〖汇总3套试卷〗青岛市2020年中考数学第一次联考试题

合集下载

2020年山东省青岛市西海岸新区、黄岛区中考数学一模试卷 解析版

2020年山东省青岛市西海岸新区、黄岛区中考数学一模试卷  解析版

2020年山东省青岛市西海岸新区、黄岛区中考数学一模试卷一、选择题:(每小题3分,共计24分)1.(3分)﹣的绝对值是()A.﹣B.C.D.﹣2.(3分)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)下面计算正确的是()A.x3+4x3=5x6B.22x2÷x=4xC.(﹣2x2)3=8x6D.(x+2y)(x﹣2y)=x2﹣2y24.(3分)疫情无情人有情,爱心捐款传真情.新冠肺炎疫情发生后,某班学生积极参加献爱心活动,该班40名学生的捐款统计情况如表,关于捐款金额,下列说法错误的是()金额/元10203050100人数2181082 A.平均数为32元B.众数为20元C.中位数为20元D.极差为90元5.(3分)如图,AB为⊙O的直径,四边形ABCD为⊙O的内接四边形,点P在BA的延长线上,PD与⊙O相切,D为切点,若∠BCD=130°,则∠ADP的大小为()A.25°B.30°C.35°D.40°6.(3分)如图,把图中的△ABC经过一定的变换得到△A′B′C′,如果图中△ABC上的点P的坐标为(a,b),那么它的对应点P′的坐标为()A.(a﹣2,b)B.(a+2,b)C.(﹣a﹣2,﹣b)D.(a+2,﹣b)7.(3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若BC=8,AB=10,则CE的长为()A.3B.C.D.8.(3分)已知二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=cx﹣a与反比例函数y=在同一坐标系内的图象可能是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)计算:﹣2sin45°=.10.(3分)人体内某种细胞的形状可近似看做球体,它的直径约为0.0000032m,数字0.00000032用科学记数法表示为.11.(3分)已知反比例函数y=与一次函数y=﹣x﹣1的图象的一个交点的纵坐标是2,则k的值为.12.(3分)如图,△ABC是边长为4的等边三角形△ABC,将绕边AB的中点O逆时针旋转60°,点C的运动路径为,则图中阴影部分的面积为.13.(3分)如图,在菱形ABCD中,对角线AC=4,BD=2,AC,BD相交于点O,过点C 作CE⊥AB交AB的延长线于点E,过点O作OF⊥CE交CE于点F,则OF的长度为.14.(3分)如图,有一棱长为4dm的正方体盒子,现要按图中箭头所指方向从点A到点D 拉一条捆绑线绳,使线绳经过ABFE、BCGF、EFGH、CDHG四个面,则所需捆绑线绳的长至少为dm.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹. 15.(4分)已知:如图,线段a,∠α求作:Rt△ABC,使∠C=90°,∠ABC=∠α,AB=a.四、解答题(本大题共9小题,共74分)16.(1)化简:÷(﹣1);(2)解不等式组:.17.小颖为班级联欢会设计了一个“配紫色”游戏:如图是两个可以自由转动的转盘,每个转盘被分成面积相等的三个扇形.游戏者同时转动两个转盘,如果一个转盘转出红色,另一个转盘转出蓝色,那么就能配成紫色.小明和小亮参加这个游戏,并约定:若配成紫色,则小明贏;若两个转盘转出的颜色相同,则小亮赢.这个游戏对双方公平吗?请说明理由.18.《中学生体质健康标准》规定学生体质健康等级标准:90分及以上为优秀;80分﹣89分为良好;60分﹣79分为及格;60分以下为不及格.某校为了解学生的体质健康情况,从八年级学生中随机抽取了20%的学生进行了体质测试,并将测试数据制成如图统计图.请根据相关信息解答下面的问题:(1)扇形统计图中,“不及格”等级所在扇形圆心角的度数是多少?(2)求参加本次测试学生的平均成绩;(3)若参加本次测试“良好”及“良好”以上等级的学生共有96人,请你估计全校八年级“不及格”等级的学生大约有多少人.19.如图,某高楼顶部有一信号发射塔,在矩形建筑物ABCD的A,C两点测得该塔顶端E 的仰角分别为∠α=48°和∠β=65°,矩形建筑物的宽度AD=18m,高度CD=30m,求信号发射塔顶端到地面的距离EF.(结果精确到0.1m)(参考数据:sin48°≈0.7,cos48°≈0.7,tan48°≈1.1,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)20.在抗击新冠肺炎疫情期间,市场上防护口罩出现热销.某药店用3000元购进甲,乙两种不同型号的口罩共1100个进行销售,已知购进甲种口罩与乙种口罩的费用相同,购进甲种口罩单价是乙种口罩单价的1.2倍.(1)求购进的甲,乙两种口罩的单价各是多少?(2)若甲,乙两种口罩的进价不变,该药店计划用不超过7000元的资金再次购进甲,乙两种口罩共2600个,求甲种口罩最多能购进多少个?21.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,作∠ADC和∠ABC的平分线,分别交AC于点G,H,延长DG交AB于点E,延长BH交CD于点F.(1)求证:△ADG≌△CBH;(2)若BD平分∠CDE,则四边形DEBF是什么特殊四边形?请说明理由.22.“互联网+”时代,网上购物备受消费者青睐.某网店专售一种商品,其成本为每件60元,已知销售过程中,销售单价不低于成本单价,且物价部门规定这种商品的获利不得高于50%.据市场调查发现,月销售量y(件)与销售单价x(元)之间的函数关系如表:65707580…销售单价x(元)月销售量y475450425400…(件)(1)请根据表格中所给数据,求出y关于x的函数关系式;(2)设该网店每月获得的利润为w元,当销售单价为多少元时,每月获得的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定每月从利润中捐出300元资助贫困学生.为了保证捐款后每月利润不低于7700元,且让消费者得到最大的实惠,该如何确定该商品的销售单价?23.[提出问题]正多边形内任意一点到各边距离之和与这个正多边形的边及内角有什么关系?[探索发现](1)为了解决这个问题,我们不妨从最简单的正多边形﹣﹣﹣﹣﹣﹣﹣正三角形入手如图①,△ABC是正三角形,边长是a,P是△ABC内任意一点,P到△ABC各边距离分别为h1、h2、h3,确定h1+h2+h3的值与△ABC的边及内角的关系.(2)如图②,五边形ABCDE是正五边形,边长是a,P是正五边形ABCDE内任意一点,P到五边形ABCDE各边距离分别为h1,h2,h3,h4,h5,参照(1)的探索过程,确定h1+h2+h3+h4+h5的值与正五边形ABCDE的边及内角的关系.(3)类比上述探索过程:正六边形(边长为a)内任意一点P到各边距离之和h1+h2+h3+h4+h5+h6=.正八边形(边长为a)内任意一点P到各边距离之和h1+h2+h3+h4+h5+h6+h7+h8=.[问题解决]正n边形(边长为a)内任意一点P到各边距离之和h1+h2+…+h n=.24.已知:如图,在四边形ABCD中,AB∥CD,∠ABC=90°,AB=AD=10cm,CD=4cm.点P从点A出发,沿AB方向匀速运动,速度为2cm/s;同时点Q从点C出发,沿DC方向在DC的延长线上匀速运动,速度为1cm/s;当点P到达点B时,点Q停止运动.过点P 作PE∥BD,交AD于点E.连接EQ,BQ.设运动时间为t(s)(0<t<5),解答下列问题:(1)连接PQ,当t为何值时,PQ∥AD?(2)设四边形PBQE的面积为y(cm2),求y与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使四边形PBQE的面积为四边形ABQD面积的,若存在,求出t的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t,使EQ⊥BD?若存在,求出t的值;若不存在,请说明理由.2020年山东省青岛市西海岸新区、黄岛区中考数学一模试卷参考答案与试题解析一、选择题:(每小题3分,共计24分)1.(3分)﹣的绝对值是()A.﹣B.C.D.﹣【分析】根据绝对值的定义,可以得到﹣的绝对值是多少.【解答】解:﹣的绝对值是,故选:B.2.(3分)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,是中心对称图形,故此选项符合题意;B、是轴对称图形,不是中心对称图形,故此选项不合题意;C、是轴对称图形,不是中心对称图形,故此选项不合题意;D、是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:A.3.(3分)下面计算正确的是()A.x3+4x3=5x6B.22x2÷x=4xC.(﹣2x2)3=8x6D.(x+2y)(x﹣2y)=x2﹣2y2【分析】直接利用合并同类项法则以及整式的除法运算法则、积的乘方运算法则分别化简得出答案.【解答】解:A、x3+4x3=5x3,故此选项错误;B、22x2÷x=4x,正确;C、(﹣2x2)3=﹣8x6,故此选项错误;D、(x+2y)(x﹣2y)=x2﹣4y2,故此选项错误;故选:B.4.(3分)疫情无情人有情,爱心捐款传真情.新冠肺炎疫情发生后,某班学生积极参加献爱心活动,该班40名学生的捐款统计情况如表,关于捐款金额,下列说法错误的是()金额/元10203050100人数2181082 A.平均数为32元B.众数为20元C.中位数为20元D.极差为90元【分析】根据加权平均数、众数、中位数、极差的定义,分别求出,就可以进行判断.【解答】解:平均数为:=32(元),故A不符合题意;捐款数中最多的是20元,因而众数为20元,故B不符合题意;将捐款数从小到大的顺序排列,处于最中间的两个数为20元,30元,中位数为(20+30)÷2=25(元),故C符合题意;极差为:100﹣10=90(元),故D不符合题意.故选:C.5.(3分)如图,AB为⊙O的直径,四边形ABCD为⊙O的内接四边形,点P在BA的延长线上,PD与⊙O相切,D为切点,若∠BCD=130°,则∠ADP的大小为()A.25°B.30°C.35°D.40°【分析】连接OD,PD与⊙O相切,可得OD⊥PD,再根据四边形ABCD为⊙O的内接四边形,可得∠DAP=∠BCD=130°,进而可求∠ADP的大小.【解答】解:如图,连接OD,∵PD与⊙O相切,∴OD⊥PD,∴∠ODP=90°,∵四边形ABCD为⊙O的内接四边形,∴∠DAP=∠BCD=130°,∴∠OAD=180°﹣130°=50°,∵OA=OD,∴∠ODA=∠OAD=50°,∴∠ADP=∠ODP﹣∠ODA=90°﹣50°=40°.故选:D.6.(3分)如图,把图中的△ABC经过一定的变换得到△A′B′C′,如果图中△ABC上的点P的坐标为(a,b),那么它的对应点P′的坐标为()A.(a﹣2,b)B.(a+2,b)C.(﹣a﹣2,﹣b)D.(a+2,﹣b)【分析】先根据图形确定出对称中心,然后根据中点公式列式计算即可得解.【解答】解:由图可知,△ABC与△A′B′C′关于点(﹣1,0)成中心对称,设点P′的坐标为(x,y),所以,=﹣1,=0,解得x=﹣a﹣2,y=﹣b,所以,P′(﹣a﹣2,﹣b).故选:C.7.(3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若BC=8,AB=10,则CE的长为()A.3B.C.D.【分析】根据三角形的内角和定理得出∠CAF+∠CF A=90°,∠F AD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案.【解答】解一:过点F作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CF A=90°,∠F AD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠F AD,∴∠CF A=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵BC=8,AB=10,∠ACB=90°,∴AC=6,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴=,∴=,∵FC=FG,∴=,解得:FC=3,即CE的长为3.解二:过点F作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CF A=90°,∠F AD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠F AD,∴∠CF A=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG.∵BC=8,AB=10,∠ACB=90°,∴AC=6.设FG=x,则FC=x.∵S△ABC=S△AFC+S△AFB,∴×6x+×10x=×6×8,∴x=3.∴CE=3.故选:A.8.(3分)已知二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=cx﹣a与反比例函数y=在同一坐标系内的图象可能是()A.B.C.D.【分析】根据二次函数的图象所经过的象限可以判定a、b、c的符号,从而得到ab的符号,易得一次函数与反比例函数所经过的象限.【解答】解:如图,抛物线y=ax2+bx+c开口方向向上,则a>0.抛物线对称轴位于y轴的右侧,则a、b异号,即ab<0.所以反比例函数y=的图象经过第二、四象限.又因为抛物线与y轴的交点位于负半轴,所以c<0.所以一次函数y=cx﹣a的图象经过第二、三、四象限.观察选项,只有选项B符合题意.故选:B.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)计算:﹣2sin45°=.【分析】先化简二次根式、代入三角函数值,再约分、计算乘法,最后计算减法即可得.【解答】解:原式=﹣2×=2﹣=,故答案为:.10.(3分)人体内某种细胞的形状可近似看做球体,它的直径约为0.0000032m,数字0.00000032用科学记数法表示为 3.2×10﹣7.【分析】绝对值小于1的正数利用科学记数法表示,一般形式为a×10﹣n,n由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000032=3.2×10﹣7.故答案为:3.2×10﹣7.11.(3分)已知反比例函数y=与一次函数y=﹣x﹣1的图象的一个交点的纵坐标是2,则k的值为﹣6.【分析】把y=2代入一次函数的解析式,即可求得交点坐标,然后利用待定系数法即可求得k的值.【解答】解:在y=﹣x﹣1中,令y=2,得﹣x﹣1=2解得x=﹣3,则交点坐标是:(﹣3,2),把(﹣3,2),代入y=得,k=﹣6.故答案为:﹣6.12.(3分)如图,△ABC是边长为4的等边三角形△ABC,将绕边AB的中点O逆时针旋转60°,点C的运动路径为,则图中阴影部分的面积为2π﹣.【分析】如图,连接OC,OC',设AC于OC'交点为D,由等边三角形的性质和旋转的性质可求OC'=OC=2,∠COC'=60°,由三角形内角和定理可求∠ADO=90°,由面积的和差关系可求解.【解答】解:如图,连接OC,OC',设AC与OC'交点为D,∵△ABC是边长为2的等边三角形,∴∠B=∠BAC=60°,AB=BC=4,∵点O是AB的中点,∴AO=AB=2,OC⊥AB,∴∠BOC=∠AOC=90°,∴OC=BC•sin60°=2,∵将△ABC绕边AB的中点O逆时针旋转60°,∴OC'=OC=2,∠COC'=60°,∴∠AOC'=∠AOC﹣∠COC'=30°,∴∠ADO=180°﹣∠AOC'﹣∠BAC=90°,∴AD=AO•sin30°=1,∴S阴影=S△AOC′+S扇形C'OC﹣S△AOC=+×2×1﹣×2×2=2π﹣,故答案为:2π﹣.13.