第三章 配合物的化学键理论

合集下载

配位化学-配合物的化学键理论

配位化学-配合物的化学键理论

3d
4s
4p
xx xx xx
sp2 平面三角形
1
2017-9-12
例3: [Co(NCS)4]23d
Co2+ 3d7
4s
4p
xx xx xx xx
sp3 四面体
例4:[Ni(CN)4]2- Ni2+: 3d8
3d
4s
4p
电子归并, 杂化
xx xx xx xx dsp2
平面正方形
问题:什么情况下,内层d电子归并?
d. 价键理论不能解释配合物的颜色及吸收光谱。
e. 对非经典配合物无法解释。
3
2017-9-12
第二节 晶体场理论 1929年由Bethe提出
基本思想:
50年代以后得到发展
中心原子 静电作用
配体

具有电子结构
无电子结构 静电场
的离子
② 在配体静电场作用下,中心原子原来简并的5个d轨道能
级发生分裂,分裂能量的大小与空间构型及配体、中心原子 的性质有关。
2017-9-12
第三章 配合物的化学键理论
主要内容: 1. 价键理论(Valence Bond Theory) 2. 晶体场理论(Crystal Field Theory) 3. 配位场理论(Ligand Field Theory) 4. 分子轨道理论(Molecular Orbital Theory)
的排斥作用相对较小,能量降低。 dxz
eg (dx2—y2、dz2)
o
d
自由金属离子 球形场
t2g (dxy、dyz、dxz)
八面体场
d轨道在八面体场中的分裂
o:(1)由电子光谱得到;(2)由量子力学微扰理

高中化学—— 配合物的价键理论

高中化学—— 配合物的价键理论

Fe3+ Fe2+ Co3+ Co2+ Mn2+ Fe3+ Co3+ Mn2+ Ni2+
sp3d2 sp3d2 sp3d2 sp3d2 sp3 d2sp3 d2sp3 d2sp3 dsp2
5
5.92
5.88 正八面体
4
4.90
4.为了增加配合物的稳定性,在某些配合物中除了形成 σ 配键外,还能形成反馈 π 配键。
(1)电中性原理:在形成一个稳定的分子或配离子时,其电子结构是竭力设法使每个 原子的静电荷基本上等于零。
(2)反馈 π 键:当配位体给出电子对与中心元素形成 σ 键时,如果中心元素的某些 d 轨道有孤电子对,而配位体有空的 π 分子轨道或空的 p 或 d 轨道,而两者的对称性又合适时, 则中心元素的孤对 d 电子也可以反过来给予配位体形成所谓的“反馈 π 键”。
1.A 的化学式 Cr(NH3)3O4 或 CrN3H9O4 A 的可能结构式如下图:
NH3
O
O
O
O Cr
O and/or O Cr
NH3
O
NH3
O
NH3
NH3
NH3
2.A 中铬的氧化数为+4 3.氧化还原性(或易分解或不稳定等) 4.化学方程式:CrO42-+3NH3+3H2O2=Cr(NH3)3(O2)2+O2+2H2O+2OH-
2.设配合物中碳原子数为 nC,则:nC︰nN=17.74/12︰31.04/14=0.667 已知 nN=2×2+2=6, 所以,nC=0.677×6=4 求出摩尔质量,由于剩余量过小,只能设 A 是氮氢化合物,由此得氢数,可
推得配体 A 为 H2NCH2CH2NH2,
H2C
配合物的结构示意图为:
Fe(CN)63-

配位化合物的化学键理论及应用

配位化合物的化学键理论及应用

1.晶体场理论应用的主要困难是不考虑金属一配体键的 部分共价性。因此,简单晶体场理论不能说明由共价性 引起的任何效应和观象。但是,晶体场理论对配合物电 子结构的许多方面却提供了一种极简便的计算方法。 2.相反,分子轨道理论无法这样简便地提供数字结果。 因此,提出一种改进的晶体场理论,其中用一些经验参 数来考虑共价性效应,但没有在晶体场理论公式中明确 地引进共价性。这种改进的晶体场理论常称为配体场理 论。
Z M n+ X Y
• (2) Ti3+离子的d电子将受到负电荷的排斥而升高能量。电子越接近 负电荷,受到的排斥就越大,能量就越高。受配体原于存在的影 响, d轨道发生能级分裂。
Y Z Z
X
X
Y
d xy
Z
d xz
Y
d yz
X
dz2
dx2- 2 y
(2) 配体对中心离子的影响
d 轨道在八面体场中的能级分裂


