运筹学 线性规划应用案例
第五章运筹学线性规划在管理中的应用案例

第五章线性规划在管理中的应用某企业停止了生产一些已经不再获利的产品,这样就产生了一部分剩余生产力。
管理层考虑将这些剩余生产力用于新产品Ⅰ、Ⅱ、Ⅲ的生产。
可用的机器设备是限制新产品产量的主要因素,具体数据如下表:司的利润最大化。
1、判别问题的线性规划数学模型类型。
2、描述该问题要作出决策的目标、决策的限制条件以及决策的总绩效测度。
3、建立该问题的线性规划数学模型。
4、用线性规划求解模型进行求解。
5、对求得的结果进行灵敏度分析(分别对最优解、最优值、相差值、松驰/剩余量、对偶价格、目标函数变量系数和常数项的变化范围进行详细分析)。
6、若销售部门表示,新产品Ⅰ、Ⅱ生产多少就能销售多少,而产品Ⅲ最少销售18件,请重新完成本题的1-5。
解:1、本问题是资源分配型的线性规划数学模型。
2、该问题的决策目标是公司总的利润最大化,总利润为:+ +决策的限制条件:8x1+ 4x2+ 6x3≤500 铣床限制条件4x1+ 3x2≤350 车床限制条件3x1+ x3≤150 磨床限制条件即总绩效测试(目标函数)为:max z= + +3、本问题的线性规划数学模型max z= + +S.T.8x1+ 4x2+ 6x3≤5004x1+ 3x2≤3503x1+ x3≤150x1≥0、x2≥0、x3≥04、用Excel线性规划求解模板求解结果:最优解(50,25,0),最优值:30元。
5、灵敏度分析目标函数最优值为: 30变量最优解相差值x1 50 0x2 25 0x3 0 .083约束松弛/剩余变量对偶价格1 0 .052 75 03 0 .033目标函数系数范围:变量下限当前值上限x1 .4 .5 无上限x2 .1 .2 .25x3 无下限.25 .333常数项数范围:约束下限当前值上限1 400 500 6002 275 350 无上限3 150(1)最优生产方案:新产品Ⅰ生产50件、新产品Ⅱ生产25件、新产品Ⅲ不安排。
简单的运筹学实际应用案例

简单的运筹学实际应用案例运筹学(Operations Research)是一门研究如何有效利用有限资源进行决策的学科,它通过数学、统计学和经济学等方法,帮助管理者做出最佳决策。
下面将介绍几个简单的运筹学实际应用案例。
1.生产线优化假设一公司拥有多条生产线,每条生产线对应不同的产品。
公司希望通过优化生产线的调度,以达到最大的产出和利润。
运筹学可以通过数学模型和算法,对生产线进行优化调度。
例如,可以使用线性规划模型来确定每条生产线的产量和调度,以最大化总利润;也可以使用整数规划模型来考虑生产线的限制和约束条件。
2.物流网络设计一家物流公司需要设计其物流网络,以最小化成本并满足客户对快速物流的需求。
运筹学可以通过数学模型和算法,帮助物流公司优化物流网络的设计。
例如,可以使用网络流模型来确定货物在物流网络中的最佳路线和节点,以最小化总运输成本;也可以使用线性规划模型来决定在不同节点上的仓库和货物库存量,以满足客户的需求。
3.航班调度问题一家航空公司需要制定最佳航班调度计划,以最大化航班利润并排除延误风险。
运筹学可以通过数学模型和算法,帮助航空公司优化航班调度。
例如,可以使用线性规划模型来决定不同航班的起降时间和机型,以最大化航班利润;也可以使用排队论模型来评估航班的延误风险,并制定相应的调度策略。
4.人员调度问题一家超市需要制定最佳的员工调度计划,以最大化服务质量和节约人力成本。
运筹学可以通过数学模型和算法,帮助超市优化员工调度。
例如,可以使用整数规划模型来决定不同时间段需要多少员工,并考虑员工的技能匹配和工作时间的合理安排;也可以使用模拟仿真方法来评估不同调度策略的效果,并做出相应的决策。
