高二数学人教A版选修4-5导学案: 2.3反证法与放缩法导学案 Word版含解析

合集下载

人教新课标A版高二数学《选修4-5》第二讲 三 反证法与放缩法

人教新课标A版高二数学《选修4-5》第二讲 三 反证法与放缩法

1 1 1 3.求证: + ≤1+ . 1+|a| 1+|b| 1+|a+b|
1+|b|+1+|a| 1 1 证明:∵ + = 1+|a| 1+|b| (1+|a|)(1+|b|) 1+|a|+|b|+1 1+|a|+|b|+1 = ≤ 1+|a|+|b|+|ab| 1+|a|+|b| 1 1 =1+ ≤1+ . 1+|a|+|b| 1+|a+b|
2n-1 1 3 5 3.求证: + + +…+ n <3 (n∈N+). 2 4 8 2
2n-1 1 3 5 证明:设 S= + + +…+ n , 2 4 8 2 1 将等式两边乘以 得 2 2n-1 1 1 3 5 S= + + +…+ n+1 . 2 4 8 16 2
将两式相减得 2n+3 1 2n-1 1 1 1 1 1 1 S= +24+8+16+…+2n- n+1 = +1- n+1 . 2 2 2 2 2 2n+3 2n+3 ∴S=3- n ,又 n >0, 2 2 2n-1 1 3 5 ∴S<3,即 + + +…+ n <3 (n∈N+). 2 4 8 2
2 2 n + 1 ( n + 1 ) 1 3 5 < + + +… + = 2 2 2 2 2
n ∴
n+1 (n+1)2 <Sn< . 2 2
反思感悟:用放缩法证明不等式的过程中,往往采用“添舍”放 缩、分项放缩、函数的单调性放缩、重要不等式收缩等,放缩时 要注意适度,否则不能同向传递.
1 1 1 2.求证:1+ 2+ 2+…+ 2<2 (n∈N+). 2 3 n
立.
1+y 1+x 1.已知 x>0,y>0,且 x+y>2,求证: 与 中至少有 x y 一个小于 2.

人教版数学高二A版选修4-5素材 2.3反证法与放缩法

人教版数学高二A版选修4-5素材  2.3反证法与放缩法

高中数学-打印版
精心校对完整版 预习导航
1.掌握反证法和放缩法的依据.
2.会利用反证法和放缩法证明有关不等式.
1.反证法 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们称这种证明问题的方法为反证法.
【做一做1-1】否定“自然数a ,b ,c 中恰有一个偶数”时,正确的假设为( )
A .a ,b ,c 都是奇数
B .a ,b ,c 都是偶数
C .a ,b ,c 中至少有两个偶数
D .a ,b ,c 中至少有两个偶数或都是奇数
答案:D
【做一做1-2】若要证明“a ,b 至少有一个为正数”,用反证法假设应为________________.
答案:a ,b 全为非正数
2.放缩法
证明不等式时,通常把不等式中的某些部分的值放大或缩小,简化不等式,从而达到证明的目的.我们把这种方法称为放缩法.
归纳总结 放缩法的常用技巧:舍去或加进一些代数式,放大或缩小分子或分母,运用重要不等式,利用函数的单调性、值域等.
【做一做2】A =1+
12+13+…+1n 与n (n ∈N +)的大小关系是________. 解析:A =
11+12+13+…+1n ≥n n n
n
+++共项=n n =n . 答案:A ≥n。

高二数学教案:2.4《不等式的证明方法之四:放缩法》(人教A版选修4-5)

高二数学教案:2.4《不等式的证明方法之四:放缩法》(人教A版选修4-5)
下面我们通过一些简单例证体会这种方法的基本思想。
二、典型例题:
例1、若 是自然数,求证
证明:
=
=
注意:实际上,我们在证明 的过程中,已经得到一个更强的结论 ,这恰恰在一定程度上体现了放缩法的基本思想。
例2、求证:
证明:由 ( 是大于2的自然数)

例3、若a,b,c,dR+,求证:证Leabharlann 记m= ∵a,b,c,dR+
课题:第04课时不等式的证明方法之四:放缩法
教学目标:
1.感受在什么情况下,需要用放缩法证明不等式。
2.探索用放缩法证明不等式的理论依据和技巧。
教学重、难点:
1.掌握证明不等式的两种放缩技巧。
2.体会用放缩法证明不等式时放大或缩小的“度”。
教学过程:
一、引入:
所谓放缩法,即是把要证的不等式一边适当地放大(或缩小),使之得出明显的不等量关系后,再应用不等量大、小的传递性,从而使不等式得到证明的方法。这种方法是证明不等式中的常用方法,尤其在今后学习高等数学时用处更为广泛。