2 o/ 3
dz2
oct ahedron
l ong- axi Z- sed oct ahedron
2.对于四面体,其d轨道在晶体场中的分裂
dx2- 2 dz2 y d xy d xz d yz t 2 eg 3 o/ 5 o 2 o/ 5 d xy d xz d yz oct ahedron
三.要点 1.过渡金属原子的(n-1)或nd轨道与ns, np轨道的能量很 接近,可以构成d-s-p或 s-p-d的杂化轨道。 2.由于杂化轨道比原先的s, p, d轨道的空间取向更加明 确和集中,故与配体的孤对电子组成键的能力就大大 加强。
轨道名称 s p sp sp2 sp3 d3s dsp2 dsp3 d2sp2
PF3(98O) <PCl3(100 O) <PBr3 (~ 120 O)PI3 (~122 O)

配合物的化学键理论

 配合物的化学键理论

杂化
轨道 sp3d2 d2sp3
sp3
dsp2
配键 类型 外轨型 内轨型
外轨型
内轨型
Kf 1014
稳定性
<
1042
107. 96
1031. 3
<
磁性
Ni2+的d电子构型 杂化轨道 配键类型
未成对电子数 磁性
[Ni(NH3)4]2+ [Ni(CN)4]2 d8
sp3 外轨型
dsp2 内轨型
2 顺磁性
弱场配体
强场配体
——以上称为光谱化学序列
4. 电子成对能和配合物高、低自旋
电子在分裂后轨道上的分布遵循: 能量最低原理和洪特规则
如 Cr3+ d3
eg
E t2g
八面体场
d4d7构型的离子, d电子分布有高、低自旋两种方式。
如 Cr2+ d4
[Cr(H2O)6]2+
eg
△o t2g
[Cr(CN)6]4-
中心离子和配体之间以静电引力相互作用而形 成化学键。
中心离子的5个能量相同的d轨道受配体负电场 的排斥作用,发生能级分裂(有的轨道能量升 高,有的能量降低)。
2. 正八面体场中d轨道的能级分裂
无外电场作用下的d轨道 Edxy= Edxz= Edyz= Edx2-y2= Edz2
在带负电荷均匀球形场的作用下,d轨道能量 均升高相同值,能级不发生分裂。
请问: [Zn(NH3)4]2+、 [Ag(NH3)2]+呈现什么颜色?
中心离子d 轨道全空(d0)或全满(d10), 不能发生 d-d跃迁,其水合离子为无色。
解释配合物的稳定性
Eeg=+0.

配合物化学键理论

配合物化学键理论



强场:o > P 弱场:o < P
d5 型
强场o > P
弱场o < P
(4) 影响CFSE的因素 ① d电子数目; ② 配位体的强弱; ③ 晶体场的类型
表1 过渡金属络离子的稳定化能(CFSE)
弱场CFSE/Dq
dn d0 离子 Ca2+,Sc3+ 正方型 0 正八面体 0 正四面 体 0 正方型 0

中心离子用外层(n-1)d,ns,np杂化轨道与电负性 较小的配位原子,如CN-、NO2-等形成内轨型配合 物。例如[Fe(CN)6]3-配离子,Fe采用d2sp3内轨型 杂化轨道,配合物的键能大,稳定,在水中不易 离解。
(3)内、外轨型配合物的测定---磁矩