以上是几个简单的运筹学实际应用案例,运筹学在实际生产和管理中有着广泛的应用。
通过数学模型和算法的应用,可以帮助企业优化资源配置、提高效率和决策质量,从而实现最佳的经济效益。
管理运筹学第二章 线性规划的图解法

B、约束条件不是等式的问题:
若约束条件为 ai1 x1+ai2 x2+ … +ain xn ≤ bi 可以引进一个新的变量si ,使它等于约束右 边与左边之差 si=bi–(ai1 x1 + ai2 x2 + … + ain xn ) 显然,si 也具有非负约束,即si≥0, 这时新的约束条件成为 ai1 x1+ai2 x2+ … +ain xn+si = bi
第二章 线性规划 的图解法
一、线性规划的概念 二、线性规划问题的提出 三、线性规划的数学模型 四、线性规划的图解法 五、线性规划解的情况 六、LP图解法的灵敏度分析
一、线性规划的概念
线性规划Linear Programming 简称LP,是一 种解决在线性约束条件下追求最大或最小的 线性目标函数的方法。 线性规划的目标和约束条件都可以表示成线 性的式子。
max z 3 x1 2 x2
2 x1 x2 ≤ 10 设备B台时占用 s.t. x1 x2 ≤ 8 x , x ≥ 0 产量非负 1 2
决策变量 (decision variable) 目标函数 (objective function) 约束条件 (subject to)
-ai1
x1-ai2 x2- … -ain xn = -bi 。
例1.3:将以下线性规划问题转化为标准形式 Min f = 3.6 x1 - 5.2 x2 + 1.8 x3 s. t. 2.3 x1 + 5.2 x2 - 6.1 x3 ≤15.7 4.1 x1 + 3.3 x3 ≥8.9 x1 + x2 + x3 = 38 x 1 , x 2 , x3 ≥ 0
线性规划应用案例分析

线性规划应用案例分析线性规划是一种在数学和运营管理中常见的优化技术。
它涉及到在一组线性不等式约束下,最大化或最小化一个线性目标函数。
这种技术可以应用于许多不同的领域,包括供应链管理、资源分配、投资组合优化等。
本文将探讨几个线性规划应用案例,以展示其在实际问题中的应用和价值。
某制造公司需要计划生产三种产品,每种产品都需要不同的原材料和生产时间。
公司的目标是最大化利润,但同时也受到原材料限制、生产能力限制以及每种产品市场需求限制的约束。
通过使用线性规划,该公司能够找到最优的生产计划,即在满足所有约束条件下,最大化利润。
某物流公司需要计划将货物从多个产地运输到多个目的地。
公司的目标是最小化运输成本,但同时也受到运输能力、货物量和目的地需求的约束。
通过使用线性规划,该公司能够找到最优的运输方案,即在满足所有约束条件下,最小化运输成本。
某投资公司需要将其资金分配给多个不同的投资项目。
每个项目都有不同的预期回报率和风险水平。
公司的目标是最大化回报率,同时也要保证投资风险在可接受的范围内。
通过使用线性规划,该公司能够找到最优的投资组合,即在满足所有约束条件下,最大化回报率。
这些案例展示了线性规划在实践中的应用。
然而,线性规划的应用远不止这些,它还可以用于诸如资源分配、时间表制定、路线规划等问题。
线性规划是一种强大的工具,可以帮助决策者解决复杂的问题并找到最优解决方案。
线性规划是一种广泛应用的数学优化技术,适用于在多种资源限制下寻求最优解。
这种技术涉及到各种领域,包括工业、商业、运输、农业、金融等,目的是在给定条件下最大化或最小化线性目标函数。
下面我们将详细讨论线性规划的应用。
线性规划是一种求解最优化问题的数学方法。
它的基本思想是在一定的约束条件下,通过线性方程组的求解,求得目标函数的最优解。