∴1 < m < 2即原式成立。
例4、当n> 2时,求证:
证:∵n> 2∴

∴n> 2时,
三、课堂练习:
1、设 为大于1的自然数,求证
2、设 为自然数,求证
四、课时小结:
常用的两种放缩技巧:对于分子分母均取正值的分式,
(Ⅰ)如果分子不变,分母缩小(分母仍为正数),则分式的值放大;
(Ⅱ)如果分子不变,分母放大,则分式的值缩小。
五、课后作业:课本29页第2、3题。
教学札记

高二数学人教A版选修4-5导学案: 2.2综合法和分析法导学案 Word版含解析

高二数学人教A版选修4-5导学案: 2.2综合法和分析法导学案 Word版含解析

2.2综合法和分析法预习案一、预习目标及范围1.了解综合法与分析法证明不等式的思考过程与特点.2.会用综合法、分析法证明简单的不等式.二、预习要点教材整理1 综合法一般地,从出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫做,又叫或.教材整理2 分析法证明命题时,我们还常常从要证的出发,逐步寻求使它成立的充分条件,直至所需条件为或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立,这种证明方法叫做,这是一种执果索因的思考和证明方法.三、预习检测1.设a ,b ∈R +,A =a +b ,B =a +b ,则A ,B 的大小关系是()A .A ≥B B .A ≤BC .A >B D.A <B2.设a =2,b =7-3,c =6-2,那么a ,b ,c 的大小关系是()A .a >b >cB .a >c >bC .b >a >c D.b >c >a3.若1a <1b<0,则下列不等式: ①a +b <ab ;②|a |>|b |;③a <b ;④b a +a b>2. 其中正确的有________.(填序号)探究案一、合作探究题型一、用综合法证明不等式例1已知a ,b ,c 是正数,求证:b2c2+c2a2+a2b2a +b +c≥abc . 【精彩点拨】 由a ,b ,c 是正数,联想去分母,转化证明b 2c 2+c 2a 2+a 2b 2≥abc (a +b +c ),利用x 2+y 2≥2xy 可证.或将原不等式变形为bc a +ac b +ab c≥a +b +c 后,再进行证明.[再练一题]1.已知a >0,b >0,c >0,且abc =2.求证:(1+a )(1+b )(1+c )>8 2.题型二、综合法与分析法的综合应用例2设实数x ,y 满足y +x 2=0,且0<a <1,求证:log a (a x +b y )<18+log a 2. 【精彩点拨】 要证的不等式为对数不等式,结合对数的性质,先用分析法探路,转化为要证明一个简单的结论,然后再利用综合法证明.[再练一题]2.已知a ,b ,c 都是正数,求证:2⎝⎛⎭⎫a +b 2-ab ≤3a +b +c3-3abc..题型三、分析法证明不等式例3已知a >b >0,求证:(a -b )28a <a +b 2-ab <(a -b )28b . 【精彩点拨】 本题要证明的不等式显得较为复杂,不易观察出怎样由a >b >0得到要证明的不等式,因而可以用分析法先变形要证明的不等式,从中找到证题的线索.[再练一题]3.已知a >0,求证:a2+1a2-2≥a +1a-2.二、随堂检测1.已知a <0,-1<b <0,则()A .a >ab >ab 2B .ab 2>ab >aC .ab >a >ab 2D.ab >ab 2>a2.下列三个不等式:①a <0<b ;②b <a <0;③b <0<a .其中能使1a <1b成立的充分条件有() A .①② B .①③C .②③D.①②③3.已知a ,b ∈(0,+∞),Ρ=a +b 2,Q =a +b ,则P ,Q 的大小关系是________.参考答案预习检测:1.【解析】 A 2=(a +b)2=a +2ab +b ,B 2=a +b ,所以A 2>B 2.又A >0,B >0,所以A >B .【答案】 C2.【解析】 由已知,可得出a =422,b =47+3,c =46+2, ∵7+3>6+2>22,∴b <c <a . 【答案】 B3.【解析】 ∵1a <1b<0,∴b <a <0, ∴⎩⎪⎨⎪⎧ a +b <0,ab >0,|b|>|a|.故①正确,②③错误.∵a ,b 同号且a ≠b ,∴b a ,a b 均为正, ∴b a +a b >2b a ·a b=2.故④正确. 【答案】 ①④随堂检测:1.【解析】 ∵-1<b <0,∴1>b 2>0>b .又a <0,∴ab >ab 2>a .【答案】 D2.【解析】 ①a <0<b ⇒1a <1b ;②b <a <0⇒1a <1b ;③b <0<a ⇒1a >1b.故选A. 【答案】 A3.【解析】 ∵a +b≥,∴a +b ≥a +b 2. 【答案】 P ≤Q。

