成人高考-数学知识复习资料

合集下载

成人高考数学知识点归纳总结

成人高考数学知识点归纳总结

成人高考数学知识点归纳总结一、代数部分。

1. 集合。

- 集合的概念:把一些确定的对象看成一个整体就形成一个集合。

集合中的元素具有确定性、互异性和无序性。

- 集合的表示方法:列举法(如A = {1,2,3})、描述法(如B={xx^2 -1=0})。

- 集合间的关系:子集(A⊆ B表示A中的元素都在B中)、真子集(A⊂neqq B表示A是B的子集且A≠ B)、相等(A = B当且仅当A⊆ B且B⊆ A)。

- 集合的运算:交集(A∩ B={xx∈ A且x∈ B})、并集(A∪ B = {xx∈A或x∈ B})、补集(设U为全集,∁_U A={xx∈ U且x∉ A})。

2. 函数。

- 函数的概念:设A,B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y = f(x),x∈ A。

- 函数的三要素:定义域、值域和对应关系。

- 函数的性质。

- 单调性:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D 内的任意两个自变量x_1,x_2,当x_1时,都有f(x_1)(或f(x_1)>f(x_2)),那么就说函数y = f(x)在区间D上是增函数(或减函数)。

- 奇偶性:设函数y = f(x)的定义域为D关于原点对称,如果对于任意x∈D,都有f(-x)=f(x),那么函数y = f(x)是偶函数;如果对于任意x∈ D,都有f(-x)= -f(x),那么函数y = f(x)是奇函数。

- 一次函数y=kx + b(k≠0):k是斜率,b是截距。

当k>0时,函数单调递增;当k < 0时,函数单调递减。

- 二次函数y=ax^2+bx + c(a≠0):对称轴为x =-(b)/(2a),当a>0时,函数开口向上,在x =-(b)/(2a)处取得最小值y=(4ac - b^2)/(4a);当a < 0时,函数开口向下,在x=-(b)/(2a)处取得最大值y=(4ac - b^2)/(4a)。

成人高考数学知识点

成人高考数学知识点

成人高考数学知识点成人高考数学知识点11、知识范围(1)向量的概念向量的定义、向量的模、单位向量、向量在坐标轴上的投影、向量的坐标表示法、向量的方向余弦(2)向量的线性运算向量的加法、向量的减法、向量的数乘(3)向量的数量积二向量的夹角、二向量垂直的充分必要条件(4)二向量的向量积、二向量平行的充分必要条件2、要求(1)理解向量的概念,掌握向量的坐标表示法,会求单位向量、方向余弦、向量在坐标轴上的投影。

(2)熟练掌握向量的线性运算、向量的数量积与向量积的计算方法。

(3)熟练掌握二向量平行、垂直的.充分必要条件。

成人高考数学知识点2一】【实数的分类】【自然数】表示物体个数的1、2、3、4・・・等都称为自然数【质数与合数】一个大于1的整数,如果除了它本身和1以外不能被其它正整数所整除,那么这个数称为质数。

一个大于1的数,如果除了它本身和1以外还能被其它正整数所整除,那么这个数知名人士为合数,1既不是质数又不是合数。

【相反数】只有符号不同的两个实数,其中一个叫做另一个的相反数。

零的相反数是零。

【绝对值】一个正数的绝对值是它本身,一个负数绝对值是它的相反数,零的绝对值为零。

从数轴上看,一个实数的绝对值是表示这个数的点离开原点距离。

【倒数】 1除以一个非零实数的商叫这个实数的倒数。

零没有倒数。

【完全平方数】如果一个有理数a的平方等于有理数b,那么这个有理数b叫做完全平方数。

【方根】如果一个数的n次方(n是大于1的整数)等于a,这个数叫做a的n次方根。

【开方】求一数的方根的运算叫做开方。

【算术根】正数a的正的n次方根叫做a的n次算术根,零的算术根是零,负数没有算术根。

二】【代数式】用有限次运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结所得的式子,叫做代数式。

【代数式的值】用数值代替代数式里的字母,计算后所得的结果,叫做当这个字母取这个数值时的代数式的值。

【代数式的分类】【有理式】只含有加、减、乘、除和乘方运算的代数式叫有理式【无理式】根号下含有字母的代数式叫做无理式【整式】没有除法运算或者虽有除法运算而除式中不含字母的有理式叫整式三】直线(不定义)直线向两方无限延伸,它无端点。