(3分)如图,在菱形ABCD中,对角线AC=4,BD=2,AC,BD相交于点O,过点C 作CE⊥AB交AB的延长线于点E,过点O作OF⊥CE交CE于点F,则OF的长度为.【分析】由菱形的性质和勾股定理可求AB的长,由面积法可求CE的长,通过证明△OCF ∽△ACE,可得,可求CF的长,由勾股定理可求OF的长.【解答】解:∵四边形ABCD是菱形,∴AO=2,BO=1,AC⊥BD,∴AB===,∵S菱形ABCD=×AC×BD=AB×CE,∴4=×CE,∴CE=,∵∠OFC=∠AEC=90°,∠ACE=∠OCF,∴△OCF∽△ACE,∴,∴CE=2CF,∴CF=EF=,∴OF===,故答案为:.14.(3分)如图,有一棱长为4dm的正方体盒子,现要按图中箭头所指方向从点A到点D 拉一条捆绑线绳,使线绳经过ABFE、BCGF、EFGH、CDHG四个面,则所需捆绑线绳的长至少为4dm.【分析】把此正方体的一面展开,然后在平面内,利用勾股定理求点A和D点间的线段长,即可得到捆绑线绳的最短距离.在直角三角形中,一条直角边长等于两个棱长,另一条直角边长等于3个棱长,利用勾股定理可求得.【解答】解:如图将正方体展开,根据“两点之间,线段最短”知,线段AD即为最短路线.展开后由勾股定理得:AD2=82+122,故AD=4dm.故答案为4.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹. 15.(4分)已知:如图,线段a,∠α求作:Rt△ABC,使∠C=90°,∠ABC=∠α,AB=a.【分析】根据基本作图方法即可作出Rt△ABC,使∠C=90°,∠ABC=∠α,AB=a.【解答】解:如图,所以Rt△ABC即为所求.四、解答题(本大题共9小题,共74分)16.(1)化简:÷(﹣1);(2)解不等式组:.【分析】(1)根据分式的减法和除法可以解答本题;(2)根据解一元一次不等式组的方法可以解答本题.【解答】解:(1)÷(﹣1)===;(2),由不等式①,得x≥,由不等式②,得x<3,∴原不等式组的解集是≤x<3.17.小颖为班级联欢会设计了一个“配紫色”游戏:如图是两个可以自由转动的转盘,每个转盘被分成面积相等的三个扇形.游戏者同时转动两个转盘,如果一个转盘转出红色,另一个转盘转出蓝色,那么就能配成紫色.小明和小亮参加这个游戏,并约定:若配成紫色,则小明贏;若两个转盘转出的颜色相同,则小亮赢.这个游戏对双方公平吗?请说明理由.【分析】分别计算出小明、小亮获胜的概率,比较大小即可得出游戏是否公平.【解答】解:列表如下:红蓝蓝红(红,红)(红,蓝)(红,蓝)黄(黄,红)(黄,蓝)(黄,蓝)蓝(蓝红)(蓝,蓝)(蓝,蓝)由表格可知,共有12种等可能结果,其中配成紫色的有3种结果,颜色相同的有3种结果.P(小明赢)==,P(小亮赢)==,∵,∴游戏公平.18.《中学生体质健康标准》规定学生体质健康等级标准:90分及以上为优秀;80分﹣89分为良好;60分﹣79分为及格;60分以下为不及格.某校为了解学生的体质健康情况,从八年级学生中随机抽取了20%的学生进行了体质测试,并将测试数据制成如图统计图.请根据相关信息解答下面的问题:(1)扇形统计图中,“不及格”等级所在扇形圆心角的度数是多少?(2)求参加本次测试学生的平均成绩;(3)若参加本次测试“良好”及“良好”以上等级的学生共有96人,请你估计全校八年级“不及格”等级的学生大约有多少人.【分析】(1)计算出“不及格”等级所占百分比,然后再利用360°乘以百分比可得“不及格”等级所在扇形圆心角的度数;(2)利用加权平均数的计算方法计算即可;(3)计算出本次测试的总人数再乘以10%即可.【解答】解:(1)1﹣23%﹣25%﹣42%=10%,10%×360°=36°,答:“不及格”等级所在扇形圆心角的度数是36°;(2)92×23%+84×25%+70×42%+45×10%=76.06(分)答:参加本次测试学生的平均成绩为76.06分;(3)96÷(23%+25%)÷20%×10%=100(人)答:全校八年级“不及格”等级的学生大约有100人.19.如图,某高楼顶部有一信号发射塔,在矩形建筑物ABCD的A,C两点测得该塔顶端E 的仰角分别为∠α=48°和∠β=65°,矩形建筑物的宽度AD=18m,高度CD=30m,求信号发射塔顶端到地面的距离EF.(结果精确到0.1m)(参考数据:sin48°≈0.7,cos48°≈0.7,tan48°≈1.1,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)【分析】过点A作AG⊥EF,垂足为G.设EF为x米,由题意可得四边形CDGF是矩形,再根据锐角三角函数即可求出信号发射塔顶端到地面的距离EF.【解答】解:如图,过点A作AG⊥EF,垂足为G.设EF为x米,由题意可知:四边形CDGF是矩形,则FG=CD=30m,DG=CF,∴GE=x﹣30.在Rt△AEG中,∠AGE=90°,∵,∴,∴,在Rt△CEF中,∠CFE=90°,∠ECF=65°,∵,∴,∴,∵DG=CF,∴AG=CF+AD,∴,∴x=104.58≈104.6(米).答:信号发射塔顶端到地面的距离EF为104.6米.20.在抗击新冠肺炎疫情期间,市场上防护口罩出现热销.某药店用3000元购进甲,乙两种不同型号的口罩共1100个进行销售,已知购进甲种口罩与乙种口罩的费用相同,购进甲种口罩单价是乙种口罩单价的1.2倍.(1)求购进的甲,乙两种口罩的单价各是多少?(2)若甲,乙两种口罩的进价不变,该药店计划用不超过7000元的资金再次购进甲,乙两种口罩共2600个,求甲种口罩最多能购进多少个?【分析】(1)设乙种口罩的单价为x元,则甲种口罩的单价为1.2x元,根据数量=总价÷单价,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设该药店购进甲种口罩a只,则购进乙种口罩(2600﹣a)只,根据总价=单价×数量结合进货总价不超过7000元,即可得出关于a的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)3000÷2=1500(元).设乙种口罩的单价为x元,则甲种口罩的单价为1.2x元,依题意,得:,解得:x=2.5,经检验,x=2.5是原方程的解,且符合题意,∴1.2x=3.答:甲种口罩的单价为3元,乙种口罩的单价为2.5元.(2)设该药店购进甲种口罩a只,则购进乙种口罩(2600﹣a)只,依题意,得:3a+2.5(2600﹣a)≤7000,解得:a≤1000.答:甲种口罩最多购进1000只.21.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,作∠ADC和∠ABC的平分线,分别交AC于点G,H,延长DG交AB于点E,延长BH交CD于点F.(1)求证:△ADG≌△CBH;(2)若BD平分∠CDE,则四边形DEBF是什么特殊四边形?请说明理由.【分析】(1)由平行四边形的性质得出AD=CB,AD∥CB,∠ADC=∠ABC,得出∠DAG =∠BCH,证出∠ADG=∠CBH,由ASAS即可得出△ADG≌△CBH;(2)证△CBF≌△ADE(ASA),得出AE=CF,证出EB=DF,得出四边形DEBF是平行四边形,再证ED=EB,即可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=CB,AD∥CB,∠ADC=∠ABC,∴∠DAG=∠BCH,∵DE,BF分别是∠ADC和∠ABC的平分线,∴,∴∠ADG=∠CBH,在△ADG和△CBH中,,∴△ADG≌△CBH(ASA);(2)解:四边形DEBF是菱形,理由如下:∵四边形ABCD是平行四边形,∴AD=CB,AB=CD,AB∥CD,∠DAB=∠BCD,在△CBF和△ADE中,,∴△CBF≌△ADE(ASA),∴AE=CF,∴AB﹣AE=CD﹣CF,即EB=DF,又∵AB∥CD,∴四边形DEBF是平行四边形,∵BD平分∠CDE,∴∠CDB=∠BDE,又∵AB∥CD,∴∠CDB=∠DBA,∴∠BDE=∠DBA,∴ED=EB,∴平行四边形DEBF是菱形.22.“互联网+”时代,网上购物备受消费者青睐.某网店专售一种商品,其成本为每件60元,已知销售过程中,销售单价不低于成本单价,且物价部门规定这种商品的获利不得高于50%.据市场调查发现,月销售量y(件)与销售单价x(元)之间的函数关系如表:销售单价x(元)65707580…月销售量y475450425400…(件)(1)请根据表格中所给数据,求出y关于x的函数关系式;(2)设该网店每月获得的利润为w元,当销售单价为多少元时,每月获得的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定每月从利润中捐出300元资助贫困学生.为了保证捐款后每月利润不低于7700元,且让消费者得到最大的实惠,该如何确定该商品的销售单价?【分析】(1)待定系数法即可求得函数的解析式;(2)利用销量×每件利润=总利润进而得出函数关系式求出最值;(3)根据题意列方程求出x的值,进而得出答案.【解答】解:(1)根据表格中的数据猜想y与x的函数关系是一次函数,∴设y=kx+b,将x=65,y=475;x=70,y=450代入y=kx+b,得,解得,∴y=5x+800,经验证,x=75,y=425;x=80,y=400都满足上述函数关系式,答:y与x的函数关系式为y=﹣5x+800;(2)由题意,得w=(x﹣60)y=(x﹣60)(﹣5x+800)=﹣5x2+1100x﹣48000=﹣5x2+1100x ﹣48000,∵销售单价不低于成本单价,且物价部门规定这种商品的获利不得高于50%,∴,∴60≤x≤90,∵a=﹣5<0,∴抛物线开口向下,对称轴为直线x=110,∵60≤x≤90,∴此时函数图象在对称轴的左侧,w随x的增大而增大,∴x=90时,w取得最大值,w max=10500;答:当销售单价x为90元时,每月获得的利润最大,最大利润是10500元;(3)根据题意得,﹣5x2+1100x﹣48000﹣300=7700解得:x1=80,x2=140,∵抛物线开口向下,∴当80≤x≤140时,每月利润不低于7700元又∵60≤x≤90,∴当80≤x≤90时,每月利润不低于7700元,∵要让消费者得到最大的实惠,∴x=80,答:该商品的销售单价定为80元时,符合该网店要求且让消费者得到最大的实惠.23.[提出问题]正多边形内任意一点到各边距离之和与这个正多边形的边及内角有什么关系?[探索发现](1)为了解决这个问题,我们不妨从最简单的正多边形﹣﹣﹣﹣﹣﹣﹣正三角形入手如图①,△ABC是正三角形,边长是a,P是△ABC内任意一点,P到△ABC各边距离分别为h1、h2、h3,确定h1+h2+h3的值与△ABC的边及内角的关系.(2)如图②,五边形ABCDE是正五边形,边长是a,P是正五边形ABCDE内任意一点,P到五边形ABCDE各边距离分别为h1,h2,h3,h4,h5,参照(1)的探索过程,确定h1+h2+h3+h4+h5的值与正五边形ABCDE的边及内角的关系.(3)类比上述探索过程:正六边形(边长为a)内任意一点P到各边距离之和h1+h2+h3+h4+h5+h6=3a tan60°.正八边形(边长为a)内任意一点P到各边距离之和h1+h2+h3+h4+h5+h6+h7+h8=4a tan67.5°.[问题解决]正n边形(边长为a)内任意一点P到各边距离之和h1+h2+…+h n=a tan (90﹣)°.【分析】(1)设△ABC的面积为S,显然,设△ABC的中心(正多边形各边垂直平分线的交点,又称正多边形的中心)为O,连接OA、OB、OC,它们将△ABC分成三个全等的等腰三角形,过点O作OM⊥AB,垂足为M,根据锐角三角函数和面积公式即可得结论;(2)设正五边形ABCDE的面积为S,显然,设正五边形ABCDE的中心为O,连接OA、OB、OC、OD、OE,它们将正五边形ABCDE分成五个全等的等腰三角形,过点O作OF⊥AB,根据锐角三角函数和面积公式即可得结论;(3)结合(1)(2)的证明过程,同理可证:正六边形(边长为a)内任意一点P到各边距离之和h1+h2+h3+h4+h5+h6=3a tan60°.正八边形(边长为a)内任意一点P到各边距离之和h1+h2+h3+h4+h5+h6+h7+h8=4a tan67.5°.正n边形(边长为a)内任意一点P 到各边距离之和h1+h2+…+h n=a tan(90﹣)°.【解答】解:(1)设△ABC的面积为S,显然,设△ABC的中心(正多边形各边垂直平分线的交点,又称正多边形的中心)为O,连接OA、OB、OC,它们将△ABC分成三个全等的等腰三角形,过点O作OM⊥AB,垂足为M,易知,所以,那么,所以;(2)解:设正五边形ABCDE的面积为S,显然,设正五边形ABCDE的中心为O,连接OA、OB、OC、OD、OE,它们将正五边形ABCDE分成五个全等的等腰三角形,过点O作OF⊥AB,垂足为F,易知OF=AF tan∠OAB=AB tan BAE=a tan54°,所以,那么,所以.(3)同理可证:正六边形(边长为a)内任意一点P到各边距离之和h1+h2+h3+h4+h5+h6=3a tan60°.正八边形(边长为a)内任意一点P到各边距离之和h1+h2+h3+h4+h5+h6+h7+h8=4a tan67.5°.[问题解决]正n边形(边长为a)内任意一点P到各边距离之和h1+h2+…+h n=a tan(90﹣)°.故答案为:3a tan60°,4a tan67.5°,.24.已知:如图,在四边形ABCD中,AB∥CD,∠ABC=90°,AB=AD=10cm,CD=4cm.点P从点A出发,沿AB方向匀速运动,速度为2cm/s;同时点Q从点C出发,沿DC方向在DC的延长线上匀速运动,速度为1cm/s;当点P到达点B时,点Q停止运动.过点P 作PE∥BD,交AD于点E.连接EQ,BQ.设运动时间为t(s)(0<t<5),解答下列问题:(1)连接PQ,当t为何值时,PQ∥AD?(2)设四边形PBQE的面积为y(cm2),求y与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使四边形PBQE的面积为四边形ABQD面积的,若存在,求出t的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t,使EQ⊥BD?若存在,求出t的值;若不存在,请说明理由.【分析】(1)根据平行四边形的对边相等列出方程,解方程得到答案;(2)作DF⊥AB,EM⊥AB,根据S四边形PBQE=S梯形ABQD﹣S△AEP﹣S△QED,列出函数解析式;(3)根据(2)的结论、结合图形列出方程,解方程求出t;(4)根据平行线的性质、等腰三角形的判定定理得到DE=DQ,列式计算即可.【解答】解:(1)当PQ∥AD时,∵DC∥AB,∴四边形APQD是平行四边形,∴AP=DQ,即2t=4+t,解得,t=4,∴当t为4s时,PQ∥AD;(2)过点D作DF⊥AB于F,过点E作EM⊥AB于M,延长ME交CD的延长线于点N,∴∠DF A=∠DFB=90°,∠EMA=∠EMB=90°,∵AB∥CD,∴∠CDF=90°,∠CNM=90°,∵∠ABC=90°,∴四边形DFBC、NMFD是矩形,∴BF=DC=4,∴AF=6,∴DF==8,∴MN=BC=DF=8,∵PE∥BD,∴,∵AB=AD,∴AE=AP=2t,∵∠A=∠A,∠EMA=∠DF A,∴△AEM∽△ADF,∴,即,∴,∴,∴y=S四边形PBQE=S梯形ABQD﹣S△AEP﹣S△QED=(4+t+10)×8﹣×2t×t﹣(4+t)(8﹣t)=﹣t2+t+40,∴y与t的函数关系式为:y═﹣t2+t+40(0<t<5);(3)假设存在某一时刻t,四边形PBQE的面积为四边形ABQD面积的,则﹣t2+t+40=××(4+t+10)×8,解得,t1=4,t2=﹣(不合题意,舍去),答:当t=4时,四边形PBQE的面积为四边形ABQD面积的;(4)若存在某一时刻t,使EQ⊥BD,垂足为O,∴∠DOE=∠DOQ=90°,∵AB∥CD,∴∠BDC=∠DBA,∵AB=AD,∴∠BDA=∠DBA,∴∠BDC=∠BDA,∴DE=DQ,∴4+t=10﹣2t,∴t=2,∴当t为2s时,EQ⊥BD.。