数学人教A版选修4-5素材:目标导引2.3反证法与放缩法含解析

数学人教A版选修4-5素材:目标导引2.3反证法与放缩法含解析

三反证法与放缩法一览众山小诱学·导入材料:从前有个国王总认为自己是个“至高无上的权威”,又是个“大慈大悲”的救世主.在处决犯人前,总要叫犯人抽签决定自己的命运,即在两张小纸片上,一张写“活"字,一张写“死"字,抽到“活”字可幸免一死。

一个囚犯一天将要被处决,他的死对头买通了狱吏,把两张纸片都写上了“死"字让他去抽,心想,这下犯人必死无疑.谁知那个狱吏把此消息透露给了犯人。

国王宣布抽签开始后,那犯人胸有成竹、不慌不忙地抽出一纸片,看也不看便放进嘴里,就吞下肚子,使在场的人慌了手脚,而犯人只受了痛打一顿的处罚而死里逃生了.问题:上述材料中犯人机智地保全了性命,试问你能说清理由吗?导入:因为谁都搞不清犯人抽到的是“死”还是“活",此时,国王查看剩下的纸片上写的是“死”字,由此反证,可知被犯人吞下的是“活”字了.于是国王下令,将犯人痛打一顿,以责罚他不该擅自吞吃纸片,随后又不得不将犯人释放了.上述材料中犯人机智地运用反证法保全了性命,真可谓棋高一筹.这就是反证法思想在生活中的应用,下面就研究反证法以及放缩法在不等式证明中的应用.温故·知新1何谓矛盾呢?答:在逻辑中指两个概念互相排斥或两个判断不能同时为真也不能同时为假的关系.2。

生活中的归谬证法是什么意思呢?答:归谬证法是指:当我们发现对方意见谬误时,不予驳斥和争辩,而是顺着他的思路,把谬误推导出来。

对方的意见原来可能只考虑到一方面的效果,而忽略了另一方面的影响以及可能产生的负作用,所以归谬论证就有意朝这些方面推导。

这种推导有时可以适当地夸大,使谬误更加明显,这就等于给对方戴上望远镜与显微镜.在整个推导过程中,自己始终表现得十分真诚,而且越真诚效果越好。

对方感到你如此真诚地按照他的意见进行设想,而结果又是如此荒谬,往往会禁不住哑然失笑.这笑是笑他本人的愚笨,于是你的目的也达到了,这就是古人所采用的归谬论证法的效果.。

高中数学人教A版选修4-5 2-3 反证法与放缩法 教案 精品

高中数学人教A版选修4-5 2-3 反证法与放缩法 教案 精品

2.3 反证法与放缩法教学目标:1、通过实例,体会反证法的含义、过程与方法,了解反证法的基本步骤,会用反证法证明简单的命题。

2.感受在什么情况下,需要用放缩法证明不等式。

3.探索用放缩法证明不等式的理论依据和技巧。

教学重点:体会反证法证明命题的思路方法,会用反证法证明简单的命题。

掌握证明不等式的两种放缩技巧。

教学难点:会用反证法证明简单的命题。

体会用放缩法证明不等式时放大或缩小的“度”。

教学过程:一、引入:前面所讲的几种方法,属于不等式的直接证法。

也就是说,直接从题设出发,经过一系列的逻辑推理,证明不等式成立。

但对于一些较复杂的不等式,有时很难直接入手求证,这时可考虑采用间接证明的方法。

所谓间接证明即是指不直接从正面确定论题的真实性,而是证明它的反论题为假,或转而证明它的等价命题为真,以间接地达到目的。

其中,反证法是间接证明的一种基本方法。

反证法在于表明:若肯定命题的条件而否定其结论,就会导致矛盾。

具体地说,反证法不直接证明命题“若p 则q ”,而是先肯定命题的条件p ,并否定命题的结论q ,然后通过合理的逻辑推理,而得到矛盾,从而断定原来的结论是正确的。

利用反证法证明不等式,一般有下面几个步骤:第一步 分清欲证不等式所涉及到的条件和结论;第二步 作出与所证不等式相反的假定;第三步 从条件和假定出发,应用证确的推理方法,推出矛盾结果;第四步 断定产生矛盾结果的原因,在于开始所作的假定不正确,于是原证不等式成立。

二、典型例题:例1、设233=+b a ,求证.2≤+b a证明:假设2>+b a ,则有b a ->2,从而.2)1(68126,61282233323+-=+->+-+->b b b b a b b b a因为22)1(62≥+-b ,所以233>+b a ,这与题设条件233=+b a 矛盾,所以,原不等式2≤+b a 成立。