成人高考数学知识点

成人高考数学知识点

成人高考数学知识点成人高考对于许多想要提升学历的成年人来说是一个重要的途径。

数学作为其中的一个重要科目,掌握好相关知识点对于取得好成绩至关重要。

接下来,让我们一起梳理一下成人高考数学的一些关键知识点。

一、代数部分1、函数函数是代数中的重要概念。

包括一次函数、二次函数、反比例函数等。

一次函数的表达式为 y = kx + b,其图像是一条直线。

二次函数的一般式为 y = ax²+ bx + c,图像是一个抛物线,需要掌握其对称轴、顶点坐标等性质。

反比例函数 y = k/x 的图像是双曲线。

2、不等式不等式的解法是常见考点。

例如一元一次不等式、一元二次不等式。

解一元二次不等式时,需要先求出对应的二次方程的根,然后根据函数图像的开口方向确定不等式的解集。

3、数列等差数列和等比数列是重点。

等差数列的通项公式为 an = a1 +(n 1)d,前 n 项和公式为 Sn = n(a1 + an)/2 。

等比数列的通项公式为 an = a1q^(n 1),前 n 项和公式为 Sn = a1(1 q^n)/(1 q) (q ≠ 1)。

二、三角部分1、三角函数的基本概念需要熟悉正弦函数、余弦函数、正切函数等的定义,以及它们在各个象限的正负情况。

2、三角函数的图像和性质正弦函数 y = sin x 、余弦函数 y = cos x 的周期都是2π,正切函数y = tan x 的周期是π。

要掌握它们的最值、单调性、对称轴和对称中心等性质。

3、解三角形主要涉及正弦定理和余弦定理。

正弦定理:a/sin A = b/sin B =c/sin C ;余弦定理:a²= b²+ c² 2bc cos A 。

通过这些定理可以求解三角形的边长、角度等。

三、平面解析几何1、直线方程直线的点斜式方程 y y1 = k(x x1) 、斜截式方程 y = kx + b 、一般式方程 Ax + By + C = 0 等要熟练掌握。

成人高考专升本数学一知识点

成人高考专升本数学一知识点

成人高考专升本数学一知识点一、函数、极限和连续。

1. 函数。

- 函数的概念。

- 设D是非空实数集,如果对于D中的任意一个数x,按照某种确定的对应关系f,在实数集R中都有唯一确定的数y与之对应,则称f:D→ R是定义在D上的一个函数,记作y = f(x),x∈ D。

x称为自变量,y称为因变量,D称为函数的定义域,函数值f(x)的全体所构成的集合称为函数的值域。

- 函数的性质。

- 单调性:设函数y = f(x)在区间I上有定义,如果对于区间I上任意两点x_1,x_2,当x_1时,恒有f(x_1)(或f(x_1)>f(x_2)),则称函数y = f(x)在区间I上是单调增加(或单调减少)的。

- 奇偶性:设函数y = f(x)的定义域D关于原点对称,如果对于任意x∈D,都有f(-x)=f(x),则称y = f(x)为偶函数;如果对于任意x∈ D,都有f(-x)= - f(x),则称y = f(x)为奇函数。

- 周期性:设函数y = f(x)的定义域为D,如果存在一个正数T≠0,使得对于任意x∈ D,有x + T∈ D且f(x+T)=f(x),则称y = f(x)是周期函数,T称为函数y = f(x)的周期。

通常我们说的周期是指最小正周期。

- 有界性:设函数y = f(x)在区间I上有定义,如果存在正数M,使得对于任意x∈ I,都有| f(x)|≤ M,则称函数y = f(x)在区间I上有界;否则称函数y = f(x)在区间I上无界。

- 反函数。

- 设函数y = f(x)的定义域为D,值域为W。

如果对于W中的任意一个y,在D中有唯一确定的x使得y = f(x),则在W上定义了一个函数,这个函数称为y =f(x)的反函数,记作x = f^-1(y)。

习惯上,我们把y = f(x)的反函数记作y = f^-1(x)。

- 复合函数。

- 设函数y = f(u)的定义域为D_1,函数u = g(x)的定义域为D_2,且g(x)的值域R_2⊆ D_1,则由y = f(u)和u = g(x)复合而成的函数y = f(g(x))称为复合函数,u称为中间变量。