这里的约束条件通常表现为一组线性不等式或等式,而目标函数则通常表示为变量的线性函数。
工业生产:在工业生产中,线性规划可以用于生产计划、物料调配、人力资源分配等方面。
运筹学经典案例

运筹学经典案例案例一:鲍德西((B AWDSEY)雷达站的研究20世纪30年代,德国内部民族沙文主义及纳粹主义日渐抬头。
以希特勒为首的纳粹势力夺取了政权开始为以战争扩充版图,以武力称霸世界的构想作战争准备。
欧洲上空战云密布。
英国海军大臣丘吉尔反对主政者的“绥靖”政策,认为英德之战不可避免,而且已日益临近。
他在自己的权力范围内作着迎战德国的准备,其中最重要、最有成效之一者是英国本土防空准备。
1935年,英国科学家沃森—瓦特(R.Watson-Wart)发明了雷达。
丘吉尔敏锐地认识到它的重要意义,并下令在英国东海岸的Bawdsey建立了一个秘密的雷达站。
当时,德国已拥有一支强大的空军,起飞17分钟即可到达英国。
在如此短的时间内,如何预警及做好拦截,甚至在本土之外或海上拦截德机,就成为一大难题。
雷达技术帮助了英国,即使在当时的演习中已经可以探测到160公里之外的飞机,但空防中仍有许多漏洞,1939年,由曼彻斯特大学物理学家、英国战斗机司令部科学顾问、战后获诺贝尔奖金的P.M.S.Blachett为首,组织了一个小组,代号为“Blachett 马戏团”,专门就改进空防系统进行研究。
这个小组包括三名心理学家、两名数学家、两名应用数学家、一名天文物理学家、一名普通物理学家、一名海军军官、一名陆军军官及一名测量人员。
研究的问题是:设计将雷达信息传送给指挥系统及武器系统的最佳方式;雷达与防空武器的最佳配置;对探测、信息传递、作战指挥、战斗机与防空火力的协调,作了系统的研究,并获得了成功,从而大大提高了英国本土防空能力,在以后不久对抗德国对英伦三岛的狂轰滥炸中,发挥了极大的作用。
二战史专家评论说,如果没有这项技术及研究,英国就不可能赢得这场战争,甚至在一开始就被击败。
“Blackett马戏团”是世界上第一个运筹学小组。
在他们就此项研究所写的秘密报告中,使用了“Operational Research”一词,意指作战研究”或“运用研究”。
运筹学应用案例

运筹学应用案例运筹学是一门应用数学,研究如何在资源有限的情况下,最优地组织和管理这些资源。
运筹学的应用范围非常广泛,涉及到各个领域。
以下是一个关于运筹学应用的实际案例。
某公司是一家制造业企业,主要生产产品A和产品B。
这家公司有两个生产车间和一个物流中心,每个车间配备了不同的生产设备。
公司的目标是最大化利润。
产品A在车间1中生产,车间1的生产设备可以在一小时内生产5个单位的产品A。
产品B在车间2中生产,车间2的生产设备可以在一小时内生产4个单位的产品B。
物流中心负责将产品A和产品B运送到市场,物流中心的运输能力为每小时20个单位。
同时,公司还面临一个资源的限制,即每天生产的产品A和产品B的总数不能超过400个单位。
另外,公司还有一个库存的限制,即每天生产的产品A和产品B的总数不能超过600个单位。
为了系统地解决这个问题,公司决定使用运筹学的方法进行决策。
首先,公司需要确定目标函数。
由于公司的目标是最大化利润,所以可以将目标函数定义为利润函数。
假设公司每个单位的产品A的利润为10美元,每个单位的产品B的利润为8美元。
那么公司的目标函数可以定义为:Z=10A+8B。
然后,公司需要确定约束条件。
根据资源的限制,可以得到以下约束条件:A≤5×小时数(车间1的生产能力)B≤4×小时数(车间2的生产能力)A+B≤400(每天生产的总数限制)A+B≤600(库存的限制)20A+20B≤600(物流中心的运输能力)接下来,公司需要确定变量的取值范围。