例2、设二次函数q px x x f ++=2)(,求证:)3(,)2(,)1(f f f 中至少有一个不小于21. 证明:假设)3(,)2(,)1(f f f 都小于21,则 .2)3()2(2)1(<++f f f (1)另一方面,由绝对值不等式的性质,有2)39()24(2)1()3()2(2)1()3()2(2)1(=+++++-++=+-≥++q p q p q p f f f f f f (2)(1)、(2)两式的结果矛盾,所以假设不成立,原来的结论正确。

人教A版数学高二选修4-5第二讲三反证法与放缩法学案

人教A版数学高二选修4-5第二讲三反证法与放缩法学案

三反证法与放缩法对应学生用书P24 1.反证法(1)反证法证明的定义:先假设要证明的命题不成立,从此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不成立,从而证明原命题成立.(2)反证法证明不等式的一般步骤:①假设命题不成立;②依据假设推理论证;③推出矛盾以说明假设不成立,从而断定原命题成立.2.放缩法(1)放缩法证明的定义:证明不等式时,通常把不等式中的某些部分的值放大或缩小,简化不等式,从而达到证明的目的.(2)放缩法的理论依据有: ①不等式的传递性; ②等量加不等量为不等量;③同分子(分母)异分母(分子)的两个分式大小的比较.对应学生用书P24利用反证法证明不等式[例1] 已知f 求证:(1)f (1)+f (3)-2f (2)=2;(2)|f (1)|,f |(2)|,|f (3)|中至少有一个不小于12.[思路点拨] “不小于”的反面是“小于”,“至少有一个”的反面是“一个也没有”.[证明] (1)f (1)+f (3)-2f (2)=(1+p +q )+(9+3p +q )-2(4+2p +q )=2. (2)假设|f (1)|,|f (2)|,|f (3)|都小于12,则|f (1)|+2|f (2)|+|f (3)|<2.而|f (1)|+2|f (2)|+|f (3)|≥f (1)+f (3)-2f (2)=2矛盾, ∴|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12.(1)反证法适用范围:凡涉及不等式为否定性命题,唯一性、存在性命题可考虑反证法.如证明中含“至多”,“至少”,“不能”等词语的不等式.(2)注意事项:在对原命题进行否定时,应全面、准确,不能漏掉情况,反证法体现了“正难则反”的策略,在解题时要灵活应用.1.实数a ,b ,c 不全为0的等价条件为( ) A .a ,b ,c 均不为0 B .a ,b ,c 中至多有一个为0 C .a ,b ,c 中至少有一个为0 D .a ,b ,c 中至少有一个不为0解析:“不全为0”是对“全为0”的否定,与其等价的是“至少有一个不为0”. 答案:D2.证明:三个互不相等的正数a ,b ,c 成等差数列,则a ,b ,c 不可能成等比数列. 证明:假设a ,b ,c 成等比数列,则b 2=ac . 又∵a ,b ,c 成等差数列∴a =b -d ,c =b +d (其中d 公差). ∴ac =b 2=(b -d )(b +d ).∴b 2=b 2-d 2.∴d 2=0,∴d =0.这与已知中a ,b ,c 互不相等矛盾. ∴假设不成立.∴a ,b ,c 不可能成等比数列.3.已知函数y =f (x )在R 上是增函数,且f (a )+f (-b )<f (b )+f (-a ),求证:a <b . 证明:假设a <b 不成立,则a =b 或a >b .当a =b 时,-a =-b 则有f (a )=f (b ),f (-a )=f (-b ),于是f (a )+f (-b )=f (b )+f (-a )与已知矛盾.当a >b 时,-a <-b ,由函数y =f (x )的单调性可得f (a )>f (b ),f (-b )>f (-a ), 于是有f (a )+f (-b )>f (b )+f (-a )与已知矛盾.故假设不成立.∴a <b .利用放缩法证明不等式[例2] 已知实数x ,y ,z 不全为零.求证:x 2+xy +y 2+y 2+yz +z 2+z 2+zx +x 2>32(x +y +z ).[思路点拨] 解答本题可对根号内的式子进行配方后再用放缩法证明. [证明] x 2+xy +y 2= ⎝⎛⎭⎫x +y 22+34y 2 ≥⎝⎛⎭⎫x +y 22 =|x +y 2|≥x +y 2.同理可得:y 2+yz +z 2≥y +z 2,z 2+zx +x 2≥z +x2,由于x ,y ,z 不全为零,故上述三式中至少有一式取不到等号,所以三式相加得: x 2+xy +y 2+y 2+yz +z 2+z 2+zx +x 2>⎝⎛⎭⎫x +y 2+⎝⎛⎭⎫y +z 2+⎝⎛⎭⎫z +x 2=32(x +y +z ).(1)利用放缩法证明不等式,要根据不等式两端的特点及已知条件(条件不等式),审慎地采取措施,进行恰当地放缩,任何不适宜的放缩都会导致推证的失败.(2)一定要熟悉放缩法的具体措施及操作方法,利用放缩法证明不等式,就是采取舍掉式中一些正项或负项,或者在分式中放大或缩小分子、分母,或者把和式中各项或某项换以较大或较小的数,从而达到证明不等式的目的.4.设n 是正整数,求证:12≤1n +1+1n +2+…+12n <1.证明:由2n ≥n +k >n (k =1,2,…,n ), 得12n ≤1n +k <1n. 