成人高考_数学知识复习资料全

成人高考_数学知识复习资料全

WORD 格式可编辑成人高考 -数学知识提纲数学复习资料1.集合:会用列举法、描述法表示集合,会集合的交、并、补运算,能借助数轴解决集合运算的问题,具体参看课本例2、 4、 5.2.充分必要条件要分清条件和结论,由条件可推出结论,条件是结论成立的充分条件;由结论可推出条件,则条件是结论成立的必要条件。

从集合角度解释,若AB,则A 是B 的充分条件;若B A ,则A是B的必要条件;若A=B,则A是B的充要条件。

例 1:对“充分必要条件”的理解.请看两个例子:(1)“x29 ”是“x3”的什么条件?(2) x 2 是 x 5 的什么条件?我们知道,若 A B ,则 A 是 B 的充分条件,若“ A B ”,则 A 是 B 的必要条件,但这种只记住定义的理解还不够,必须有自己的理解语言:“ 若 A B ,即是 A 能推出 B”,但这样还不够具体形象,因为“推出”指的是什么还不明确;即使借助数轴、文氏图,也还是“抽象” 的;如果用“ A 中的所有元素能满足B”的自然语言去理解,基本能深刻把握“充分必要条件”的内容.本例中,x29 即集合 { 3,3} ,当中的元素 3 不能满足或者说不属于{3},但 {3}的元素能满足或者说属于 { 3, 3}.假设 A{ x | x 29}, B { x | x3} ,则满足“ A B”,故“ x29 ”是“x 3 ”的必要非充分条件,同理 x 2 是 x 5 的必要非充分条件 .3.直角坐标系注意某一点关于坐标轴、坐标原点、y x, y x 的坐标的写WORD 格式可编辑法。

如点( 2,3)关于x轴对称坐标为( 2,-3),点( 2,3)关于 y 轴对称坐标为( -2 ,3),点( 2,3)关于原点对称坐标为(-2 ,-3),点( 2,3)关于 y x 轴对称坐标为( 3,2),点( 2,3)关于 y x 轴对称坐标为( -3, -2),4.函数的三要素:定义域、值域、对应法则,如果两个函数三要素相同,则是相同函数。

成人高考专升本高等数学(一)考试辅导复习资料【全】

成人高考专升本高等数学(一)考试辅导复习资料【全】

成人高等学校招生考试专升本高等数学(一)(适合2022年及往后的成考复习)函数、极限与连续本章内容一、函数二、极限三、连续本章约13%,20分选择题、填空题、解答题第一节函数知识点归纳●函数的概念、性质●反函数●复合函数●基本初等函数●初等函数考试要求1、理解概念会求函数包括分段函数的定义域、表达式及函数值,并会作出简单的分段函数图象。

2、掌握判断掌握函数的单调性、奇偶性、有界性和周期性定义,会判断所给函数的相关性质。

3、理解函数理解函数与它的反函数之间的关系,会求单调函数的反函数。

4、掌握过程掌握函数四则运算与复合运算,熟练掌握复合函数的复合过程。

5、掌握性质掌握基本初等函数的简单性质及其图象。

6、掌握概念掌握初等函数的概念。

第一节函数一、函数的概念定理设x和y是两个变量,D是一个给定的数集,如果对于每个数x∈D,变量y按照一定法则总有确定的数值和它对应,则称y是x的函数,记作y=f(x).y是因变量,x是自变量。

函数值全体组成的数集W={y|y=f(x),x∈D} 称为函数的值域。

函数概念的两个基本要素对于给定的函数y=f(x),当函数的定义域D确定后,按照对应法则f,因变量的变化范围也随之确定,所以定义域和对应法则就是确定一个函数的两个要素。

两个函数只有在它们的定义域和对应法则都相同时,才是相同的。

例:研究函数y=x和y=2是不是表示相同的函数。

解:y=x是定义在(−∞,+∞)上的函数关系,y=2是定义在(−∞,0)∪(0,+∞)上的函数关系,它们定义域不同,所以这两个函数是不同的函数关系。

例:研究下面这两个函数是不是相同的函数关系f(x)=x,g(x)=2解:f(x)=x和g(x)=2是定义在(−∞,+∞)上的函数关系,f(x)的值域在(−∞,+∞)上的函数,g(x)的值域在[0,+∞),它们定义域相同,值域不同函数。