由于产量和库存数量为实数,所以可以将A和B的取值范围定义为非负实数。
最后,公司需要使用线性规划算法来求解最优解。
线性规划算法可以通过求解目标函数的最大值来找到最优解。
在这个案例中,可以使用单纯形法来求解最优解。
通过使用运筹学的方法,公司可以得到最优的生产和运输计划,以最大化利润。
对于公司而言,这个案例展示了如何在资源有限的情况下,通过合理的规划和管理,实现最优的生产和销售策略。
运筹学案例分析

运筹学案例分析⼀.案例描述西兰物业公司承担了正⼤⾷品在全市92个零售店的⾁类、蛋品和蔬菜的运送业务,运送业务要求每天4点钟开始从总部发货,必须在7:30前送完货(不考虑空车返回时间)。
这92个零售点每天需要运送货物吨,其分布情况为:5千⽶以内为A区,有36个点,从总部到该区的时间为20分钟;10千⽶以内5千⽶以上的为B区,有26个点,从总部到该区的时间为40分钟;10千⽶以上的为C区,有30个点,从总部到该区的时间为60分钟;A区各点间的运送的时间为5分钟,B区各点间的运送时间为10分钟,C区各点间的运送时间为20分钟,A区到B区的运送时间为20分钟,B区到C 区的运送时间为20分钟,A区到C区的运送时间为40分钟。
每点卸货、验收时间为30分钟。
该公司准备购买规格为2吨的运送车辆,每车购价5万元。
请确定每天的运送⽅案,使投⼊的购买车辆总费⽤为最少。
⼆.案例中关键因素及其关系分析关键因素:1.⾸先针对⼀辆车的运送情况作具体分析,进⽽推⼴到多辆车的运送情况;2.根据案例中的关键点“零售点每天需要运送货物吨”及“规格为2吨的运送车辆”可知就⼀辆车运送⽽⾔,可承担4个零售点的货物量;3.根据案例中的“运送业务要求每天4点钟开始从总部发货,必须在7:30前送完货(不考虑空车返回时间)”可知每天货物运送的总时间为210分钟,超过该时间的运送⽅案即为不合理;4.如下表以套裁下料的⽅法列出所有可能的下料防案,再逐个分析。
三、模型构建1、决策变量设置设已穷举的12个⽅案中⽅案i所需的车辆数为决策变量Xi (i=1,2…12),即:⽅案1的运送车台数为X1;⽅案2的运送车台数为X2;⽅案3的运送车台数为X3;⽅案4的运送车台数为X4;⽅案5的运送车台数为X5;⽅案6的运送车台数为X6;⽅案7的运送车台数为X7;⽅案8的运送车台数为X8;⽅案9的运送车台数为X9;⽅案10的运送车台数为X10;⽅案11的运送车台数为X11;⽅案12的运送车台数为X12。
运筹学案例——QSB解线性规划应用题

问题描述:某电视机工厂生产四种型号的特用电视机:Ⅰ型——轻便黑白,Ⅱ型——正规黑白,Ⅲ型——轻便彩色,Ⅳ型——正规彩色。
各型号每台所需组装时间、调试时间、销售收入以及该厂组装调试能力如表2.47所示。
表2.47但现在显像管紧缺,每月最多只能进货180只,其中彩色显像管不超过100只。
令1x 、2x 、3x 、4x 一次表示各型号每月计划产量。
现工厂需拟定使目标总销售收入z 为最大的生产计划。
(1)写出该问题的数字模型,对于约束条件依下列次序:组装时间、调试时间、显像管数、彩色显像管数,并引入松弛变量,使之为等式。
(2)用单纯形法求解得终表如图2.48所示。
表2.48BCBXbB 1-4 6 8 10 0 0 0 01x 2x3x 4x5x6x7x8x0 8x50 -0.2 0 0.2 0 0.1 -0.50 1 6 2x 125 0.51 00 0.25 -0.750 0 0 7x5 0.3 0 0.2 0 -0.15 0.25 1 0 104x 500.2 0 0.8 1 -0.1 0.5 0 0jσ-10 -0.5-0.5试分别回答:(1)最优生产是什么?是否还有其他最优生产计划?为什么? (2)组装时间的影子价格是多少?(3)若外厂可调剂增加80小时的调试时间,但每小时需付0.4(百元),这样Ⅰ Ⅱ Ⅲ Ⅳ 工厂能力(h )组装时间 调试时间 8 2 10 2 12 4 15 5 2000 500 售 价(百元)46810的调剂值得吗?能增加多少收入?(4)若Ⅰ型机售价由4(百元)增加到4.5(百元),最优计划会改变吗?如果增加到5.5(百元)呢?说明理由。