山东省青岛市2019-2020学年中考数学一模试卷含解析

山东省青岛市2019-2020学年中考数学一模试卷含解析

山东省青岛市2019-2020学年中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.-2的倒数是( )A .-2B .12-C .12D .22.点M (1,2)关于y 轴对称点的坐标为( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(2,﹣1)3.如图,正方形ABCD 的边长为2,其面积标记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S 2,…,按照此规律继续下去,则S 9的值为( )A .(12)6B .(12)7C .(22)6D .(22)7 4.下列函数中,y 随着x 的增大而减小的是( )A .y=3xB .y=﹣3xC .3y x =D .3y x=- 5.如图: 在ABC ∆中,CE 平分ACB ∠,CF 平分ACD ∠,且//EF BC 交AC 于M ,若5CM =,则22CE CF +等于( )A .75B .100C .120D .1256.长江经济带覆盖上海、江苏、浙江、安徽、江西、湖北、湖南、重庆、四川、云南、贵州等11省市,面积约2 050 000平方公里,约占全国面积的21% .将2 050 000用科学记数法表示应为( ) A .205万 B .420510⨯ C .62.0510⨯ D .72.0510⨯7.如图,BC 是⊙O 的直径,A 是⊙O 上的一点,∠B =58°,则∠OAC 的度数是( )A .32°B .30°C .38°D .58°8.如图,在△ABC 中,点D 在AB 边上,DE ∥BC ,与边AC 交于点E ,连结BE ,记△ADE ,△BCE的面积分别为S1,S2,()A.若2AD>AB,则3S1>2S2B.若2AD>AB,则3S1<2S2C.若2AD<AB,则3S1>2S2D.若2AD<AB,则3S1<2S2e的直径,且AB⊥CD.入9.有一圆形苗圃如图1所示,中间有两条交叉过道AB,CD,它们为苗圃O口K 位于»AD中点,园丁在苗圃圆周或两条交叉过道上匀速行进.设该园丁行进的时间为x,与入口K的距离为y,表示y与x的函数关系的图象大致如图2所示,则该园丁行进的路线可能是()A.A→O→D B.C→A→O→ B C.D→O→C D.O→D→B→C10.如图,数轴上的A、B、C、D四点中,与数﹣3表示的点最接近的是( )A.点A B.点B C.点C D.点D11.如图,PA,PB分别与⊙O相切于A,B两点,若∠C=65°,则∠P的度数为()A.65°B.130°C.50°D.100°12.下列四个多项式,能因式分解的是()A.a-1 B.a2+1C.x2-4y D.x2-6x+9二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,AB是⊙O的直径,CD是弦,CD⊥AB于点E,若⊙O的半径是5,CD=8,则AE=______.14.如图,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=42,点D是AC边上一动点,连接BD,以AD为直径的圆交BD于点E,则线段CE长度的最小值为___.15.如图△EDB由△ABC绕点B逆时针旋转而来,D点落在AC上,DE交AB于点F,若AB=AC,DB=BF,则AF与BF的比值为_____.16.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____.17.如图所示,直线y=x+b交x轴A点,交y轴于B点,交双曲线8(0)y xx=>于P点,连OP,则OP2﹣OA2=__.18.我们知道:四边形具有不稳定性.如图,在平面直角坐标系xOy中,矩形ABCD的边AB在x轴上,(3,0)A-,(4,0)B,边AD长为5. 现固定边AB,“推”矩形使点D落在y轴的正半轴上(落点记为D¢),相应地,点C的对应点C'的坐标为_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某商场将进价40元一个的某种商品按50元一个售出时,每月能卖出500个.商场想了两个方案来增加利润:方案一:提高价格,但这种商品每个售价涨价1元,销售量就减少10个;方案二:售价不变,但发资料做广告.已知当这种商品每月的广告费用为m(千元)时,每月销售量将是原销售量的p倍,且p =.试通过计算,请你判断商场为赚得更大的利润应选择哪种方案?请说明你判断的理由!20.(6分)已知:如图,□ABCD中,BD是对角线,AE⊥BD于E,CF⊥BD于F. 求证:BE=DF.21.(6分)化简,再求值:222x-3231,211121x xxxx x x--÷+=+--++22.(8分)某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:(1)九(1)班的学生人数为,并把条形统计图补充完整;(2)扇形统计图中m=,n=,表示“足球”的扇形的圆心角是度;(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.23.(8分)某超市预测某饮料会畅销、先用1800元购进一批这种饮料,面市后果然供不应求,又用8100元购进这种饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.第一批饮料进货单价多少元?若两次进饮料都按同一价格销售,两批全部售完后,获利不少于2700元,那么销售单价至少为多少元?24.(10分)有A,B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和1.B 布袋中有三个完全相同的小球,分别标有数字﹣1,﹣1和﹣2.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).(1)用列表或画树状图的方法写出点Q的所有可能坐标;(1)求点Q落在直线y=﹣x﹣1上的概率.25.(10分)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.该商家购进的第一批衬衫是多少件?若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?26.(12分)九(1)班同学分成甲、乙两组,开展“四个城市建设”知识竞赛,满分得5分,得分均为整数.小马虎根据竞赛成绩,绘制了如图所示的统计图.经确认,扇形统计图是正确的,条形统计图也只有乙组成绩统计有一处错误.(1)指出条形统计图中存在的错误,并求出正确值;(2)若成绩达到3分及以上为合格,该校九年级有800名学生,请估计成绩未达到合格的有多少名?(3)九(1)班张明、李刚两位成绩优秀的同学被选中参加市里组织的“四个城市建设”知识竞赛.预赛分为A、B、C、D四组进行,选手由抽签确定.张明、李刚两名同学恰好分在同一组的概率是多少?27.(1245﹣|4sin30°5(﹣112)﹣1参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据倒数的定义求解.【详解】-2的倒数是-1 2故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握2.A【解析】【分析】关于y轴对称的点的坐标特征是纵坐标不变,横坐标变为相反数.【详解】点M(1,2)关于y轴对称点的坐标为(-1,2)【点睛】本题考查关于坐标轴对称的点的坐标特征,牢记关于坐标轴对称的点的性质是解题的关键.3.A【解析】试题分析:如图所示.∵正方形ABCD的边长为2,△CDE为等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴S2+S2=S1.观察发现规律:S1=22=4,S2=12S1=2,S2=12S2=1,S4=12S2=12,…,由此可得S n=(12)n﹣2.当n=9时,S9=(12)9﹣2=(12)6,故选A.考点:勾股定理.4.B【解析】试题分析:A、y=3x,y随着x的增大而增大,故此选项错误;B、y=﹣3x,y随着x的增大而减小,正确;C、3yx=,每个象限内,y随着x的增大而减小,故此选项错误;D、3yx=-,每个象限内,y随着x的增大而增大,故此选项错误;故选B.考点:反比例函数的性质;正比例函数的性质.5.B【解析】【分析】根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求出CE2+CF2的值.【详解】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=12∠ACB,∠ACF=12∠ACD,即∠ECF=12(∠ACB+∠ACD)=90°,∴△EFC为直角三角形,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE2+CF2=EF2=1.故选:B.【点睛】本题考查角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线),直角三角形的判定(有一个角为90°的三角形是直角三角形)以及勾股定理的运用,解题的关键是首先证明出△ECF为直角三角形.6.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】2 050 000将小数点向左移6位得到2.05,所以2 050 000用科学记数法表示为:20.5×106,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.A【解析】【分析】根据∠B=58°得出∠AOC=116°,半径相等,得出OC=OA,进而得出∠OAC=32°,利用直径和圆周角定理解答即可.【详解】解:∵∠B=58°,∴∠AOC=116°,∵OA=OC ,∴∠C=∠OAC=32°,故选:A .【点睛】此题考查了圆周角的性质与等腰三角形的性质.此题比较简单,解题的关键是注意数形结合思想的应用.8.D【解析】【分析】根据题意判定△ADE ∽△ABC ,由相似三角形的面积之比等于相似比的平方解答.【详解】∵如图,在△ABC 中,DE ∥BC ,∴△ADE ∽△ABC , ∴2112BDE S AD S S S AB=++V (), ∴若1AD >AB ,即12AD AB >时,11214BDE S S S S ++V >, 此时3S 1>S 1+S △BDE ,而S 1+S △BDE <1S 1.但是不能确定3S 1与1S 1的大小,故选项A 不符合题意,选项B 不符合题意.若1AD <AB ,即12AD AB <时,11214BDE S S S S ++V <, 此时3S 1<S 1+S △BDE <1S 1,故选项C 不符合题意,选项D 符合题意.故选D .【点睛】考查了相似三角形的判定与性质,三角形相似的判定一直是中考考查的热点之一,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.9.B【解析】【分析】观察图象可知园丁与入口K的距离先减小,然后再增大,但是没有到过入口的位置,据此逐项进行分析即可得.【详解】A. A→O→D,园丁与入口的距离逐渐增大,逐渐减小,不符合;B. C→A→O→ B,园丁与入口的距离逐渐减小,然后又逐渐增大,符合;C. D→O→C,园丁与入口的距离逐渐增大,不符合;D. O→D→B→C,园丁与入口的距离先逐渐变小,然后再逐渐变大,再逐渐变小,不符合,故选B.