函数的定义域(1)在分式中,分母不能为零;(2)在根式中,负数不能开偶次方根;(3)在对数式中,真数必须大于零,底数大于零且不等于1;(4)在反三角函数式中,应满足反三角函数的定义要求;(5)如果函数的解析式中含有分式、根式、对数式和反三角函数式中的两者或两者以上的,求定义域时应取各部分定义域的交集。

成人高考数学必背知识点

成人高考数学必背知识点
四、简易逻辑: 充分条件.必要条件:
1.充分条件:若 p q ,则 p 是 q 充分条件. 2.必要条件:若 q p ,则 p 是 q 必要条件. 3.充要条件:若 p q ,且 q p ,则 p 是 q 充要条件.
注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.
第二章 函数 (重点)
(1)当 a>0 时,若 x
b 2a
p, q,则
f
( x)min
f
( b ), 2a
f
( x) max
max
f
( p),
f
(q) ;

x
b 2a
p, q,
f
(x)max
max
f
( p),
f
(q) ,
f
(x)min
min
f
( p),
f
(q) .
(2)当
a<0
时,若
x
b 2a
p, q,则
f
(x)min
第四章 数列
1.数列的通项公式
an
与前
n
项的和
Sn
的关系
an
SS1n,
n 1 Sn1, n
2
.

2.等差数列: an an1 d (公差)
3.等差数列的通项公式: an a1 (n 1)d dn a1 d (n N *) ;
其前
n
项和 Sn 公式为: Sn
n(a1 an ) 2
na1
co s( n 2
)
n
(1)2 co s ,
n1
(1) 2 sin ,
n为偶数 n为奇数
3.★和角与差角公式

成考数学知识点大全

成考数学知识点大全

成考数学知识点大全一、集合和函数1.集合:包含一组不同元素的对象。

2.集合表示方法:描述法、枚举法、图示法、公式法。

3.基本集合运算:交集、并集、补集、差集。

4.集合的性质:幂集、空集、全集、子集。

5.函数:将一个集合中的元素映射到另一个集合中的元素的规则。

6.函数的表示方法:表格法、图像法、公式法。

7.函数的分类:单射(一一对应)、满射(总满射)、双射(一一映像)。

8.复合函数、反函数、逆元素。

二、数列和极限1.数列:按照一定规律排列而成的一列数。

2.数列的通项公式和通项公式的求法。

3.等差数列和等比数列的概念和求和公式。

4.数列的极限:柯西准则、单调有界准则等。

5.无穷级数:收敛和发散。

三、函数的极限、连续性和导数1.函数的极限:左极限、右极限。

2.函数连续性:无间断点、可去间断点、跳跃间断点、无穷间断点。

3.导数:函数在一点处的变化率,导数的几何意义。

4.常见导数公式。

5.导数的运算法则:和、积、商、复合函数的求导。

6.高阶导数、隐函数求导、参数方程求导。

四、微积分基础1.导数和微分的关系。

2.微分的应用:切线方程、极值、函数图形的简单绘制。

3.积分:面积、定积分、不定积分。

4.牛顿-莱布尼茨公式。

5.基本积分公式。

五、几何学1.平面几何:点、直线、平面、角度、多边形、圆、圆锥、圆柱、圆台、棱柱、棱锥、椎球等几何图形和定理。

2.空间几何:点、直线、平面、多面体、球等几何图形和定理。

3.平行四边形、三角形、四边形,圆锥、圆柱、球的表面积和体积。

六、代数基础1.有理数的加减乘除和约分。

2.多项式的概念和基本运算。

3.因式分解:公因数、完全平方公式、余式定理、综合除法等。

4.分式方程的解法。

5.一次方程组和二元二次方程组的解法。

七、概率论和统计学1.概率基础:样本空间、事件、概率。

2.概率计算:频率、古典概型、条件概率、事件的独立性等。

3.随机变量、概率密度和分布函数。

4.期望、方差和标准差。

5.统计学基础:数据的收集和整理、概览统计、参数统计、置信区间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成人高考-数学知识提纲数学复习资料1.集合:会用列举法、描述法表示集合,会集合的交、并、补运算,能借助数轴解决集合运算的问题,具体参看课本例2、4、5.2.充分必要条件要分清条件和结论,由条件可推出结论,条件是结论成立的充分条件;由结论可推出条件,则条件是结论成立的必要条件。