(5)写出本问题的对偶模型,并指出其最优解。
解:建立模型:由该问题,可建立如下模型:设Ⅰ型、Ⅱ型、Ⅲ型、Ⅳ型分别生产1x 台、2x 台、3x 台、4x 台,则可列出目标函数及线性约束条件: MaxZ=41x +62x +83x +104x81x +102x +123x +154x ≤200021x +22x +43x +54x ≤5001x +2x +3x +4x ≤1803x +4x ≤100ix ≥0 (i=1、2、3、4)将该模型进行标准化,则引入松弛变量5x 、6x 、7x 、8x ,则变为:MaxZ=41x +62x +83x +104x81x +102x +123x +154x +5x ≤200021x +22x +43x +54x +6x ≤5001x +2x +3x +4x +7x ≤1803x +4x +8x ≤100ix ≥0 (i=1、2、3、4、……7、8)第1步:启动子程序“Linear and Integer Programming ”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 每台发电机组都有它当初的设计煤种, 对燃料的硫份、水份、灰份、热值、挥 发份和可磨系数都有一定的要求。在传 统的锅炉燃烧中,经常用的是单煤燃烧, 这在计划经济时代不存在大的问题。随 着改革的深入,煤炭价格的市场化,电 煤价格持续上升,电煤成为稀缺资源, 劣质煤炭充斥市场,要购买到完全符合 锅炉燃烧条件的煤种已变得十分困难。 利用多种煤混合出满足锅炉燃烧需要的 煤种,是一种非常有效的方法。
例 规划目的是寻找节点6新电厂在正常运行 及“N-1”事故状态下接入系统的最优方案。 节点 1 2 3 4 5 6 发电容量(MW) 负荷(MW) 50 80 240 165 40 160 240 545(新电厂) 0
发电机组燃料优化管理模型
• 在当前电煤供应不足的情况下,难于 购买到完全符合锅炉燃烧特性的煤种, 煤质的变化会改变电厂发电成本的变 化,而其中大部分为燃料成本的变化。 发电厂面临煤种的选择问题,选择哪 种煤炭?其比例多少?才能最大限度 地降低发电成本,提高经济效益。
以配煤最低成本为目标函数,以 单煤的成本,煤质参数和锅炉的燃烧 品质参数的临界值为约束条件,构造 线性规划模型如下:
式中:aij——第j种煤第i个指标 • Xj——第j种煤相对于锅炉设计煤种 消耗量的比例% • bi,Bi—混煤第j种性能指标的限定值 • n——煤的性能指标的个数,包括硫 份、水份、灰份、热值、挥发份等 • m—单煤的种类数量 • Smin—混煤的最低成本 • Cj—单煤的最低成本
约束条件-线路通过能力的限制
• P0ij+P0jiMij Mij—线路ij的通过能力。 • 其他约束 • P0ij、P0ji、Pij、Pji0,P0ij×P0ji=0,
Pij×Pji=0 • 如果解出最优分配Pij=Pji=0,则说明ij线路 不必架设。
例: 规划目的是寻找节点6新电厂接入系统 最优方案。
序 投资方式 投 资 期 年收益 风 险 增长潜 号 限(年)率% 系数 力% 1 国库券 3 10 6 2 1 5 0 11 15 25 20 10 12 3 1 3 8 6 1 2 0 0 15 30 20 5 10 0