【点睛】本题考查了动点问题的函数图象,看懂图形,认真分析是解题的关键.10.B【解析】【分析】≈-,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.1.732【详解】≈-,1.732()---≈,1.7323 1.268()---≈,1.73220.268()---≈,1.73210.732因为0.268<0.732<1.268,所以表示的点与点B最接近,故选B.11.C【解析】试题分析:∵PA、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,则∠P=360°﹣(90°+90°+130°)=50°.故选C.考点:切线的性质.12.D【解析】试题分析:利用平方差公式及完全平方公式的结构特征判断即可.试题解析:x2-6x+9=(x-3)2.故选D.考点:2.因式分解-运用公式法;2.因式分解-提公因式法.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2【解析】【分析】连接OC,由垂径定理知,点E是CD的中点,在直角△OCE中,利用勾股定理即可得到关于半径的方程,求得圆半径即可【详解】设AE为x,连接OC,∵AB是⊙O的直径,弦CD⊥AB于点E,CD=8,∴∠CEO=90°,CE=DE=4,由勾股定理得:OC2=CE2+OE2,52=42+(5-x)2,解得:x=2,则AE是2,故答案为:2【点睛】此题考查垂径定理和勾股定理,,解题的关键是利用勾股定理求关于半径的方程.14.25 2【解析】【分析】连结AE,如图1,先根据等腰直角三角形的性质得到AB=AC=4,再根据圆周角定理,由AD为直径得到∠AED=90°,接着由∠AEB=90°得到点E在以AB为直径的O上,于是当点O、E、C共线时,CE最小,如图2,在Rt△AOC中利用勾股定理计算出5CE的最小值为5 2.【详解】连结AE,如图1,∵∠BAC=90°,AB=AC,BC=42,∴AB=AC=4,∵AD为直径,∴∠AED=90°,∴∠AEB=90°,∴点E在以AB为直径的O上,∵O的半径为2,∴当点O、E. C共线时,CE最小,如图2在Rt△AOC中,∵OA=2,AC=4,∴OC=2225+,AC OA=∴CE=OC−OE=25﹣2,即线段CE长度的最小值为25﹣2.故答案为:25﹣2.【点睛】此题考查等腰直角三角形的性质,圆周角定理,勾股定理,解题关键在于结合实际运用圆的相关性质. 15.【解析】【分析】先利用旋转的性质得到BC=BD,∠C=∠EDB,∠A=∠E,∠CBD=∠ABE,再利用等腰三角形的性质和三角形内角和定理证明∠ABD=∠A,则BD=AD,然后证明△BDC∽△ABC,则利用相似比得到BC:AB=CD:BC,即BF:(AF+BF)=AF:BF,最后利用解方程求出AF与BF的比值.【详解】∵如图△EDB由△ABC绕点B逆时针旋转而来,D点落在AC上,∴BC=BD,∠C=∠EDB,∠A=∠E,∠CBD=∠ABE,∵∠ABE=∠ADF,∴∠CBD=∠ADF,∵DB=BF,∴BF=BD=BC,而∠C=∠EDB,∴∠CBD=∠ABD,∴∠ABC=∠C=2∠ABD,∵∠BDC=∠A+∠ABD,∴∠ABD=∠A,∴BD=AD,∴CD=AF,∵AB=AC,∴∠ABC=∠C=∠BDC,∴△BDC∽△ABC,∴BC:AB=CD:BC,即BF:(AF+BF)=AF:BF,整理得AF2+B F∙AF-BF2=0,∴AF=BF,即AF与BF的比值为.故答案是.【点睛】本题主要考查了旋转的性质、等腰三角形的性质、相似三角形的性质,熟练掌握这些知识点并灵活运用是解题的关键.16.20【解析】【分析】利用频率估计概率,设原来红球个数为x个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x的方程,解方程即可得.【详解】设原来红球个数为x个,则有1010x+=1030,解得,x=20,经检验x=20是原方程的根.故答案为20.【点睛】本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.17.1【解析】解:∵直线y=x+b与双曲线8yx=(x>0)交于点P,设P点的坐标(x,y),∴x﹣y=﹣b,xy=8,而直线y=x+b与x轴交于A点,∴OA=b.又∵OP2=x2+y2,OA2=b2,∴OP2﹣OA2=x2+y2﹣b2=(x﹣y)2+2xy﹣b2=1.故答案为1.18.()7,4 【解析】分析:根据勾股定理,可得OD ' ,根据平行四边形的性质,可得答案. 详解:由勾股定理得:OD '=224D A AO '-= ,即D ¢(0,4). 矩形ABCD 的边AB 在x 轴上,∴四边形ABC D ''是平行四边形,A D ¢=BC ', C 'D ¢=AB=4-(-3)=7, C '与D ¢的纵坐标相等,∴C '(7,4),故答案为(7,4). 点睛:本题考查了多边形,利用平行四边形的性质得出A D ¢=B C ',C 'D ¢=AB=4-(-3)=7是解题的关键. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.方案二能获得更大的利润;理由见解析 【解析】 【分析】方案一:由利润=(实际售价-进价)×销售量,列出函数关系式,再用配方法求最大利润; 方案二:由利润=(售价-进价)×500p-广告费用,列出函数关系式,再用配方法求最大利润. 【详解】解:设涨价x 元,利润为y 元,则方案一:涨价x 元时,该商品每一件利润为:50+x−40,销售量为:500−10x , ∴22(5040)(50010)10400500010(20)9000y x x x x x =+--=-++=--+, ∵当x=20时,y 最大=9000, ∴方案一的最大利润为9000元;方案二:该商品售价利润为=(50−40)×500p ,广告费用为:1000m 元,∴()2250405001000200090002000( 2.25)10125y p m m m m =-⨯-=-+=--+,∴方案二的最大利润为10125元; ∴选择方案二能获得更大的利润. 【点睛】本题考查二次函数的实际应用,根据题意,列出函数关系式,配方求出最大值. 20.(1)证明:∵ABCD 是平行四边形 ∴AB=CD AB ∥CD ∴∠ABE=∠CDF 又∵AE ⊥BD ,CF ⊥BD ∴∠AEB=∠CFD=∴△ABE ≌△CDF∴BE=DF 【解析】 证明:在□ABCD 中 ∵AB ∥CD∴∠ABE=∠CDF…………………………………………………………4分 ∵AE ⊥BD CF ⊥BD∴∠AEB=∠CFD=900……………………………………………………5分∵AB=CD∴△ABE ≌△CDF…………………………………………………………6分 ∴BE=DF 212【解析】试题分析:把分式化简,然后把x 的值代入化简后的式子求值就可以了.试题解析:原式=23(1)1(1)(1)(1)(3)1x x x x x x x -+⨯++-+-- =21x - 当21x =时,原式2211=+-.考点:1.二次根式的化简求值;2.分式的化简求值.22.(1)4,补全统计图见详解.(2)10;20;72.(3)见详解. 【解析】 【分析】(1)根据喜欢篮球的人数与所占的百分比列式计算即可求出学生的总人数,再求出喜欢足球的人数,然后补全统计图即可;(2)分别求出喜欢排球、喜欢足球的百分比即可得到m 、n 的值,用喜欢足球的人数所占的百分比乘以360°即可;(3)画出树状图,然后根据概率公式列式计算即可得解. 【详解】解: (1)九(1)班的学生人数为:12÷30%=40(人), 喜欢足球的人数为:40−4−12−16=40−32=8(人), 补全统计图如图所示;(2)∵440×100%=10%,840×100%=20%,∴m=10,n=20,表示“足球”的扇形的圆心角是20%×360°=72°;故答案为(1)40;(2)10;20;72;(3)根据题意画出树状图如下:一共有12种情况,恰好是1男1女的情况有6种,∴P(恰好是1男1女)=612=12.23.(1)4元/瓶.(2) 销售单价至少为1元/瓶.【解析】【分析】(1)设第一批饮料进货单价为x元/瓶,则第二批饮料进货单价为(x+2)元/瓶,根据数量=总价÷单价结合第二批购进饮料的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)由数量=总价÷单价可得出第一、二批购进饮料的数量,设销售单价为y元/瓶,根据利润=销售单价×销售数量﹣进货总价结合获利不少于2100元,即可得出关于y的一元一次不等式,解之取其最小值即可得出结论.【详解】(1)设第一批饮料进货单价为x元/瓶,则第二批饮料进货单价为(x+2)元/瓶,依题意,得:81002x=3×1800x,解得:x=4,经检验,x=4是原方程的解,且符合题意.答:第一批饮料进货单价是4元/瓶;(2)由(1)可知:第一批购进该种饮料450瓶,第二批购进该种饮料1350瓶.设销售单价为y元/瓶,依题意,得:(450+1350)y﹣1800﹣8100≥2100,解得:y≥1.答:销售单价至少为1元/瓶.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.24.(1)见解析;(1)1 3【解析】试题分析:先用列表法写出点Q的所有可能坐标,再根据概率公式求解即可. (1)由题意得(1)共有6种等可能情况,符合条件的有1种P(点Q在直线y=−x−1上)=1 3 .考点:概率公式点评:解题的关键是熟练掌握概率公式:概率=所求情况数与总情况数的比值.25.(1)120件;(2)150元.【解析】试题分析:(1)设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫可设为2x件,由已知可得,,这种衬衫贵10元,列出方程求解即可.(2)设每件衬衫的标价至少为a元,由(1)可得出第一批和第二批的进价,从而求出利润表达式,然后列不等式解答即可.试题解析:(1)设该商家购进的第一批衬衫是x件,则第二批衬衫是2x件.由题意可得:2880013200102x x-=,解得120x=,经检验120x=是原方程的根.(2)设每件衬衫的标价至少是a元.由(1)得第一批的进价为:132********÷=(元/件),第二批的进价为:120(元) 由题意可得:()120(110)24050(120)50(0.8120)25%42000a a a ⨯-+-⨯-+⨯-≥⨯ 解得:35052500a ≥,所以,150a ≥,即每件衬衫的标价至少是150元. 考点:1、分式方程的应用 2、一元一次不等式的应用. 26.(1)见解析;(2)140人;(1)14. 【解析】 【分析】(1)分别利用条形统计图和扇形统计图得出总人数,进而得出错误的哪组; (2)求出1分以下所占的百分比即可估计成绩未达到合格的有多少名学生;(1)根据题意可以画出相应的树状图,从而可以求得张明、李刚两名同恰好分在同一组的概率. 【详解】(1)由统计图可得: (1分) (2分) (4分) (5分) 甲(人) 0 1 7 6 4 乙(人) 2 2 5 8 4 全体(%)512.5101517.5乙组得分的人数统计有误,理由:由条形统计图和扇形统计图的对应可得, 2÷5%=40,(1+2)÷12.5%=40, (7+5)÷10%=40,(6+8)÷15%=40,(4+4)÷17.5%≠40, 故乙组得5分的人数统计有误, 正确人数应为:40×17.5%﹣4=1. (2)800×(5%+12.5%)=140(人); (1)如图得:∵共有16种等可能的结果,所选两人正好分在一组的有4种情况, ∴所选两人正好分在一组的概率是:41=164. 【点睛】本题考查列表法与树状图法、用样本估计总体、条形统计图、扇形统计图,解答本题的关键是明确题意,找出所求问题需要的条件.27.﹣1.【解析】【分析】先逐项化简,再合并同类项或同类二次根式即可.【详解】解:原式=﹣2)﹣12=﹣﹣12=﹣1.【点睛】本题考查了实数的混合运算,熟练掌握特殊角的三角函数值,二次根式的性质以及负整数指数幂的意义是解答本题的关键.。