由磁矩可判断内轨或外轨型配合物

s n—分子中未成对电子数
z
y
x
x
dz2
y z
dx2-y2
z
x
x
y
dxy
dxz
dyz
1.分裂能 (1)分裂能与配合物几何构型的关系

八面体型的配合物
在八面体型的配合物中,6个配位体分别占据八 面体的6个顶点,由此产生的静电场叫做八面体场。
(1)八面体场
八面体场中d轨道能级分裂
dz2 dx2-y2 eg 3 5 Δo =6Dq Δ o =10Dq 2 5 Δ o = 4Dq t2g dxy dxz dyz
[CrCl6]313600
[MoCl6]319200
分裂能与配位体的关系:光谱化学序列
[CoF6]3- [Co(H2O)6]3+ [Co(NH3)6]3+ o/cm-1 13000 18600 22900 [Co(CN)6]334000

配合物中的化学键理论.

配合物中的化学键理论.
b、杂化类型为:sp3和sp3d2杂化。 c、配合物有较多的未成对电子。
例:(见例4、例6、)
8
②、内轨型配合物: A、定义: 指形成配合物时,中心离子提供外层 ( ns,np ) 和 次 外 层 空 轨 道 (n - 1)d 进 行 杂 化而与配体结合所形成的配合物。 B、特点: a、提供外层(ns, np)和次外层空轨道 (n-1)d进行杂化成键。 b、杂化类型为:dsp2和d2sp3杂化。 c、配合物有较少(或没有)未成对电子数。
10
例 : [Co(NH3)6]2+ 为 外 轨 型 , 则 [Co(NH3)6]3+为内轨型。 D、内轨型配离子的稳定性大于外轨型配离 子。
原因:由于次外层轨道能级比最外层的 低。
11
内容小结:
①:杂化——构型——类型
n M用以杂 杂化 空间构型 类型 化的轨道 轨道
示例
2 ns、np sp 直线型
外层轨道
成键类型: 外轨配键
内轨配键
配合物的类型: 外轨型
内轨型
成单电子状态: 高自旋
低自旋
空间构型
正四面体
平面正方形
5
规律:中心离子dsp2 杂化,配离子的空间构 型为平面正方形。
类似有:[Cu(NH3)4]2+、[Pt(NH3)4]2+等。
③、配位数为6的配离子 也有两种成键方式
A、以 SP3d2 杂化轨道成键: 例:
Ag(NH3)2+
4 ns、np sp3 正四面体 外轨型 Ni(NH3)42+
(n-1)d、 dsp2 平面四方 内轨型 Ni(CN)42ns、np
6 ns、np、 sp3d 正八面体 外轨型
nd
2

配合物中的化学键理论

配合物中的化学键理论
16
④、成键过程:
17
[Ag(NH3)2]+的形成过程 解:Ag+的价电子构型为 4d10 5s0
5p 5s 4d
↑↓ ↑↓ ↑↓ ↑↓ ↑↓
SP杂化 5p
4d
↑↓ ↑↓ ↑↓ ↑↓ ↑↓
sp
:NH3 :NH3
↑↓ ↑↓ ↑↓
5p
2NH3
4d
↑↓ ↑↓ ↑↓ ↑↓
重叠
返回3
18
例:
[Ni(NH3)4]2+的形成 。
↑ ↑
3d
↑ ↑ ↑
4d
SP 3d2 杂化
3d
↑ ↑ ↑ ↑ ↑
sp3d2
23
6F重叠
4d
:F- :F- :F- :F- :F- ↑↓ ↑↓ ↑↓ ↑↓ ↑↓
↑ ↑
3d
↑ ↑ ↑
:F- ↑↓
sp3d2
返回5
24
例: [Fe(CN)6]3-的形成。 解:Fe3+ 的价电子构型为
4S 3d
↑ ↑ ↑ ↑ ↑
③规律:中心离子 SP3d2 与d2SP 3 杂化, 配离子的空间构型均为正八面体形。
7
3-
3-
3、 外轨型配合物和内轨型配合物 ①、外轨型配合物:
A、定义:指形成配合物时,中心离子全部采用 外层空轨道(ns, np, nd)进行杂化,并与配体结 合而形成的配合物。
B、特点:
a、中心离子仅采用外层空轨道(ns, np, nd) 进行杂化成键。 b、杂化类型为:sp3和sp3d2杂化。 c、配合物有较多的未成对电子。
4
B、以dsp2杂化轨道成键:
例:
成键结果分析比较: 2+ 2①Ni(NH3)4 ②Ni(CN)4 M 用以杂 4s 4p (4-1)d 4s 4s 化的轨道: ns np (n-1)d ns np 杂化特点:全部用外层轨道 使用内层轨道和 外层轨道 成键类型: 外轨配键 内轨配键 配合物的类型: 外轨型 内轨型 成单电子状态: 高自旋 低自旋 空间构型 正四面体 平面正方形