2 公司债券 3 房地产 4 股票 5 短期存款 6 长期储蓄 7 现金存款
约束条件-节点功率平衡
Ai Dk
(P
j1 n j1
n
0ij
P0ji Pij Pji )
0kj
(P
n2 k 1
P0jk Pkj Pjk )
A
i 1
n1
i
D
k
• 公式中:Ai——电源点i的发电功率; • Dk——负荷点k的负荷功率; • n1——电源点数;n2——负荷点数。
规划变量-原有及新建线路输电功率 目标函数-以全网年计算费用最小
' minZ [ Lij ( P0ij P0 ji )lij Gij ( Pij Pji )lij ] i 1 j i 1 n 1 n
• • • 0ij、P0ji——现有线路输电功率(MW); Pij、Pji——新建线路输电功率(MW); lij、lij′——原有及新建线路长度(km); Lij—原有线路的损耗系数(万元/MW.km.年); Gij——新建线路的投资乘以效益系数再加损耗 系数(万元/MW.km.年)。
电网规划问题- 线性潮流估计模型
• 模型所需数据: • 现有电力网络结构,包括走向、长度、输 送容量的限制; • 可能的电力网络建设路径,即哪些节点间 允许架设新线路,包括新增的电源和负荷 节点; • 规划水平年各电源点发电能力及各负荷点 负荷水平; • 现有线路年平均损耗系数,新建线路投资 效益系数加损耗系数等经济指标。
投资组合
某人有一笔50万元的资金可用于长期 投资,可供选择的投资机会包括购买国库券 、公司债券、投资房地产、购买股票或银 行保值储蓄等。不同的投资方式的具体参 数如下表。投资者希望投资组合的平均年 限不超过5年,平均的期望收益率不低于 13%,风险系数不超过4,收益的增长潜 力不低于10%。问在满足上述要求的前提 下投资者该如何选择投资组合使平均年收 益率最高?
解:设xi为第I种投资方式在总投资额中的比例, 则模型如下: Max S= 11x1+15x2 +25x3 +20x4+10x5 +12x6+3x7 s.t. 3x1+10x2 + 6x3+ 2x4+ x5+ 5x6 5 11x1+15x2+25x3+20x4+10x5+12x6+3x7 13 x1+ 3x2 + 8x3 + 6x4+ x5+ 2x6 4 15x2 +30x3 +20x4+5x5 +10x6 10 x1+ x2 + x3 + x4 + x5 + x6+ x7 = 1 x1,x2,x3,x4,x5,x6,x7 0
模型的目标函数反映的是平均收 益率最大,前四个约束分别是对投资 年限、平均收益率、风险系数和增长 潜力的限制。最后一个约束是全部投 资比例的总和必须等于1.
最优解:X1=0.57143 X3=0.42857 平均年收益率=17% 即: 投资国库券=0.57143*50=29万元 投资房地产=0.42857*50=21万元 投资年限=4.28571年 平均年收益率=17% 风险系数=4 增长潜力=12.8571%
节点 1 2 3 4 5 6
发电容量 负荷(MW) (MW) 50 80 240 165 40 160 240 545(新电厂) 0
电网规划问题-直流潮流法模型
• • • • 模型所需数据: 规划水平年电源位置、容量及出力; 规划水平年负荷及其分布; 现有电力网结构,主干线走向、长度、电压等 级及电抗值; • 可能修建新线的上列参数及投资; • 各线路在正常运行条件下及系统“N-1”事故状 态下的输送容量限制值。 • 在上列条件下,该法首先求出正常运行下输电 网络需要架设的线路路径和回路数,然后进行 “N-1”的安全检验,求出“N-1”事故情况下需 要增加的线路。