2020届初三中考数学一诊联考试卷含参考答案 (山东)

2020届初三中考数学一诊联考试卷含参考答案 (山东)

2020届**市初三中考一诊联考试卷数学注意事项:1.答卷前,考生务必将自己的姓名、准考证填写在答题卡上。

2.回答客观题时,选出每小题答案后,用2B铅笔把答题卡上对应的答案标号涂黑。

如需改正,必须用橡皮擦擦涂干净,回答非客观题,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,将本试卷和答题卡一并收回。

4.考试时间:120分钟。

一、单选题(共10题,每题3分,共30分,四个选项中只有一项符合题目要求)1.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏 B.盈利20元 C.亏损10元 D.亏损30元2.下列运算正确的是()A.a2•a3=a6B.(a2)3=a6C.a6÷a2=a3D.2﹣3=﹣6⨯的网格中,A,B均为格点,以点A为圆心,以AB的长为半径3.如图,在33∠的值是()作弧,图中的点C是该弧与格线的交点,则sin BACA .12B .23CD 4.2018的倒数是( )A .2018B .12018C .12018-D .﹣20185.下列平面图形,是中心对称但不是轴对称图形的是( )A .B .C .D . 6.下列计算正确的是( )A .B .C .D .7.如图,直线y +1分别交x 轴、y 轴于点A 、C ,点B 是点A 关于y 的对称点,点D 是线段BC 上一点,把△ABD 沿AD 翻折使AB 落在射线AC 上,得△AB 'D ,则△ABC 与△AB 'D 重叠部分的面积为( )A B .12 C .3 D .36-8.3-的倒数是()A.-3 B.3 C.13-D.139.如图,⊙O是正五边形ABCDE的外接圆,则正五边形的中心角∠AOB的度数是()A.72°B.60°C.54°D.36°10.如果解关于x的分式方程233x ax x---=5时出现了增根,那么a的值是()A.﹣6B.﹣3C.6D.3二、填空题(共4题,每题4分,共16分)11.Rt△ABC中,∠C=90°,cos A=35,AC=6cm,那么BC等于_____.12.如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且AD DFAC CG=.若12ADAC=,则AFFG=_____.13.菱形ABCD中,∠B=60°,AB=5,以AC为边长作正方形ACFE,则点D到EF的距离为_____.14.已知圆锥的侧面积是12π,母线长为4,则圆锥的底面圆半径为________.三、解答题(共6题,总分54分)15.如图,在平面直角坐标系xOy中,点A在x轴上,点B在第一象限内,∠OAB=90°,OA=AB,△OAB的面积为2,反比例函数y=kx的图象经过点B.(1)求k的值;(2)已知点P坐标为(a,0),过点P作直线OB的垂线l,点O,A关于直线l的对称点分别为O′,A′,若线段O′A′与反比例函数y=kx的图象有公共点,直接写出a的取值范围.16.已知AM是△ABC的中线,点D在线段AM上[点D不与点A重合),过点D作DF∥AB交AC边于点F,过点C作CE∥AM交DF的延长线于点E,连接AE.(1)如图1,当点D与点M重合时,求证:四边形ABDE是平行四边形;(2)如图2,当点D不与点M重合时,过点M作MG∥DE交EC于点G,连接BD、AG在不添加任何辅助线的情况下,请直接写出图中所有的平行四边形.17.如图,某校数学兴趣小组的小明同学为测量位于玉溪大河畔的云铜矿业大厦AB的高度,小明在他家所在的公寓楼顶C处测得大厦顶部A处的仰角为45°,底部B处的俯角为30°.已知公寓高为40m,请你帮助小明计算公寓楼与矿业大厦间的水平距离BD的长度及矿业大厦AB的高度.(结果保留根号)18.已知,在矩形ABCD中,连接对角线AC,将△ABC绕点B顺时针旋转90°得到△EFG,并将它沿直线AB向左平移,直线EG与BC交于点H,连接AH,CG.(1)如图①,当AB=BC,点F平移到线段BA上时,线段AH,CG有怎样的数量关系和位置关系?直接写出你的猜想;(2)如图②,当AB=BC,点F平移到线段BA的延长线上时,(1)中的结论是否成立,请说明理由;(3)如图③,当AB=nBC(n≠1)时,对矩形ABCD进行如已知同样的变换操作,线段AH,CG有怎样的数量关系和位置关系?直接写出你的猜想.19.如图,PA,PB分别与⊙O相切于点A,B,点M在PB上,且OM∥AP,MN⊥AP,垂足为N.(1)求证:OM = AN;(2)若⊙O的半径R = 3,PA = 9,求OM的长.20.在△ABN中,∠B=90°,点M是AB上的动点(不与A,B两点重合),点C 是BN延长线上的动点(不与点N重合),且AM=BC,CN=BM,连接CM与AN交于点P.(1)在图1中依题意补全图形;(2)小伟通过观察、实验,提出猜想:在点M,N运动的过程中,始终有∠APM小伟把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的一种思路:。

2020届初三中考数学一诊联考试卷含答案解析 (山东)

2020届初三中考数学一诊联考试卷含答案解析 (山东)

2020届**市初三中考一诊联考试卷数 学注意事项:1.答卷前,考生务必将自己的姓名、准考证填写在答题卡上。

2.回答客观题时,选出每小题答案后,用2B 铅笔把答题卡上对应的答案标号涂黑。

如需改正,必须用橡皮擦擦涂干净,回答非客观题,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,将本试卷和答题卡一并收回。

4.考试时间:120分钟。

一、单选题(共10题,每题3分,共30分,四个选项中只有一项符合题目要求)1.计算sin45︒的结果等于( )A .12B .2CD .12.下列运算正确的是( )A .a 12÷a 6=a 6B .(a ﹣2b )2=a ﹣4bC .a 3•a 3=2a 6D .(a 2)3=a 53.若不等式组2120x x x m ->-⎧⎨+≤⎩有解,则m 的取值范围是( ) A .1m >- B .1m ≥- C .1m ≤- D .1m <-4.我们在探究二次函数的图象与性质时,首先从y=ax 2(a ≠0)的形式开始研究,最后到y=a(x-h)2+k(a ≠0)的形式,这种探究问题的思路体现的数学思想是( )A .转化B .由特殊到一般C .分类讨论D .数形结合5.如图,菱形OABC ,A 点的坐标为(5,0),对角线OB 、AC 相交于D 点,双曲线y =k x(x >0)经过D 点,交BC 的延长线于E 点,交AB 于F 点,连接OF 交AC 于M ,且OB •AC =40.有下列四个结论:①k =8;②CE =1;③AC +OB=S △AFM :S △AOM =1:3.其中正确的结论是( )A .①②B .①③C .①②③D .①②③④6.下列说法正确的是( )A .了解全国中学生最喜爱哪位歌手,适合全面调查.B .甲乙两种麦种,连续3年的平均亩产量相同,它们的方差为:S 甲2=5,S 乙2=0.5,则甲麦种产量比较稳.C .某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道平均成绩.D .一组数据:3,2,5,5,4,6的众数是5.7.方程21321x x =-+的解为( )A .x =3B .x =2C .x =﹣53D .x =﹣128.下列运算正确的是( )A 4=±B .(﹣3ab 3)2=6a 2b 5C .2a -2=214a D .5325533ab ab b ÷= 9.在抛物线y =x 2﹣4x+m 的图象上有三个点(﹣3,y 1),(1,y 2),(4,y 3),则y 1,y 2,y 3的大小关系为( )A .y 2<y 3<y 1B .y 1<y 2=y 3C .y 1<y 2<y 3D .y 3<y 2<y 110.如图,AC ∥DF ,AB ∥EF ,若∠2=50°,则∠1的大小是( )A .60°B .50°C .40°D .30°二、填空题(共4题,每题4分,共16分)11.如图,菱形ABCD 中,sin ∠BAD =45,对角线AC ,BD 相交于点O ,以O 为圆心,OB 为半径作⊙O 交AD 于点E ,已知DE =1cm ;菱形ABCD 的周长为_____12.如图,在平行四边形ABCD 中,AB <AD ,∠C =150°,CD =8,以AB 为直径的⊙O交BC于点E,则阴影部分的面积为_____.13.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表所示:当y<﹣3时,x的取值范围是_____.14.如图,若△ABC内一点P满足∠PAC=∠PCB=∠PBA,则称点P为△ABC的布罗卡尔点,已知△ABC中,CA=CB,∠ACB=120°,P为△ABC 的布罗卡尔点,若,则PB+PC=_____.三、解答题(共6题,总分54分)15.如图1,点E是正方形ABCD边CD上任意一点,以DE为边作正方形DEFG,连接BF,点M是线段BF中点,射线EM与BC交于点H,连接CM.(1)请直接写出CM和EM的数量关系和位置关系;(2)把图1中的正方形DEFG绕点D顺时针旋转45°,此时点F恰好落在线段CD上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由;(3)把图1中的正方形DEFG绕点D顺时针旋转90°,此时点E、G恰好分别落在线段AD 、CD 上,如图3,其他条件不变,(1)中的结论是否成立,请说明理由.16.计算:(π﹣3)0﹣(13)﹣117.如图,10×10的网格中,A ,B ,C 均在格点上,诮用无刻度的直尺作直线MN ,使得直线MN 平分△ABC 的周长(留作图痕迹,不写作法)(1)请在图1中作出符合要求的一条直线MN ;(2)如图2,点M 为BC 上一点,BM =5.请在AB 上作出点N 的位置.18.如图1,2分别是某款篮球架的实物图与示意图,AB ⊥BC 于点B ,底座BC =1.3米,底座BC 与支架AC 所成的角∠ACB =60°,点H 在支架AF 上,篮板底部支架EH ∥BC .EF ⊥EH 于点E ,已知AH =2米,HF 米,HE =1米. (1)求篮板底部支架HE 与支架AF 所成的∠FHE 的度数.(2)求篮板底部点E 到地面的距离,(精确到0.01米)(参考数据:≈1.41)19.如图,二次函数()20y ax bx c a =++≠的图象与x 轴交于A 、B 两点,其中A点坐标为()1,0-,点()0,5C 、()1,8D 在抛物线上,M 为抛物线的顶点.(1)求抛物线的解析式;(2)求MCB ∆的面积.20.已知函数y =1a x -+b (a 、b 为常数且a ≠0)中,当x =2时,y =4;当x =﹣1时,y =1.请对该函数及其图象进行如下探究:(1)求该函数的解析式,并直接写出该函数自变量x 的取值范围; (2)请在下列直角坐标系中画出该函数的图象;(3)请你在上方直角坐标系中画出函数y =2x 的图象,结合上述函数的图象,写出不等式1a x -+b ≤2x 的解集.。

