1)(
x
1)
e
x2 2
.
2
得驻点 x 0,
令 ( x) 0,
得 x 1, x 1.
3°列表确定函数增减区间,凹凸区间及极值点 与拐点:
x
( x) ( x) ( x)
0 (0,1) 1 (1,)
0
0
1 2
拐点
(1, 1 ) 2e
4 lim ( x) lim
1
x2
e 2 0,
得水平渐近线
y 0.
x
x 2
( x)
1
x2
e2
2
写在最后

函数性态的研究(最值、凹凸性与渐近线).ppt


驻点
可能最值
极值点处 端点处
f 不存在的点
(应是f 的连续点)
(3) 如何判定:
驻点
可能最值
极值点处 端点处
f
不存在的点
(应是f 的连续点)
(3) 如何判定: 若 f (x)C ,则
只要比较 f 在驻点、 f 不存在的点、端点处的值, 最大者为最大值,最小者为最小值.
两个结论:
两个结论:
(1) 若 f (x)C[a, b] ,且在 (a, b) 内有唯一极值点 x0 ,
(6)
f
二阶连续可导, y sin
f ( x2 ) ,
求d2y .
dx 2
推广到一般情况: 设 f ( x) 在 x0 处有 n 阶导数, f ( x0 ) f (x0 ) f (n1)(x0 ) 0 ,且 f (n)( x0 ) 0 .则
10 n为奇数时,点 x0 为非极值点; 20 n为偶数时,
“ f ( x) 0 ”为 f ( x) 0 ”,则为严格凹函数. 反之未必成立,即 Thm 7 及注仅是充分条件,非必要.
例 9 证: ( x y)lnx y xlnx ylny , x, y0且 x y ;
2
Proof. 设 f ( x) xlnx , x0 ,(Step1 找准函数, )
Def. 2 设 f ( x) C[a, b] .对 x 1 , x2 (a, b) ,
及 0 1 ,若总有
f ( x1 (1 )x2) f (x1) (1 ) f (x2) (a, b) 内的凸函数; f ( x1 (1 )x2) f (x1) (1 ) f (x2) (a, b) 内的凹函数.
补充作业 (1)
ae2x cos x, x 0,

微积分4.4曲线的凹凸性、拐点与渐近线


动点M沿着曲线无限远离原点 y
y=ƒ(x)
移动时, 若该动点M到某直线L 的距离无限趋近于零 (如右图),
αM˘• Q •

L: y=ax+b
则称此直线L是曲线 y = ƒ(x)
o »α
x
的渐近线.
曲线 y = ƒ(x) 的渐近线按其与 x 轴的位置关系, 可分为
以下三种:
18
1.水平渐近线
定义4.4.5 如果曲线 y = ƒ(x)的定义域是无限区间, 且有
x -
x
两边同除以 x 并取极限有
f (x) lim[ a]0 x x-
或 lim[f(x)a]0 x x

f(x) lim a x x-
或 lim f(x) a x x
从而得到求 y = ƒ(x) 的斜渐近线 y = ax + b 的公式为:
a
f (x) lim
x x

b
lim[
x
f
( x)
lim
1
x x 1
x x1
所 以 y x 1 是 曲 线 的 一 条 斜 渐 近 线 .
25
四*. 函数图形的描绘
借助于一阶导数的符号, 可以确定函数图形在哪个区间 上上升, 在哪个区间上下降, 在什么地方有极值点; 借助于 二阶导数的符号, 可以确定函数图形在哪个区间上为凹, 在哪个区间上为凸, 在什么地方有拐点. 知道了函数图形 的升降、凹凸以及极值点和拐点后, 也就可以掌握函数的 性态, 并把函数的图形画得准确.
ax]
a
f (x) lim
x x
b
lim [
x
f
(x)
ax]

凹凸性、渐近线、作图资料

[解] 定义域:(,), 是偶函数.
因 为 lim e x2 0, 所 以 直 线y 0 x
是 水 平 渐 近 线.
y 2xex2
y 2ex2 (2x2 1)
令 y 0 驻点:x 0
令 y 0 x 1
10/15/2019
令 y '' 0, 得 x 1 , 没有二阶导数不存在的点 列表如下:5
x
(,
1 )
5
y '' -
y凸
1
5
0
8 25
拐点
(1 , ) 5
+