第3章 配合物的化学键理论

第3章 配合物的化学键理论

Mn2+ < Co2+ Ni2+ < V2+ < Fe3+ < Cr3+ < Co3+ < Mo3+ < Rh3+ < Ir3+ < Pt4+
3. 晶体场理论
3. 晶体场理论
(3)配体的性质和光谱化学序
(A)同一金属、不同配位原子对的影响 I < Br < Cl < S < F < O < N < C
MXL5:拉长 / 缩短八面体
3. 晶体场理论
3. 晶体场理论
3.2 晶体场分裂能( )及其影响因素
晶体场分裂能( ):d轨道能量分裂后,最高能量d轨道与最低能量 d轨道之间的能量差。相当于1个电子从能量最低d轨道跃迁至能量最高d 轨道所需吸收的能量。
影响因素:
(1)晶体场类型
八面体场、四面体场、平面正方形场· · · · · ·
[Co(NH3)6]3+
o = 23000 cm-1
(C)中心金属离子半径:半径越大, 越大。 中心离子半径越大,d轨道离核越远,易在配体场作用下改变能量, 增加。 同族元素, 随中心离子轨道主量子数的增加而增加: 3d4d, 增加约40%50%; [Co(NH3)6]3+ [Rh(NH3)6]3+ 4d5d, 增加约20%25%
原子半径减小 电负性减小
(B)光谱化学序列 (spectrochemical series) 弱场 I-<Br-<S2-<SCN-<Cl-<NO3-<F-<(NH2)2CO<OH- ~
CH3COO- ~ HCOO-<C2O42-<H2O<NCS-<gly-<CH3CN<edta4<py < NH3<en<NH2OH<bpy<Phen<NO2-<PPh3<CN-<CO 强场
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

H2[PtCl6]
[CoCl3(NH3)3]
配合单元(配位个体)
2015/7/25
配合物特点:
①由内、外界组成的配合物,内界是配合物的 特征部分. ②内、外界之间以离子键相结合,在水中可几乎 完全解离. 如:[Cu(NH3)4]SO4 = [Cu(NH3)4]2+ + SO42K3[Fe(NCS)6] = [Fe(NCS)6]3- + 3K+ [CrCl2(NH3)4]Cl= [CrCl2(NH3)4]++Cl③内界具有一定的稳定性, 在水中难以解离, 可象一个简单离子那样参加反应.
2.外轨型配离子:没有内层d轨道参加杂化的 配离子。如:sp杂化,sp3杂化, sp3d2杂化 特点: 未成对的电子数多,配离子稳定性小
2015/7/25
价键理论的评价:
优点:解释了配离子的成键问题及配离子
空间构型问题。
缺点:不能解释配离子的稳定性,配离子
的磁性,配离子的颜色等。
2015/7/25
五氯一氨合铂(Ⅳ)酸钾
2015/7/25
再如: [Zn(OH)(H2O)3]NO3 硝酸一羟基三水合锌(Ⅱ) [Co(NH3)5 (H2O)]Cl3 氯化五氨一水合钴(Ⅲ) [Fe(CO)5] 五羰(基)合铁 三硝基•三氨合钴(Ⅲ乙二胺四乙酸根合钙(Ⅱ)配离子
2015/7/25
试试看: [CoCl(NH3)(en)2]SO4 硫酸 一氯 一氨 二(乙二胺)合钴(Ⅲ) 命名: [CoCl(NH3)(en)2]2+ 内界: SO42外界: 中心原子: Co3+ 配位体: Cl- NH3 en 配位原子: Cl N 配位数: 6
2015/7/25
配合物的分类
螯合物: 一个中心原子与多齿配体成键形成具有 环状结构的配合物.如[Cu(en)2]2+:

CH2 – NH2
NH2– CH2 2+
Cu
CH2 – NH2 NH2 – CH2

2015/7/25
配合物的几何异构现象
顺式 cisCl Pt Cl NH3 NH3 H2O
顺式 cisH3N Pt H3N OH OH
4S
4P
杂化
d 2 SP 3
成键
八面体
2015/7/25
配合物空间构型:
sp3 sp sp3d2
dsp2
d2sp3
2015/7/25
(三)内轨型,外轨型配离子:
1.内轨型配离子:有内层d轨道参加杂化的配 离子。如 配位数为4的dsp2杂化。 配位数为6的d2sp3杂化。
特点:未成对的电子数少,配离子稳定性大。
3.中心原子提供的空轨道必须先杂化后成键。 如:[Zn(NH3)4]2+的形成:
2015/7/25
例如:[Zn(NH3)4]2+
Zn2+:
3d
杂化
4s
4p
Sp3杂化
[Zn(NH3)4]2+:
2015/7/25
Sp3杂化
(二)中心原子杂化方式与配离子空间构型
中心原子价态 配位数 杂化方式 配离子空构 Ⅰ 2 SP 直线形 Ⅱ 4 SP3 四面体 dSP2 平面四边形 Ⅲ 6 d2SP3 八面体 SP3d2
向进攻配离子时,dz2、dx2-y2轨道和配位体处于迎头相
碰的状态,这些轨道受负电荷配体的静电排斥较大, 因而能量升高。而dxy dxz dyz不处于迎头相碰的状态, 因而能量降低。
2015/7/25
2015/7/25
2015/7/25
2.在四面体场中的分裂:
2015/7/25
2015/7/25
顺式 cis-
反式 trans-
二氯二氨合铂的可能构型
1.配位键型与配合物稳定性的关系: 当形成相同配位数的配离子时,一般内轨型 要比外轨型稳定. 2.配合物磁性: 物质的磁性可用磁矩µ 的大小来衡量. µ =0, 反磁性; µ >0, 顺磁性. 如: O2,NO,NO2. 另外还有一种铁磁性物质,它们会被磁场强 烈吸引.例:Fe,Co,Ni.
[Ti(H2O)6]3+ K3[FeF6] K3[Fe(CN)6]
Ti3+:
3d1
µ实=1.73 µ实=2.18 µ实=5.90 µ实=2.0
K3[Mn(CN)6] Mn3+: 3d4 Fe3+: Fe3+: 3d5 3d5
n=1, 外轨型 n=2, 内轨型 n=5, 外轨型 n=1, 内轨型
2015/7/25
第三章 配位化合物课思考题 1.配合物由什么组成? 2.配合物如何命名?
3.配合物价键理论要点是什么?
2015/7/25
第三章 配位化合物的化学键理论 第一节 配位化合物的基本概念
一.配合物的定义 配位单元:金属离子与中性分子或阴离子生成较 复杂的结构单元称配位单元。 配离子:带电荷的配位单元称配离子。
一.价键理论 (一)理论要点 1.中心原子与配体之间通过配位键形成配离子。 配位键:特殊的共价键。 一方提供共用电子,另一方提供空轨道。 如 NH4+等
2015/7/25
例:
NH
H
4
BF4
F