当k =1时,12n ≤1n +1<1n;当k =2时,12n ≤1n +2<1n ;…当k =n 时,12n ≤1n +n <1n ,∴将以上n 个不等式相加得: 12=n 2n ≤1n +1+1n +2+…+12n <n n =1. 5.设f (x )=x 2-x +13,a ,b ∈[0,1],求证: |f (a )-f (b )|<|a -b |.证明:|f (a )-f (b )|=|a 2-a -b 2+b | =|(a -b )(a +b -1)|=|a -b ||a +b -1| ∵0≤a ≤1,0≤b ≤1 ∴0≤a +b ≤2, -1≤a +b -1≤1,|a +b -1|≤1. ∴|f (a )-f (b )|≤|a -b |.对应学生用书P251.如果两个正整数之积为偶数,则这两个数( ) A .两个都是偶数B .一个是奇数,一个是偶数C .至少一个是偶数D .恰有一个是偶数解析:假设这两个数都是奇数,则这两个数的积也是奇数,这与已知矛盾,所以这两个数至少一个为偶数.答案:C2.设x >0,y >0,M =x +y 2+x +y ,N =x 2+x +y 2+y ,则M ,N 的大小关系为( )A .M >NB .M <NC .M =ND .不确定解析:N =x 2+x +y 2+y >x 2+x +y +y2+x +y =x +y 2+x +y =M .答案:B3.设a ,b ,c 是正数,P =a +b -c ,Q =b +c -a ,R =c +a -b ,则“P ·Q ·R >0”是“P ,Q ,R 同时大于零”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:必要性显然成立.充分性:若P ·Q ·R >0,则P ,Q ,R 同时大于零或其中有两个负的,不妨设P <0,Q <0,R >0.因为P <0,Q <0.即a +b <c ,b +c <a .所以a +b +b +c <c +a . 所以b <0,与b >0矛盾,故充分性成立. 答案:C4.对“a ,b ,c 是不全相等的正数”,给出下列判断: ①(a -b )2+(b -c )2+(c -a )2≠0; ②a >b 与a <b 及a ≠c 中至少有一个成立; ③a ≠c ,b ≠c ,a ≠b 不能同时成立. 其中判断正确的个数为( ) A .0个 B .1个 C .2个D .3个解析:对①,若(a -b )2+(b -c )2+(c -a )2=0,则a =b =c ,与已知矛盾;故①对; 对②,当a >b 与a <b 及a ≠c 都不成立时,有a =b =c ,不符合题意,故②对;对③,显然不正确.答案:C5.若要证明“a ,b 至少有一个为正数”,用反证法的反设应为________. 答案:a ,b 中没有任何一个为正数(或a ≤0且b ≤0) 6.lg9·lg11与1的大小关系是________. 解析:∵lg 9>0,lg 11>0.∴lg 9·lg 11<lg 9+lg 112=lg 992<lg 1002=1.∴lg 9·lg 11<1. 答案:lg 9·lg 11<17.完成反证法整体的全过程.题目:设a 1,a 2,…,a 7是1,2,3,……,7的一个排列, 求证:乘积p =(a 1-1)(a 2-2)…(a 7-7)为偶数. 证明:反设p 为奇数,则________________均为奇数. ①因奇数个奇数的和还是奇数,所以有奇数=________________________ ② =________________________③=0.但奇数≠偶数,这一矛盾说明p 为偶数.解析:反设p 为奇数,则(a 1-1),(a 2-2),…,(a 7-7)均为奇数. 因为奇数个奇数的和还是奇数,所以有 奇数=(a 1-1)+(a 2-2)+…+(a 7-7) =(a 1+a 2+…+a 7)-(1+2+3+…+7) =0.但奇数≠偶数,这一矛盾说明p 为偶数. 答案:(a 1-1),(a 2-2),...,(a 7-7) (a 1-1)+(a 2-2)+...+(a 7-7) (a 1+a 2+...+a 7)-(1+2+3+ (7)8.实数a ,b ,c ,d 满足a +b =c +d =1,且ac +bd >1,求证:a ,b ,c ,d 中至少有一个是负数.证明:假设a ,b ,c ,d 都是非负数. 由a +b =c +d =1知:a ,b ,c ,d ∈[0,1]. 从而ac ≤ac ≤a +c 2,bd ≤bd ≤b +d2.∴ac +bd ≤a +c +b +d2=1.即ac +bd ≤1.与已知ac +bd >1矛盾,∴a ,b ,c ,d 中至少有一个是负数.9.求证:112+122+132+…+1n 2<2.证明:因为1n 2<1n (n -1)=1n -1-1n,所以112+122+132+…+1n 2<1+11×2+12×3+…+1(n -1)n=1+(1-12)+(12-13)+…+(1n -1-1n )=2-1n<2.10.证明抛物线x =y 2上,不存在关于直线x +y +1=0对称的两点.证明:假设抛物线x =y 2上存在两点A (a 2,a )B (b 2,b )(a ≠b )关于直线x +y +1=0对称. 由k AB =1,且A 、B 的中点⎝⎛⎭⎫a 2+b 22,a +b 2在直线x +y +1=0上.即⎩⎪⎨⎪⎧a -b a 2-b 2=1, ①a 2+b 22+a +b 2+1=0. ②由①得a +b =1,代入②得a 2+b 22+32=0.此方程无解,说明假设不成立.∴抛物线x =y 2上不存在关于直线x +y +1=0对称的两点.。