青岛市2020版中考数学一模试卷D卷

青岛市2020版中考数学一模试卷D卷

青岛市2020版中考数学一模试卷D卷姓名:________ 班级:________ 成绩:________一、选择题. (共10题;共20分)1. (2分)许多人由于粗心,经常造成水龙头“滴水”或“流水”不断.根据测定,一般情况下一个水龙头“滴水”1个小时可以流掉3.5千克水.若1年按365天计算,这个水龙头1年可以流掉()千克水.(用科学计数法表示,保留3个有效数字)A . 3.1×104B . 0.31×105C . 3.06×104D . 3.07×1042. (2分)实数a,b,c在数轴上对应的点如图所示,下列式子中正确的是()A . ﹣a<b<cB . ab<acC . ﹣a+b>﹣a+cD . |a﹣b|<|a﹣c|3. (2分)四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为()A .B .C .D . 14. (2分) (2020九上·建湖期末) 一组数据1,2,8,5,3,9,5,4,5,4的众数、中位数分别为()A . 4.5、5B . 5、4.5C . 5、4D . 5、56. (2分)下列几何体的主视图、左视图、俯视图都相同的是()A .B .C .D .7. (2分)在等腰三角形、圆、长方形、正方形、直角三角形中,一定是轴对称图形的有()个A . 1B . 2C . 3D . 48. (2分)(2019·大同模拟) 将抛物线y=x2﹣x+1先向左平移2个单位长度,再向上平移3个单位长度,则所得抛物线的表达式为()A . y=x2+3x+6B . y=x2+3xC . y=x2﹣5x+10D . y=x2﹣5x+49. (2分) (2015七下·威远期中) 将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有﹣个小朋友分到苹果但不到8个苹果.求这一箱苹果的个数与小朋友的人数.若设有x人,则可列不等式为()A . 8(x﹣1)<5x+12<8B . 0<5x+12<8xC . 0<5x+12﹣8(x﹣1)<8D . 8x<5x+12<810. (2分)方程|2x-1|=b有两个不相等的实数根,则b的取值范围是()A . b>1B . b<1C . 0<b<1D . 0<b≤1二、填空题 (共6题;共6分)11. (1分)(2020·中山模拟) 分解因式: = ________.12. (1分)(2017·营口模拟) 函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0;其中正确的个数有________个.13. (1分)已知关于x的方程x2﹣6x+m﹣1=0有两个不相等的实数根,则m的取值范围是________14. (1分)正多边形的一个外角是72°,则这个多边形的内角和的度数是________.15. (1分)某校为了发展校园足球运动,组建了校足球队,队员年龄分布如图所示,则这些队员年龄的众数是________16. (1分) (2016八上·东城期末) 如图,Rt△ABC的斜边AB的中垂线MN与AC交于点M,∠A=15°,BM=2,则△AMB的面积为________.三、解答题 (共13题;共141分)17. (5分)(1)计算:+(2)已知(x﹣1)3=﹣64,求x的值.18. (10分) (2020八下·宝安月考) 解不等式并把解集表示在数轴上:(1) 2(x+1)﹣1≥4x+2,(2)﹣2≥﹣19. (5分) (2017八下·定安期末) 先化简,再求值:,其中.20. (5分)(2019·台州模拟) 如图,已知平行四边形ABCD,E为BC的中点,DE⊥AE.求证:AB= AD.21. (10分)(2017·濮阳模拟) 平行四边形ABCD的两个顶点A、C在反比例函数y= (k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,AD交y轴于P点(1)已知点A的坐标是(2,3),求k的值及C点的坐标;(2)在(1)的条件下,若△APO的面积为2,求点D到直线AC的距离.22. (5分) (2017七下·曲阜期中) 某运动员在一场篮球比赛中的技术统计如表所示:技术投中(次)罚球得分个人总得分数据221060注:表中投中次数不包括罚球(只包括2分球和3分球)根据以上信息,求本场比赛中该运动员投中2分球和3分球各几个.23. (15分) (2019八下·温岭期末) 如图如图1,四边形ABCD和四边形BCMD都是菱形,(1)求证:∠M=60°(2)如图2,点E在边AD上,点F在边CM上,连接EF交CD于点H,若AE=MF,求证:EH=HF;(3)如图3,在第(2)小题的条件下,连接BH,若EF⊥CM,AB=3,求BH的长24. (12分) (2019七下·北流期末) 某校在经典朗读活动中,对全校学生用A、B、C、D四个等级进行评价,现从中抽取若干名学生进行调查,绘制出两幅不完整的统计图,请你根据图中的信息解答下列问题:(1)被调查的学生共有________人,图2中A等级所占的圆心角为________度。