CO

CO
HNH
FBF

H
2015/7/25
F
2s 2 p
2
2
2s 2p
2
4
2.中心原子提供空轨道,配体提供孤对电子。
x + (-1 3) = 0, x = +3
x + (0) = 0, x = 0
[Fe(CO)5]
2015/7/25
三.配合物的命名
1.配合物命名原则: (同 酸,碱,盐) ①配合物为配离子化合物, 命名时阴离子在
前, 阳离子在后;
②若为配阳离子,则叫“某化某”或“某酸
某”;
③若为配阴离子,则在配阴离子与外界阳离子
3.在平面四边形场中的分裂:
2015/7/25
(三)晶体场分裂能: 1.定义:分裂后最高能级d 轨道与最低能级d 轨道
之间的能量差称晶体场分裂能。用△表示。
在八面体场中
△0=10Dq;
在四面体场中
在平面四边形场中
△t=4.45Dq
△s=17.42Dq
2.影响分裂能大小的因素:

2015/7/25
(四) 配合物的几何异构现象
四面体,[PtCl2(NH3)2]不可能出现异构现象,而 平面四边形的[PtCl2(NH3)2]则可以有两种异构体: 顺式与反式。
Cl Pt Cl NH3 NH3
Cl Pt Cl
NH3 NH3
Cl Pt H3N
NH3 Cl
四面体构型 不可能有立体异构体
2015/7/25
(二)中心原子d轨道的能级分裂:
2015/7/25
2015/7/25
为什么会分裂:因为5个d轨道在空间的伸展方 向不同,配体在中心原子周围构成的负电场 不同,使5个d轨道上的电子受到的排斥作用 不同,所以,能量升高的多少不同,发生分 裂。
如何分裂?
2015/7/25
1.在八面体场中的分裂: 在八面体场中,六个配位原子沿±x、±y、±z轴方
晶体场:晶体场不同,分裂能大小不同。
配位数 4 3+1=4
多齿配体:
2+2×2=6
3 × 2=6
1 × 6=6
2015/7/25
配位数大小与中心原子电荷数有以下关系: 中心原子电荷数: 1 2 3 配位数: 2 4 6 5.配离子电荷: 配离子电荷等于中心原子和配体两者电荷的 代数和 .
2015/7/25
配离子电荷: [Ag(S2O3)2]x
思考题
1.晶体场理论要点有哪些?
2.影响分裂能大小的因素有哪些? 3.什么叫高、低自旋配离子? 4.配离子颜色与什么有关?
2015/7/25
二 . 配合物的晶体场理论 (一)、晶体场理论的要点:
1、中心原子与配位体之间通过静电作用形成配离
子。( 不形成共价键),配体的负电场称晶体场。 2、中心原子简并的d轨道在晶体场的影响下发生分裂。 3、电子填充在分裂后的d轨道,使体系的总能量有所 降低。
如含两个中性分子配体NH3和H2O, 则命名时 先NH3 , 后H2O.
2015/7/25
例如: [Cu(NH3)4]SO4
K3[Fe(NCS)6] H2[PtCl6]
硫酸四氨合铜(Ⅱ) 六异硫氰根合铁(Ⅲ)酸钾 六氯合铂(Ⅳ)酸
[Cu(NH3)4](OH)2 氢氧化四氨合铜(Ⅱ)
K[PtCl5(NH3)]
[PtCl3(NH3)](+3) [Fe(CN)6]x(赤血盐) (+2) [Fe(CN)6]x(黄血盐) [CoCl3(NH3)3]
(x)
(x) (x)
x = +1 + (-22) = -3
x + (-1 3) = -1, x = +2
x = +3 + (-1 6) = -3
x = +2 + (-1 6) = -4
2015/7/25
d区第四周期过渡元素所形成的配离子的磁 矩可用下式作近似计算:式中n是分子中未成对
电子数;µ B---玻尔磁子,是磁矩的习用单位。
磁 矩: µ = n(n 2) (µB)
n µ /µ B 0 1 2 3 4 5 0 1.73 2.83 3.87 4.90 5.92
.
2015/7/25
顺式 cis草酸
H3N Pt H3N O C O O O C
反式 transCl Pt H3N Cl NH3 H2O
相关文档
最新文档