人教A版选修4-5 2.3 反证法与放缩法 学案

人教A版选修4-5 2.3 反证法与放缩法 学案

三反证法与放缩法第8课时反证法与放缩法1.反证法先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,这种方法称为反证法.2.放缩法证明不等式时,通过把不等式中的某些部分的值放大或缩小,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法.知识点一反证法证明不等式1.应用反证法推出矛盾的过程中,要把下列哪些作为条件使用( )①假设;②原命题的条件;③公理,定理,定义等;④原命题的结论.A.①②B.①②③C.①②③④D.②③解析:在用反证法证明命题时,要把假设,原命题中的条件,还有公理、定理、定义等作为条件使用,因此应选B.答案:B2.(2019·湖南邵东一中月考)若实数a,b,c满足a+b+c=1,给出以下说法:①a,b,c中至少有一个大于13;②a,b,c中至少有一个小于13;③a,b,c中至少有一个不大于13;④a,b,c中至少有一个不小于14.其中正确说法的个数是( )A.3 B.2 C.1 D.0解析:∵实数a,b,c满足a+b+c=1,则在①②中,当a=b=c=13时,满足a +b +c =1,所以命题不正确;对于③中,假设a ,b ,c 三个数都大于13,则a +b +c >1,这与已知条件是矛盾的,所以假设不成立,则a ,b ,c 中至少有一个不大于13,所以③是正确的;对于④中,假设a ,b ,c 三个数都小于14,则a+b +c <1,这与已知条件是矛盾的,所以假设不成立,则a ,b ,c 中至少有一个不小于14,所以④是正确的.综上所述,正确的命题有2个,故选B. 答案:B3.已知三个正数a ,b ,c 成等比数列,但不成等差数列. 求证:a , b , c 不成等差数列. 证明:假设a , b , c 成等差数列,则有a +c =2b ,即a +c +2ac =4b . 又∵三个正数a ,b ,c 成等比数列. ∴b 2=ac ,即b =ac .∴a +c +2ac =4ac ,即(a -c )2=0, ∴a =c ,即a =c . 从而得a =b =c .∴a ,b ,c 也成等差数列,这与已知矛盾. 故假设错误,∴a , b , c 不成等差数列. 知识点二 放缩法证明不等式 4.已知S =1+11×2+11×2×3+…+11×2×3×…×n(n 是大于2的自然数),则有( )A .S <1B .2<S <3C .1<S <2D .3<S <4解析:S =11+11×2+11×2×3+…+11×2×3×…×n <1+12+122+123+…+12n -1=1-12n1-12=2-12n -1<2.又因为S =1+11×2+…+11×2×3×…×n >1.故选C.答案:C 5.令P =1+12+13+…+1n ,Q =n ,则P 与Q 的大小关系是________. 解析:P =1+12+13+…+1n ≥1n +1n +…+1n =nn=n ,当且仅当n =1时取等号,∴P ≥Q .答案:P ≥Q6.(2019·辽宁德才期中)求证:1+122+132+…+1n 2<2.证明:∵1n 2=1n ·n <1n n -1=1n -1-1n(n ≥2), ∴1+122+132+ (1)2<1+⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝⎛⎭⎪⎫1n -1-1n =1+1-1n=2-1n<2.∴原不等式成立.一、选择题1.已知f (x )在R 上为增函数,且f (x 0)=f (1),则( ) A .x 0>1 B .x 0=1 C .x 0<1D .x 0≠1解析:①若x 0>1,∵f (x )是增函数, ∴f (x 0)>f (1),这与已知f (x 0)=f (1)矛盾.②若x 0<1,∵f (x )是增函数,∴f (x 0)<f (1),这与已知f (x 0)=f (1)矛盾. 综合①②知,x 0=1. 答案:B2.设a ,b 是不相等的实数,且a +b =2,则下列不等式成立的是( ) A .ab ≤1≤a 2+b 22 B .ab ≤a 2+b 22≤1 C .1<ab <a 2+b 22D .ab <1<a 2+b 22解析:由不等式 a 2+b 22≥a +b 2≥ab ,得a 2+b 22≥⎝⎛⎭⎪⎫a +b 22≥ab .