2020年山东省青岛市李沧区中考数学一模试卷

2020年山东省青岛市李沧区中考数学一模试卷

2020 年山东省青岛市李沧区中考数学一模试卷一、选择题(本大题共8 小题,共 24.0 分)1. -2020 的绝对值是 ()A. -2020B. 2020C. 2.下列手机手势解锁图案中,是轴对称图形的是 A. B. C.1- 2020( )D.D.1 20203. 2020 春节期间,一场突如其来的新冠肺炎疫情牵动着全国人民的心,因疫情发展迅速,全国口罩防护用品销售量暴涨、供应紧张,国有疫,我有责,在特殊时期,某集团紧急启动了应急响应机制,取消了工人休假,与疫情救灾相关的口罩、防护服生产线连续 24 小时运转,将援驰武汉的往武汉,其中 120 万用科学记数法表示为 A. 120 ×10 4 B. 12 ×10 54.下列运算正确的是 ( )A. 2??+ 3??= 25??C. 2 3 6?? ×?? = ??120 万片口罩和 8 万防护服第一时间发()C. 1.2 ×10 6D. 1.2 ×10 7B.22 2(??+ 2??) = ?? + 4??D. 2 3= -??36(-???? ) ??? :? :? :? :5. 如图,四边形 ABCD 内接于圆,并有 ????????????????= 45 6 5 ,则 ∠ ??的度数为 ( ) : :A. 90°B. 95°C. 99°D. 100 °6. 如图,点 A B 的坐标分别为 (-3,1) , (-1, -2) ,若将线段 AB 平移至 ???? 的位置,,1 1 点 ??, ??的坐标分别为 (??,4) , (3, ??),则 ??+ ??的值为 ( )1 1A.2B.3C.4D.57.如图,对折矩形纸片 ABCD ,使 AB 与 BC 重合,得到折痕 EF ,然后把 △??????再对折到 △??????,使点 A 落在EF 上的点 G 处,若 ????= 2,则 HG 的长度为 ( )二次函数2与一次函数 ??= ????+ ??在同一坐标系中的大致图象可能是( )8.??= ????A. B.C. D.二、填空题(本大题共 6 小题,共 18.0 分)9.计算:√18+√121-1= ______.-( )√2310.射击比赛中,某队员10 次射击成绩如图所示,则该队员的成绩的中位数是______环.11.随着市民环保意识的日渐增强,文明、绿色的环保祭扫方式(鲜花祭奠、网络祭奠等 )正成为一种趋势,清明节期间,我区某花店用4000 元购买了若干花束,很快就售完了,接着又用4500 元购买了第二批花束.已知第二次购买的花束的数量是第一批所购花束的数量的 1.5 倍,且每束花的进价比第一批的进价少 5 元.若设第一批所购花束的数量为x 束,则可列方程为______.12.如图,分别以正三角形的三个顶点为圆心,边长为半径画弧,三段弧围成的图形成为莱洛三角形.若正三角形边长为6cm,则该莱洛三角形的面积为2.______????13.如图,在 ?ABCD 中, ????= 3 ,????= 5 ,∠ ??与∠ ??的平分线 AE,BF 相交于点 N,点 M 为线段 CD 的中点,连接 MN ,则 MN 的长度为 ______.14.如图,是由 22 个边长为 1 厘米的小正方体拼成的立体图形,该图中由两个小正方体组成的长方体的个数为______.15.某宾馆有若干间标准房,当标准房的价格为 200 元时,每天入住的房间数为 60 间.经市场调查表明,该馆每间标准房的价格在170 ~240元之间 (含 170 元, 240 元 )浮动时,每天入住的房间数??(间 ) 与每间标准房的价格??(元) 的数据如下表:??(元 )190200210220??(间 )65605550(1)根据所给数据在坐标系中描出相应的点,并画出图象.(2) 求 y 关于 x 的函数表达式,并写出自变量x 的取值范围.(3)设客房的日营业额为 ??(元 ). 若不考虑其他因素,问宾馆标准房的价格定为多少元时,客房的日营业额最大?最大为多少元?四、解答题(本大题共9 小题,共72.0 分)16.已知:直线 l 及 l 上两点 A, B.求作: ????△??????,使点 C 在直线 l 的上方,∠??????= 90°,且 ????= ????.22??-??17. (1)?? +??化简: (- 2??)÷;????(2)2??+ ?? - 1的函数与 x 轴有两个交点,且与y 轴交于正半若二次函数 ??= 2?? -轴,求 m 的取值范围.18.每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心疾首.今年某校为确保学生安全,开展了“远离溺水 ?珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取 10 名学生的竞赛成绩 (百分制 ) 进行整理、描述和分析 (成绩得分用 x 表示,共分成四组:??.80 ≤ ??< 85 ;??.85 ≤ ??< 90 ; ??90. ≤ ??< 95;??.95 ≤ ??< 100) ,下面给出了部分信息:七年级 10 名学生的竞赛成绩是: 99,80,99,86,99,96,90, 100,89, 82八年级10 名学生的竞赛成绩在 C 组中的数据是:94, 90, 94八年级抽取的学生竞赛成绩扇形统计图七、八年级抽取的学生竞赛成绩统计表年级七年级八年级平均数b92中位数9394众数99100方差5250.4根据以上信息,解答下列问题:(1)直接写出上述图表中 a, b 的值;(2)根据以上数据,你认为该校七、八年级学生掌握防溺水安全知识较好?请说明理由 ( 一条理由即可 ) ;(3)该校七、八年级共 720 人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀 (??≥ 90) 的学生人数是多少?19. 将图中的 A 型、 B 型、 C 型矩形纸片分别放在 3 个盒子中,盒子的形状、大小、质地都相同,再将这 3 个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出 1 个盒子,求摸出的盒子中是 A 型矩形纸片的概率;(2)搅匀后先从中摸出 1 个盒子 (不放回 ),再从余下的两个盒子中摸出一个盒子,求2 次摸出的盒子的纸片能拼成一个新矩形的概率( 不重叠无缝隙拼接 ) .20. 小明利用刚学过的测量知识来测量学校内一棵古树的高度.一天下午,他和学习小组的同学带着测量工具来到这棵古树前,由于有围栏保护,他们无法到达古树的底部 B,如图所示.于是他们先在古树周围的空地上选择一点D,并在点 D 处安装了测量器 DC ,测得古树的顶端 A 的仰角为 45°;再在 BD的延长线上确定一点 G,使????= 5米,并在 G 处的地面上水平放置了一个小平面镜,小明沿着 BG 方向移动,当移动到点 F 时,他刚好在小平面镜内看到这棵古树的顶端 A 的像,此时,测得 ????=2米,小明眼睛与地面的距离????= 1.6米,测量器的高度 ????= 0.5米.已知点 F 、G、D、B 在同一水平直线上,且 EF、CD、AB 均垂直于 FB ,求这棵古树的高度 ????(.小平面镜的大小忽略不计 )21. 为了参加西部博览会,资阳市计划印制一批宣传册.该宣传册每本共10页,由A、B 两种彩页构成.已知 A 种彩页制版费300 元/ 张, B 种彩页制版费 200元/ 张,共计 2400 元. (注:彩页制版费与印数无关)(1)每本宣传册 A、 B 两种彩页各有多少张?(2)据了解, A 种彩页印刷费 2.5元/ 张, B 种彩页印刷费 1.5 元/ 张,这批宣传册的制版费与印刷费的和不超过 30900 元.如果按到资阳展台处的参观者人手一册发放宣传册,预计最多能发给多少位参观者?22.如图,D是△??????的边AB的中点,????//????,????//????,AC与DE相交于点F,连接 AB, CD.(1)求证: ????= ????;(2)当△??????满足什么条件时,四边形 ADCE 是菱形?请说明理由.23.【模型介绍】古希腊有一个著名的“将军饮马问题”,大致内容如下:古希腊一位将军,每天都要巡查河岸同侧的两个军营 A, ??他.总是先去 A 营,再到河边饮马,之后,再巡查 B营.如图①,他时常想,怎么走才能使每天走的路程之和最短呢?大数学家海伦曾用轴对称的方法巧妙地解决了这个问题.如图②,作点 B 关于直线 l 的对称点 ??,′连结 ????与′直线 l 交于点 P,连接 PB,则????+ ????的和最小.请你在下列的阅读、理解、应用的过程中,完成解答.理由:如图③,在直线 l 上另取任一点 ??,′连结 ????,′????,′??′,??′∵直线 l 是点 B, ??的′对称轴,点 P, ??在′l 上,∴????= ______, ?? ′=??______,∴????+ ????= ????+ ????=′______.在△????′中??,′∵????<′????+′??′,??′∴????+ ????< ????+ ??′,??即′????+ ????最小.【归纳总结】在解决上述问题的过程中,我们利用轴对称变换,把点A,B 在直线同侧的问题转化为在直线的两侧,从而可利用“两点之间线段最短”,即转化为“三角形两边之和大于第三边”的问题加以解决 (其中点 P 为 ????与′l 的交点,即 A,P,??三′点共线).由此,可拓展为“求定直线上一动点与直线同侧两定点的距离和的最小值”问题的数学模型.【模型应用】(1)如图④,正方形 ABCD 的边长为 4,E 为 AB 的中点,F 是 AC 上一动点.求 ????+ ????的最小值.解析:解决这个问题,可借助上面的模型,由正方形对称性可知,点B与D关于直线 AC 对称,连结 DE 交 AC 于点 F ,则 ????+ ????的最小值就是线段ED 的长度,则 ????+ ????的最小值是______.(2) 如图⑤,圆柱形玻璃杯,高为14cm,底面周长为16cm,在杯内离杯底3cm 的点 C 处有一滴蜂蜜,此时一只蚂蚁正好在外壁,离杯上沿4cm 与蜂蜜相对的点 A 处,则蚂蚁到达蜂蜜的最短路程为______cm.(3) 如图⑥,在边长为 2 的菱形 ABCD 中,∠ ??????= 60 °,将△??????沿射线 BD 的方向平移,得到△??′??,′分??别′连接 ??′,???′,???′,??则??′+????′的??最小值为______.24.如图,已知 ????△??????,∠??????= 90°,∠??????= 30°,斜边 ????= 8????,将 ????△??????绕点 O 顺时针旋转 60°,得到△??????,连接 ????点. M 从点 D 出发,沿 DB 方向匀速行动,速度为 1????/??;同时,点 N 从点 O 出发,沿 OC 方向匀速运动,速度为 2????/??;当一个点停止运动,另一个点也停止运动.连接AM,MN ,MN 交 CD 于点 ??设.运动时间为 ??(??)(0< ??< 4) ,解答下列问题:(1)当 t 为何值时, OM 平分∠ ???????(2) 设四边形2AMNO 的面积为 ??(????),求 S 与 t 的函教关系式;(3)在运动过程中,当∠ ??????= 45 °时,求四边形 AMNO 的面积;(4) 在运动过程中,是否存在某一时刻t,使点 P 为线段 CD 的中点?若存在,求出t的值;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:根据绝对值的概念可知:| - 2020| = 2020 ,故选: B.根据绝对值的定义直接进行计算.本题考查了绝对值.解题的关键是掌握绝对值的概念,注意掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是0.2.【答案】A【解析】解: A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选: A.直接根据轴对称图形的概念求解.此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.【答案】C【解析】解: 120 万= 1.2 ×10 6,故选: C.科学记数法的表示形式为??×10 ??的形式,其中 1 ≤ |??|< 10 ,n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥ 10 时, n 是正数;当原数的绝对值< 1时, n 是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为??×10 ??的形式,其中1≤|??|< 10, n 为整数,表示时关键要正确确定 a 的值以及n 的值.4.【答案】D【解析】【分析】此题主要考查了合并同类项以及完全平方公式、积的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.直接利用合并同类项法则以及完全平方公式、积的乘方运算法则、同底数幂的乘除运算法则分别化简得出答案.【解答】解: A、2??+ 3??= 5??,故此选项错误;222B、 (??+ 2??) = ?? + 4????+4??,故此选项错误;2· 35 ,故此选项错误;C、?? ?? = ??2336D 、(-???? )= -?? ??,正确.故选: D.5.【答案】C【解析】解:连接OA、 OB、 OC、OD ,∵????:????:????:????= 4:5:6:5,∴∠ ??????:∠ ??????:∠ ??????:∠ ??????= 4: 5: 6:5,设∠??????、∠??????、∠??????、∠??????的度数分别为4x、 5x、6x、5x,则4??+ 5??+ 6??+ 5??= 360°,解得, ??= 18°,∴∠ ??????的度数 +∠ ??????的度数 = 6 ×18 °+ 5 ×18 °= 198 °,1∴∠ ??的度数为 198 °×2 = 99 °,故选: C.连接 OA、OB、OC、OD ,根据圆心角和弧之间的关系定理得到∠??????:∠??????:∠??????:∠??????= 4 :5:6:5,列方程求出∠ ??????的度数 +∠ ??????的度数,根据圆周角定理解答即可.本题考查的是圆内接四边形的性质、圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.6.【答案】A【解析】解:∵点 A、B 的坐标分别是为 (-3,1), (-1,-2),若将线段 AB 平移至 ??1??1的位置, ??1 (??,4) , ??(3,1??),∴线段 AB 向右平移了 4 个单位,向上平移了 3 个单位,∴??= 1,??= 1,∴??+ ??= 2,故选: A.由已知得出线段 AB 向右平移了 4 个单位,向上平移了3个单位,即可得出结果;本题考查坐标与图形变化- 平移,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.7.【答案】B【解析】解:如图,连接AG ,∵对折矩形 ABCD 的纸片,使 AB 与 DC 重合,∴????= ????, ????⊥????,∴????= ????,∵把△??????再对折到△??????,∴????= ????= 2,∠ ??????= ∠ ??????,∠ ??????= ∠ ??????=90 °,∴????= ????= ????,∴△??????是等边三角形,∴∠ ??????=60 °,∴∠ ??????=30 °,在 ????△??????中, ????= ????tan ∠??????= 2√3.3故选: B.由折叠的性质可得 ????= ????= ????,可得△ ??????是等边三角形,即可求∠??????= 60°,即可求解.本题考查了翻折变换,矩形的性质,证明△??????是等边三角形是本题的关键.8.【答案】D【分析】本题主要考查一次函数和二次函数的图象,解题的关键是熟练掌握二次函数的图象和一次函数的图象与系数之间的关系.由一次函数 ??= ????+ ??可知,一次函数的图象与x 轴交于点 (-1,0),即可排除 A、B,然后根据二次函数的开口方向,与y 轴的交点以及一次函数经过的象限,与y 轴的交点可对相关图象进行判断.【解答】解:由一次函数 ??= ????+ ??可知,一次函数的图象与x 轴交于点 (-1,0),排除 A、B;当 ??> 0时,二次函数开口向上,一次函数经过一、三、四象限,当??< 0 时,二次函数开口向下,一次函数经过二、三、四象限,排除C;故选: D.9.【答案】√61812【解析】解:原式 = √+√-322=3+√6-3=√6 .故答案为√6.利用二次根式的除法法则和负整数指数幂的意义计算.本题考查了二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.10.【答案】9【解析】解:由题意,可得该队员10 次射击成绩 ( 单位:环 ) 为: 6,7,8,8,9,9,9,9, 10, 10,第 5与第 6 个数据都是9,所以中位数是: (9 + 9) ÷2 = 9.故答案为: 9.根据条形统计图得出该队员10 次射击成绩,再利用中位数的定义解答即可.本题考查的是条形统计图和中位数.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.将一组数据按照从小到大(或从大到小 ) 的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4000450011.