在 x 1 两侧 y ''符号发生改变,则(1 , 8 )是拐点.
5
5 25
1
例3.求曲线 y x3 的拐点.
1
解:函数 y x3 的定义域为 (, )
函数的凹凸性、渐近线 与作图
一、函数的凹凸性 二、曲线的渐近线 三、函数作图
10/15/2019
1
一、函数的凹凸性
若在某区间内,曲线上每一点的切线都位 于该曲线的下方,则称曲线在该区间内是凹的; 若曲线上每一点的切线都位于该曲线的上方,
则称曲线在该区间内是凸的.
(a)中曲线上任意两点的割线在曲线的上方
f (x2 )
则称f (x)在该区间上的图形是凸的.
10/15/2019
4
凹曲线的一阶导数变化规律:
若 f (x)是凹函数,则 f (x)单调增加;
10/15/2019
5
凸曲线的一阶导数变化规律:
若 f (x)是凸函数,则 f (x)单调减少.
10/15/2019
6

第四节 曲线的凹向,渐近线及图像的描绘-PPT文档资料


(1) f(x)0,则f(x)在[a,b]上的图形是上凹的;
(2) f(x)0,则f(x)在[a,b]上的图形是下凹的.
上一页下一页 返回
例1 判 断 曲 线 y x 3的 凹 向 . DR
解 y3x2, y6x, 当x0时,y 0, 曲 线 在 ( ,0 ] 为 下 凹 的 ; 当x0时,y 0, 曲 线 在 [ 0 , ) 为 上 凹 的 ; 注意到, 点 ( 0 , 0 ) 是 曲 线 由 下 凹 变 上 凹 的 分 界 点 .
上一页下一页 返回
三、作图举例
例5 作函 f(x)数 4(x x 21)2的图 . 形 解 D:x0, 非奇非偶函数,且无对称性.
f(x)4(xx3 2),
f(x)8(xx4 3).
令f(x)0, 得驻 x点 2,
令 f(x)0, 得特殊 x点 3.
lx i m f(x)lx i [m 4(x x 21)2] 2
上一页下一页 返回
上一页下一页 返回
lx i0m f(x)lx i0[m 4(x x 21)2] , 得铅垂渐近x线0.
列表确定函数升降区间,凹向区间及极值点和拐点:
x ( ,3) 3 (3,2)2 (2,0) 0 (0,)
f(x) 0
不存在
f(x)
0
f (x)
拐点
(3, 26) 9
上一页下一页 返回
例2 求 曲 线 y 3 x 4 4 x 3 1 的 拐 点 及 凹 向 .
解 D :(, )
y1x 2 31x 2 2, y36x(x2).
令y0,
得x1
0,
x2
2. 3
3
x (,0)
0
(0, 2 3)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)求函数的定义域; (2)求二阶导数; (3)求定义域内使二阶导数等于零
或二阶导数不存在的点; (4)检验各点两侧二阶导数的符号,如果
符号不同,该点就是拐点的横坐标;
(5)求出拐点的纵坐标.
例2.求曲线 y5x33x27x1凹、凸区间 及拐点.
解:函数的定义域为 (,)
y'15x26x7, y''30x6
为 曲 线 yf(x)的 拐 点 .
y
y f(x)
定理1:(拐点必要条件)
设 f (x)有二阶导数,
(•x0, f(x0)
若(x0, f (x0 ))为 f (x)的
x
拐点,则有f (x0 ) 0.
o x0
2020/4/3
7
定理2(拐点的充分条件)
设f 在点x0的某邻域内有二阶, 导 若f 在x0两侧异号 ,则(x0, f (x0))是f 的一 个拐点 .
(1)若 在 (a, b)内f(x)0, 则f(x)在 [a, b]是 凹 函 数 ;
(2)若 在 (a, b)内f(x)0, 则f(x)在 [a, b]是 凸 函 数 .
2020/4/3
6
(三 ) 拐点
设 点 (x0,f(x0))是 曲 线 yf(x)上 的 一 个 点 ,
在 该 点 两 侧 曲 线 凹 凸 性 相 反 ,则 称 点 (x0,f(x0))
x1 , x2恒 有 :
f
x1
2
x2
f ( x1 ) 2
f (x2)
则 称 f (x)在 该 区 间 上 的 图 形 是 凹 的 ;如 果 恒 有 :
f
x1
2
x2
f ( x1 ) f ( x2 ) 2
则 称 f (x)在 该 区 间 上 的 图 形 是 凸 的 .
2020/4/3
3
凹曲线的一阶导数变化规律:
-5
0
5
x
ezplot('x*(x-1)*y=1',[-10 10])
10
21
(2)水平渐近线 若limf(x)b,则 直y线 b是 曲
x (x )
yf(x)的水平渐 . 近线
注意:只有当函数的定义域是无穷区间时, 其曲线才有可能存在水平渐近线.
2020/4/3
22
对于函数 f (x) sin x
2020/4/3
8
例1.判断曲线 y x 4 的凹凸性.
解:
y 4 x3 , y 12x2
当x 0时,y 0; x 0时 , y 0,
y Ox
故曲线 y x 4 在 (, ) 上是凹的.
说明:若在某点二阶导数为0,在其两侧二 阶导数不变号,则曲线的凹凸性不变 .
求拐点的一般步骤:
lim fxax b
x
则 yaxb是曲线 yfx的一条斜渐近线.
y'
1
2
x 3,
y
''
2
5
x3
2
3
9
9x3 x2
当 x 0 时, y '' 不存在. 当 x 0 时, y '' 0; 当 x 0 时, y '' 0, 在 x 0 的两侧,y '' 的符号发生改变.点
( 0 , 0 ) 是该曲线的拐点.
y=x1/3
3
2
1
y
0
-1
-2
--310
-5
0
5
y
y f(x)
P