又∵a +b =2,且a ≠b .∴ab <1<a 2+b 22.答案:D3.(2019·福清东张中学期中)设a ,b ,c 大于0,a +b +c =3,则3个数:a +1b ,b +1c ,c +1a的值( ) A .都大于2 B .至少有一个不大于2 C .都小于2D .至少有一个不小于2解析:假设3个数:a +1b <2,b +1c <2,c +1a <2,则⎝ ⎛⎭⎪⎫a +1b +⎝ ⎛⎭⎪⎫b +1c +⎝ ⎛⎭⎪⎫c +1a <6,∵a ,b ,c 大于0,利用基本不等式⎝ ⎛⎭⎪⎫a +1b +⎝ ⎛⎭⎪⎫b +1c +⎝ ⎛⎭⎪⎫c +1a =⎝ ⎛⎭⎪⎫a +1a +⎝ ⎛⎭⎪⎫b +1b +⎝⎛⎭⎪⎫c +1c ≥2+2+2=6,这与假设所得结论相矛盾,故假设不成立,所以3个数:a +1b ,b +1c ,c +1a中至少有一个不小于2,故选D. 答案:D4.(2019·辽宁德才期中)用反证法证明某命题时,对结论:“自然数a ,b ,c 中恰有一个偶数”正确的反设为( )A .a ,b ,c 中至少有两个偶数B .a ,b ,c 中至少有两个偶数或都是奇数C .a ,b ,c 都是奇数D.a,b,c都是偶数解析:因为结论:“自然数a,b,c中恰有一个偶数”,可得题设为a,b,c 中恰有一个偶数,所以反设的内容是假设a,b,c中至少有两个偶数或都是奇数,故选B.答案:B5.设a,b∈R,给出下列条件:①a+b>1;②a+b=2;③a+b>2;④a2+b2>2;⑤ab>1.其中能推出“a,b中至少有一个实数大于1”的条件有( ) A.1个B.2个C.3个D.4个解析:对于①,a,b均可以小于1;对于②,a,b均可以等于1;对于③,若a,b都不大于1,则a+b≤2,这与③矛盾,则a,b中至少有一个实数大于1,对于④⑤,a,b可以是负数.答案:A二、填空题6.用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:①∠A+∠B+∠C=90°+90°+∠C>180°,这与三角形内角和为180°矛盾,则∠A=∠B=90°不成立;②所以一个三角形中不能有两个直角;③假设∠A,∠B,∠C中有两个角是直角,不妨设∠A=∠B=90°.正确顺序的序号排列为________.解析:由反证法证明的步骤,先假设,即③,再推出矛盾,即①,最后作出判断,肯定结论,即②,顺序应为③①②.答案:③①②7.已知M=1210+1210+1+1210+2+…+1211-1,则M与1的大小关系是________.解析:M=1210+1210+1+1210+2+…+1211-1<1210+1210+1210+…+1210=210210=1,即M <1.答案:M <18.若a >0,则a +1a+a 2+1a 2的最小值为________.解析:∵a >0,∴a +1a+a 2+1a2≥2a ·1a+2a ·1a=2+2,当且仅当a =1时取等号.答案:2+ 2 三、解答题9.(2019·山东聊城期中)若x ,y 都是正实数,且x +y >43.求证:2+xy <4与2+yx<4中至少有一个成立.证明:假设2+xy <4和2+yx<4都不成立,即2+xy≥4和2+yx≥4同时成立.因为x >0且y >0,所以2+x ≥4y ,且2+y ≥4x , 两式相加,得4+x +y ≥4x +4y ,所以x +y ≤43,这与已知条件x +y >43相矛盾,所以2+xy<4与2+yx<4中至少有一个成立.10.(2019·河北沧州七校联考)等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2.(1)求数列{a n }的通项公式a n 与前n 项和S n ;(2)设b n =S nn(n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.解:(1)由已知得⎩⎪⎨⎪⎧a 1=2+1,3a 1+3d =9+32,解得d =2,∴a n =2n -1+2,S n =n (n +2). (2)证明:由(1)知b n =S n n=n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r ∈N *,且互不相等)成等比数列, 则b 2q =b p b r ,即(q +2)2=(p +2)(r +2), ∴(q 2-pr )+2(2q -p -r )=0. ∵p ,q ,r ∈N *, ∴⎩⎨⎧q 2-pr =0,2q -p -r =0,∴⎝⎛⎭⎪⎫p +r 22=pr ,即(p -r )2=0, ∴p =r ,这与p ≠r 矛盾, ∴假设错误,故数列{b n }中任意不同的三项不可能成等比数列.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.3反证法与放缩法