从集合角度解释,若B A ⊆,则A 是B 的充分条件;若B A ⊆,则A 是B 的必要条件;若A=B ,则A 是B 的充要条件。

例1:对“充分必要条件”的理解.请看两个例子: (1)“29x =”是“3x =”的什么条件? (2)2x >是5x >的什么条件?我们知道,若A B ⇒,则A 是B 的充分条件,若“A B ⇐”,则A 是B 的必要条件,但这种只记住定义的理解还不够,必须有自己的理解语言:“若A B ⇒,即是A 能推出B ”,但这样还不够具体形象,因为“推出”指的是什么还不明确;即使借助数轴、文氏图,也还是“抽象”的;如果用“A 中的所有元素能满足B ”的自然语言去理解,基本能深刻把握“充分必要条件”的内容.本例中,29x =即集合{3,3}-,当中的元素3-不能满足或者说不属于{3},但{3}的元素能满足或者说属于{3,3}-.假设}3|{},9|{2====x x B x x A ,则满足“A B ⇐”,故“29x =”是“3x =”的必要非充分条件,同理2x >是5x >的必要非充分条件. 3.直角坐标系 注意某一点关于坐标轴、坐标原点、,y x y x ==-的坐标的写法。

如点(2,3)关于x 轴对称坐标为(2,-3), 点(2,3)关于y 轴对称坐标为(-2,3), 点(2,3)关于原点对称坐标为(-2,-3), 点(2,3)关于y x =轴对称坐标为(3,2), 点(2,3)关于y x =-轴对称坐标为(-3,-2),4.函数的三要素:定义域、值域、对应法则,如果两个函数三要素相同,则是相同函数。

5.会求函数的定义域,做21页第一大题6.函数的定义域、值域、解析式、单调性、奇偶性性、周期是重要的研究内容,尤其是定义域、一次和二次函数的解析式,单调性最重要。

7. 函数的奇偶性。

(1)具有奇偶性的函数的定义域的特征:定义域必须关于原点对称!为此确定函数的奇偶性时,务必先判定函数定义域是否关于原点对称。

(2)确定函数奇偶性的常用方法(若所给函数的解析式较为复杂,应先化简,再判断其奇偶性):①定义法:②利用函数奇偶性定义的等价形式:()()0f x f x ±-=或()1()f x f x -=±(()0f x ≠)。

③图像法:奇函数的图象关于原点对称;偶函数的图象关于y 轴对称。

常见奇函数:1335,,,,sin ,tan y x y x y x y x y x y x ===-===,指数是奇数常见偶函数:220,,,,cos y k y x y x y x y x -=====一些规律:两个奇函数相加或者相减还是奇函数,两个偶函数相加或者相减还是偶函数,但是两种函数加减就是非奇非偶,两种函数乘除是奇函数,例如sin tan cos xy x x==是奇函数. (3)函数奇偶性的性质: ①奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同;偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反. ②如果奇函数有反函数,那么其反函数一定还是奇函数. ③若()f x 为偶函数,则()()(||)f x f x f x -==.④奇函数()f x 定义域中含有0,则必有(0)0f =.故(0)0f =是()f x 为奇函数的既不充分也不必要条件。

8.函数的单调性:一般用来比较大小,而且主要用来比较指数函数、对数函数的大小,此外,反比例函数、一次函数、二次函数的单调性也比较重要,要熟记他们的图像的分布和走势。

熟记课本第11页至13页的图和相关结论。

一次函数、反比例函数 p17 例5 p20 例89.二次函数表达形式有三种:一般式:2()f x ax bx c =++;顶点式:2()()f x a x m n =-+;零点式:12()()()f x a x x x x =--,要会根据已知条件的特点,灵活地选用二次函数的表达形式。

课本中的p17 例5(4) 例6、例7,例10 例11;习题p23 8、9、10、1110.一元一次不等式的解法关键是化为ax b >,再把x 的系数化为1,注意乘以或者除以一个负数不等号的方向要改变;一元一次不等式组最后取个不等式的交集,即数轴上的公共部分。

做p42 4、5、6大题11.绝对值不等式只要求会做:||ax b c c ax b c +<⇔-<+<和||ax b c c ax b +>⇔<+或者ax b c +<-,一定会去绝对值符号。