ykxb
o
2020/4/3
M
x
17
曲线渐近线的分类 (1)铅直渐近线
y xa
若 lim f ( x ) ( ) x a
(或 lim f ( x) ( ))
x a
oa x
则直线 xa
y f(x)
为 曲 线 y f ( x )的
铅直渐近线.
2020/4/3
18
y
ytaxn y ycoxt
一、函数的凹凸性
若在某区间内,曲线上每一点的切线都位 于该曲线的下方,则称曲线在该区间内是凹的; 若曲线上每一点的切线都位于该曲线的上方,
则称曲线在该区间内是凸的.
(a)中曲线上任意两点的割线在曲线的上方
(b)中曲线上任意两点的割线在曲线的下方
2020/4/3
2
(一) 凹凸性定义
设 f (x)在 区 间 I上 连 续,如 果 对 I上 任 意 两 点
若 f( x ) 是 凹 函 数 , 则 f ( x ) 单 调 增 加 ;
2020/4/3
4
凸曲线的一阶导数变化规律:
若 f( x ) 是 凸 函 数 ,则 f ( x ) 单 调 减 少 .
2020/4/3
5
(二)凹凸性的判定 定理1:( 用二阶导数判定函数的凹凸性 )
设 函 数 f(x )在 [a ,b ]上 连 续 ,在 (a ,b )内 二 阶 可 导 , 那 么
y
0
-5
-10 -10
2020/4/3
-5
0
5
x
ezplot('x*y=1',[-10 10])
10
15
作业
P108 习题4 20(2)(3) 21
预习:P112—115
2020/4/3
16
二、曲线的渐近线
如 果 曲 线 上 一 动 点 沿 曲 线 趋 于 无 穷 远 时 , 动 点 与 某 一 直 线 的 距 离 趋 于 零 ,则 称 该 直 线 为 曲 线 的 一 条 渐 近 线 .
令 y '' 0, 得 x 1 , 没有二阶导数不存在的点 列表如下:5
x ( ,1 )
5
y '' -
y凸
1
5
0
8 2
5
拐点
(1 , ) 5
+

在x
1 5
两侧 y
'' 符号发生改变,则 ( 1 , 8 )是拐点.
5 25
1
例3.求曲线 y x 3 的拐点.
1
解:函数 y x 3 的定义域为 (,)
2
o
2
x
o
2
x
2020/4/3
19
例5.求曲线 f (x) 1 的铅直渐近线.
x(x 1)
解 因为 lim 1 ,
x0 x(x 1)
lim 1 x1 x(x 1)
所以 x 0 和x 1 是曲线的0 x=0 x=1
-5
-10 -10
2020/4/3
10
x
x=linspace(-10,10);
y=nthroot(x,3);
plot(x,y)
2020/4/3
13
例4.求曲线 y 1 的拐点.
x
解 函数 y 1 的定义域为 (,0)U(0,)
x
y'
1 x2
,
y''
2 x3
由于 y
1 x
在x
0
处没有定义,所以该曲线
没有拐点.
y=1/x 10
5
x
由于 lim sin x 0
x x
所以, y 0 是曲线的一条水平渐近线.
y=sinx/x 1
0.5
y
0
-0.5
-200 -100
0
100 200
x
2020/4/3
23
(3)斜渐近线
如果曲线 y f (x) 有
f x
lim a0,
x x

f x
lim a0, x x
lim fxax b
x
相关文档
最新文档