预习案
一、预习目标及范围
1.掌握用反证法证明不等式的方法.
2.了解放缩法证明不等式的原理,并会用其证明不等式.
二、预习要点
教材整理1 反证法
先假设,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和(或已证明的定理、性质、明显成立的事实等)的结论,以说明不正确,从而证明原命题成立,我们把这种证明问题的方法称为反证法.
教材整理2 放缩法
证明不等式时,通过把不等式中的某些部分的值或,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法.
三、预习检测
1.如果两个正整数之积为偶数,则这两个数()
A .两个都是偶数
B .一个是奇数,一个是偶数
C .至少一个是偶数
D .恰有一个是偶数
2.若|a -c |<h ,|b -c |<h ,则下列不等式一定成立的是()
A .|a -b |<2h
B .|a -b |>2h
C .|a -b |<h D.|a -b |>h
3.A =1+
12+13+ (1)
与n(n ∈N +)的大小关系是________. 探究案
一、合作探究
题型一、利用反证法证“至多”“至少”型命题
例1已知f (x )=x 2+px +q ,求证:
(1)f (1)+f (3)-2f (2)=2;
(2)|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12
. 【精彩点拨】 (1)把f (1),f (2),f (3)代入函数f (x )求值推算可得结论.
(2)假设结论不成立,推出矛盾,得结论.
[再练一题]
1.已知实数a ,b ,c ,d 满足a +b =c +d =1,ac +bd >1.求证:a ,b ,c ,d 中至多有三个是非负数.
题型二、利用放缩法证明不等式
例2已知a n =2n 2,n ∈N *,求证:对一切正整数n ,有1a1+1a2+…+1an <32
. 【精彩点拨】 针对不等式的特点,对其通项进行放缩、列项.
[再练一题]
2.求证:1+122+132+…+1n2<2-1n
(n ≥2,n ∈N +).
题型三、利用反证法证明不等式
例3已知△ABC 的三边长a ,b ,c 的倒数成等差数列,求证:∠B <90°.
【精彩点拨】 本题中的条件是三边间的关系2b =1a +1c
,而要证明的是∠B 与90°的大小关系.结论与条件之间的关系不明显,考虑用反证法证明.
[再练一题]
3.若a 3+b 3=2,求证:a +b ≤2.
二、随堂检测
1.实数a ,b ,c 不全为0的等价条件为()
A .a ,b ,c 均不为0
B .a ,b ,c 中至多有一个为0
C .a ,b ,c 中至少有一个为0
D .a ,b ,c 中至少有一个不为0
2.已知a +b +c >0,ab +bc +ac >0,abc >0,用反证法求证a >0,b >0,c >0时的假设为()
A .a <0,b <0,c <0
B .a ≤0,b >0,c >0
C .a ,b ,c 不全是正数D.abc <0
3.要证明3+7<25,下列证明方法中,最为合理的是()
A .综合法
B .放缩法
C .分析法D.反证法
参考答案
预习检测:
1.【解析】 假设这两个数都是奇数,则这两个数的积也是奇数,这与已知矛盾,所以这两个数至少有一个为偶数.
【答案】 C
2.【解析】|a-b|=|(a-c)-(b-c)|≤|a-c|+|b-c|<2h. 【答案】 A
3.【解析】A=1
1+
1
2+
1
3+…+
1
n≥=
n
n=n.
【答案】A≥n
随堂检测:
1.【解析】实数a,b,c不全为0的含义即a,b,c中至少有一个不为0,其否定则是a,b,c全为0,故选D.
【答案】 D
2.【解析】a>0,b>0,c>0的反面是a,b,c不全是正数,故选C.
【答案】 C
3.【解析】由分析法的证明过程可知选C.
【答案】 C。

相关文档
最新文档