做p43 712.一元二次不等式是重点,阅读课文33至34的图表及39至42页的例题。

做43页8、9、10、11、12设0a >,,x x 是方程20ax bx c ++=的两实根,且x x <,则其解集如下表:2=++c bx ax 有实数解的问题。

首先要讨论最高次项系数a 是否为0,其次若0≠a ,则一定有042≥-=∆ac b 。

13. 数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++).等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-.等比数列的通项公式1*11()n n n aa a q q n N q-==⋅∈;其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.14. 等差数列的性质:(1)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=(2) 若{}n a 、是等差数列,232,,n n n n n S S S S S -- ,…也成等差数列(3)在等差数列{}n a 中,当项数为偶数2n 时,S S nd =偶奇-;项数为奇数21n -时,S S a -=奇偶中,21(21)n S n a -=-⋅中(这里a 中即n a );:(1):奇偶S S k k =+。

(4)如果两等差数列有公共项,那么由它们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数. 注意:公共项仅是公共的项,其项数不一定相同,即研究n m a b =.15.等比数列前n 项和公式有两种形式,为此在求等比数列前n 项和时,首先要判断公比q 是否为1,再由q 的情况选择求和公式的形式,当不能判断公比q 是否为1时,要对q 分1q =和1q ≠两种情形讨论求解。

16.等比数列的性质:(1)当m n p q +=+时,则有m n p q a a a a =,特别地,当2m n p +=时,则有2m n p a a a =.(2) 若{}n a 是等比数列,且公比1q ≠-,则数列232,,n n n n n S S S S S -- ,…也是等比数列。

当1q =-,且n 为偶数时,数列232,,n n n n n S S S S S -- ,…是常数数列0,它不是等比数列.(3) 在等比数列{}n a 中,当项数为偶数2n 时,S qS =偶奇;项数为奇数21n -时,1S a qS =+奇偶.(4)数列{}n a 既成等差数列又成等比数列,那么数列{}n a 是非零常数数列,故常数数列{}n a 仅是此数列既成等差数列又成等比数列的必要非充分条件。

这一章主要是找数字的规律,写出数列通项公式,但对等差和等比数列要求比较高,会有较大的比重,出解答题,48页起的例2、3、4、5是基础题,例6、7、8、9是中档题目,例10、11、12是综合题。

最要紧做55页的题目。

17. 导数的几何意义:曲线y =f (x )在点P (x 0,f(x 0))处的切线的斜率是).(0x f '相应地,切线方程是);)((000x x x f y y -'=- 18.导数的应用:(1)利用导数判断函数的单调性:设函数y =f (x )在某个区间内可导, 如果,0)(>'x f 那么f(x)为增函数;如果,0)(<'x f 那么f(x)为减函数; 如果在某个区间内恒有,0)(='x f f(x)为常数;(2)求可导函数极值的步骤:①求导数)(x f ';②求方程0)(='x f 的根;③检验)(x f '在方程0)(='x f 根的左右的符号,如果左正右负,那么函数y=f(x)在这个根处取得最大值;如果左负右正,那么函数y=f(x)在这个根处取得最小值。

19.本章重点是求曲线在一点处的切线方程和多项式的导数,会求函数最大值最小值和极值。

课本61页例1、3、4、5和64页习题要过一过关。

20.三角函数 本章出2个小题,1个大题,不是重点内容1象限角的概念:如果角的终边在坐标轴上,就认为这个角不属于任何象限。

2.弧长公式:||l R α=,扇形面积公式: 211||22S lR R α==,1弧度(1rad)57.3≈.3、任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),它与原点的距离是0r =>,那么sin ,cos y xr r αα==,()tan ,0yx xα=≠,cotyα=(0)y ≠4.特殊角的三角函数值:cos α 2 12 1 0 -1 05.三角函数的恒等变形的基本思路是:一角二名三结构。

即首先观察角与角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心!第二看函数名称之间的关系,通常“切化弦”;第三观察代数式的结构特点。

6.基本公式:1.常见三角不等式 (1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥. 2.同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=.3.正弦、余弦的诱导公式(参看课本77-78页)注意规律:横不变名竖变名,正负看象限(1)负角变正角,再写成2k π+α,02απ≤<; (2)转化为锐角三角函数。

相关文档
最新文档