【答案】??-1.5??= 5【解析】解:设第一批所购花束的数量为x 束,则第二次所购花束的数量为 1.5??束,40004500由题意,得??- 1.5?? =5.40004500故答案是:??- 1.5?? =5.设第一批所购花束的数量为x 束,则第二次所购花束的数量为 1.5??束,根据“第一批花的进价 - 第二批花的进价 = 5元”列出方程.本题主要考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.12.【答案】(18??- 18√3)∵????⊥????,∴????= ????= 3 , ????= √3????= 3√3 ,1∴△??????的面积为2 ????????= 9 √3,2??60??? ×6== 6??,扇形 ??????360∴莱洛三角形的面积??= 3 ×6??- 2 ×9√3 = (18?? -218 √3)????,故答案为: (18?? - 18√3).图中三角形的面积是由三块相同的扇形叠加而成,其面积= 三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.13.【答案】3.5【解析】解:∵四边形 ABCD 是平行四边形,∴????//????,∴∠ ??????= ∠ ??????,∠ ??????= ∠ ??????,∵∠ ??与∠ ??的平分线 AE, BF 相交于点 N,∴∠ ??????= ∠ ??????,∠ ??????= ∠ ??????,∴∠ ??????= ∠ ??????,∠ ??????= ∠ ??????,∴????= ????, ????= ????,∴????= ????= ????,∴四边形 ABEF 是平行四边形,∵????= ????,∴平行四边形ABEF 是菱形,∴????= ????,连接 EF,交 EF 于 G,∴????= ????= ????= ????= 3 ,∵??是 DC 的中点,1∴????= 2????= 1.5 ,????= ????= ????- ????= 5 -3= 2,∴????= 1.5 + 2 = 3.5,故答案为: 3.5 .根据平行四边形的性质得出????//????,进而利用角平分线的定义和等腰三角形的判定得出 ????= ????, ????= ????,进而得出四边形 ABEF 是菱形,利用三角形中位线定理解答即可.此题考查平行四边形的性质,关键是根据平行四边形的性质解答.14.【答案】40【解析】解: 13 + 13 + 14 = 40( 个).由两个小正方体组成的长方体,可以分为上下位,左右位,前后位三种,分别数出它们的个数,再相加即可求解.考查了认识立体图形,规律型:图形的变化类,关键是分类讨论,做到不重复不遗漏.15.【答案】解:(1)如图所示:(2) 设 ??= ????+ ??,将 (200,60) 、 (220,50) 代入,得: { 200??+ ??= 60,220??+ ??= 501??= -解得{2,1∴??= - 2 ??+ 160(170≤??≤240);(3)?? =112????= ??(- 2 ??+ 160) =- 2?? + 160??,??∴对称轴为直线 ??= - 2??= 160,1∵??= - 2 <0,∴在 170 ≤ ??≤ 240范围内, w 随 x 的增大而减小,∴当 ??= 170时, w由最大值,最大值为 12750 元.【解析】 (1) 描点、连线即可得;(2)待定系数法求解可得;(3)由营业额 = 入住房间数量×房价得出函数解析式,再利用二次函数的性质求解可得.此题主要考查了二次函数的应用以及待定系数法求一次函数解析式以及二次函数最值问题,由营业额 = 入住房间数量×房价得出函数解析式及二次函数的性质是解题关键.16.【答案】解:如图,所以 ????△??????即为所求.【解析】作 AB 的垂直平分线交 AB 于点 O,再以 AB 的中点 O 为圆心, OA 长为半径画弧交AB 的垂直平分线于点 C,此时 ????= ????,进而可作出 ????△??????.本题考查了作图 - 复杂作图、等腰直角三角形,解决本题的关键是掌握线段垂直平分线的性质.22??-??222?? +???? +?? -2??????(??-??);17.??- 2??)÷??=??×??-??=??-??= ??-??(2)∵函数与 x 轴有两个交点,且与 y 轴交于正半轴,∴△>0且??- 1 > 0,即△=(-1) 2 - 4×2×(?? - 1) > 0且??> 1,解得: 1 < ??< 9.8【解析】 (1) 按照分式的乘除法化简即可求解;(2)由题意得:△>0且 ?? - 1 > 0 ,即可求解.本题考查的是分式的乘除法和抛物线与坐标轴的交点的内容,其中 (2) ,确定△>0和?? -1 > 0是解题的关键.18.【答案】解:(1)?? = (1 - 20% - 10% -310) ×100 = 40,1七年级的平均数 ??= 10 (99 + 80 + 99 + 86 + 99 + 96 + 90+ 100+89+82)=92;(2) 八年级学生掌握防溺水安全知识较好,理由:虽然七、八年级的平均分均为92 分,但八年级的中位数和众数均高于七年级.(3) 八年级的优秀人数有:10 ×(1 - 20% - 10%) = 7( 人 ) ,6+7则720 ×20= 468(人 ) ,答:参加此次竞赛活动成绩优秀(??≥ 90) 的学生人数是468 人.【解析】 (1)用整体1 减去其它所占的百分比即可求出a;根据平均数的计算公式即可求出 b;(2)根据八年级的中位数和众数均高于七年级于是得到八年级学生掌握防溺水安全知识较好;(3)利用样本估计总体思想求解可得.本题考查读扇形统计图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.19.【答案】解:(1)搅匀后从中摸出 1 个盒子有 3 种等可能结果,1所以摸出的盒子中是 A 型矩形纸片的概率为3;(2)画树状图如下:由树状图知共有 6 种等可能结果,其中2 次摸出的盒子的纸片能拼成一个新矩形的有4种结果,所以 2 次摸出的盒子的纸片能拼成一个新矩形的概率为4 = 2.6 3【解析】 (1) 直接利用概率公式计算可得;(2) 画树状图得出所有等可能结果,从中找打 2 次摸出的盒子的纸片能拼成一个新矩形的结果数,利用概率公式计算可得.此题考查了列表法或树状图法求概率.用到的知识点为:概率 = 所求情况数与总情况数之比.【答案】解:如图,过点 C 作 ????⊥????于点 H ,20.则 ????= ????,????= ????= 0.5 . 在 ????△??????中, ∠??????= 45°, ∴????= ????= ????,∴????= ????+ ????= ????+ 0.5 . ∵????⊥????, ????⊥????,∴∠ ??????= ∠ ??????= 90 °.由题意,易知 ∠??????= ∠??????,∴△?????? ∽△??????,????????1.6 2,∴????=即????+0.5=???? 5+????解之,得 ????= 17.5 ,∴????= 17.5 + 0.5 = 18(??) . ∴这棵古树的高 AB 为 18m .【解析】过点 C 作 ????⊥????于点 H ,则????= ????,????= ????= 0.5.解 ????△ ??????,得出 ????=????= ????,那么 ????= ????+ ????= ????+ 0.5.再证明 △?????? ∽△??????,根据相似三角形对应边成比例求出 ????= 17.5 ,进而求出 AB 即可.本题考查了解直角三角形的应用 - 仰角俯角问题,相似三角形的应用,解题的关键是正确的构造直角三角形并选择正确的边角关系解直角三角形,难度一般.21.【答案】 解: (1) 设每本宣传册 A 、 B 两种彩页各有x , y 张,??+ ??= 10{300??+ 200??= 2400,解得: {??= 4,??= 6答:每本宣传册 A 、 B 两种彩页各有 4和 6张;(2) 设最多能发给 a 位参观者,可得: 2.5 ×4??+ 1.5 ×6??+ 2400 ≤ 30900 ,解得: ??≤ 1500 ,答:最多能发给1500 位参观者.A Bx y22.【答案】(1)证明:∵????//????,????//????,∴四边形 BCED 是平行四边形,∴????= ????,∵??是△??????的边 AB 的中点,∴????= ????,∴????= ????;(2)解:当△??????满足△??????是直角三角形,∠ ??????= 90 °时,四边形 ADCE 是菱形;理由如下:由 (1) 得: ????//????, ????= ????,∴四边形 ADCE 是平行四边形,∵∠ ??????= 90 °, D 是△??????的边 AB 的中点,1∴????= 2 ????= ????,∴四边形 ADCE 是菱形.【解析】 (1) 证四边形 BCED 是平行四边形,得出 ????= ????,证????= ????,即可得出 ????= ????;(2) 证四边形 ADCE 是平行四边形,由直角三角形斜边上的中线性质得出1????= ????=2 ????,即可得出结论.本题考查了菱形的判定、平行四边形的判定与性质、直角三角形斜边上的中线性质等知识;熟练掌握菱形的判定和直角三角形斜边上的中线性质是解题的关键.23.【答案】????′??′??????′ ′2√5 17 2√3【解析】【模型介绍】解:理由:如图③ ,在直线l上另取任一点??,′连结????,′????,′??′,??′∵直线 l 是点 B, ??的′对称轴,点P,??在′ l 上,∴????= ????,′?? ′=???? ′,?? ′∴????+ ????= ????+ ????=′????.′在△????′中??,′∵????<′????+′??′,??′∴????+ ????< ????+ ?? ′,??即′????+ ????最小.故答案为: ????,′??′,??????′;′【模型应用】解: (1) 连接 DE 交 AC 于 F,如图④所示:则 ????+ ????有最小值;∵四边形 ABCD 是正方形,∴????= ????= 4 ,∠ ??????=90 °, ????= ????,∴????+ ????= ????+ ????= ????,∵??为 AB 的中点,∴????= ????= 2 ,2222= 2√5 ,∴????= √ ????+ ????= √4+ 2即 ????+ ????的最小值为 2√5 ;故答案为: 2 √5 ;(2) 把图⑤的半个侧面展开为矩形EFGH ,如图⑤ - 1所示:作点A关于EH的对称点 ??,′连接EH P,作 ????⊥ ????于D,则 ??′=??????,??′交??于?? ′=??????= 4, ????= ????= 3 ,蚂蚁到达蜂蜜的最短路程为????+ ??????+′????= ?? ′,??∵????= 14 ,--∴????= ????????= 14 - 3 = 11 ,∴?? ′=???? ′+????? ═,15又∵圆柱形玻璃杯底面周长为16,∴????= 8 ,2222,∴?? ′=??√ ?? ′+????? = √ 15 + 8= 17(????)故答案为:17;(3)∵在边长为 2 的菱形 ABCD 中,∠ ??????=60 °,∴????= ????= 2 ,∠ ??????= 30 °,∵将△??????沿射线 BD 的方向平移得到△?? ′ ??,′ ?? ′∴?? ′ =??????=′ 1 ,?? ′ ?? ′,//????∵四边形 ABCD 是菱形,∴????= ????= ????= 2 , ????//????,∴?? ′=???? ′,??∴?? ′+??? ′的??最小值 = ?? ′+??? ′的??最小值, ∵点 ??在′过点 A 且平行于BD 的定直线 l 上,∴作点 D 关于定直线 l 的对称点 E ,连接 CE 交定直线 l 于 ??,′如图 ⑥ 所示:则 CE 的长度即为 ??′+????′的??最小值, ∵∠ ?? ′=????∠??????= 30 °, ????= 2,1∴∠ ??????= 60 °, ????= ????= 2 ????= 1,∴????= 2, ∴????= ????,作 ????⊥????于 G ,则 ????= ????,∵∠ ??????= ∠ ??????+∠′??????= 90 °+ 30 °= 120 °,1∴∠ ??= ∠ ??????= 30 °, ∴????= 2 ????= 1 , ????= √3????= √3 ,∴????= 2????= 2 √3 . 故答案为: 2 √3 .【模型介绍】由轴对称的性质和三角形的三边关系即可得出答案;【模型应用】 (1) 连接 DE 交 AC 于 F ,则 ????+ ????有最小值,由正方形的性质得出 ????=????= 4 ,∠ ??????= 90 °, ????= ????,则 ????+ ????= ????+ ????= ????,由勾股定理求出 DE即可;(2) 由侧面展开图和轴对称的性质以及勾股定理即可得出答案;(3) 由菱形的性质得到 ????= 2 , ∠ ??????= 30 °,由平移的性质得到?? ′=??????=′ 2 ,?? ′ ?? ′,//????证四边形 ?? ′ ??是′平????行四边形, 得 ?? ′=???? ′,??得?? ′+??? ′的??最小值 = ?? ′+???? ′的??最小值,由平移的性质得到点 ??在′过点 A 且平行于 BD 的定直线 l 上,作点 D 关于定直线 l E CE 交定直线 l 于 ??,′则 CE的长度即为 ??′+????′的??最小值, 的对称点 ,连接求得 ????= ????,得到 ∠??= ∠??????= 30°,于是得到结论. 本题是四边形综合题目,考查了轴对称- 最短路线问题,正方形的性质,菱形的性质,矩形的判定和性质,勾股定理,平行四边形的判定与性质,含30°角的直角三角形的性质,圆柱的侧面展开图, 等腰三角形的判定与性质, 平移的性质等知识; 本题综合性强,正确作出图形是解题的关键.24.【答案】 解:,,,斜边????= 8,(1) ∵????△??????∠ ??????= 90° ∠ ??????= 30 °∴∠ ??????= 60 °, 1????= 4 ,,????=222 4 2= 4 32????= √ ????- ???? =√8√∠ ??????= ∠ ??????在 △??????和 △??????中, { ????= ????,∠ ??????= ∠ ?????? ∴△?????? ≌△??????(??????), ∴????= ????= 4 ,4∴??= 2 = 2(??),∴当 t 为 2s 时, OM 平分 ∠ ??????;(2) 过点 A 作 ????⊥ ????于 E ,过点 N 作 ????⊥????于 F ,如图 1 所示:∵∠ ??????= ∠ ??????= 60 °,∴????= ??????????60= 4°×√23= 2√3, ????= ???????????60= ° 2??×√3= √3??,2∵????= ????+ ????= 4 + ??,1 1 1 1∴??= ??△ ??????+ ??△ ??????= 2 ?????????+ 2 ?????????= 2 (4 + ??)×2 √3+ 2 (4 + ??)×√3??=√3 2√3??+ 4√3;??+ 32(3) 当 ∠ ??????= 45 °时,则 △??????为等腰直角三角形, ∴????= ????, ∵∠ ??????= 60 °, ∴∠ ??????= 30 °,1∴????= 2 ????= 2,∴????= ????- ????= 4 - 2= 2,∴????= 2+ ??,∴2 + ??= 2 √3,∴??= 2√3 - 2,√3 2√32+ 3√3(2 √3 -∴??= 2 ?? + 3 √3??+ 4 √3 = 2 (2√3- 2)2) + 4√3= 6√3+ 6;(4) 存在某一时刻 t ,使点 P 为线段 CD 的中点,理由如下:过点 N 作 ????⊥????于 Q ,如图 2 所示:∵??为线段 CD 的中点,1∴????= 2 ????= 2 √3,∵∠ ??????= 60 °,∴∠ ??????= 30 °, ????= ???????????60= 2??°×√23= √3??,1∴????= 2 ????= ??,∴????= ????- ????= 4 - ??,∵??=1 1?????????=(4 + ??)×√3??,△ ??????221 1 12 ??×2√3 + 2 (2 √3 + √3??)(4- ??)+ 2 ×??× √3??,11√3 + √3??)(4-11(4 + ??)×√3??,∴ ??×2√3 +(2 ??)+ ×??×√3??=2 2 222整理得: ?? = 8, ∴??= 2 √2, 即存在 ??=时,使点 P 为线段 CD 的中点. 2√2??【解析】 (1) 当 OM 平分 ∠??????时,即 ∠??????= ∠??????,由 ASA 证得 △??????≌△??????,得出 ????= ????= 4,即可得出结果;(2) 过点 A 作 ????⊥ ????于 E ,过点 N 作 ????⊥????于 F ,求出 ????= 2√3 ,,????=????= √3?? 4 + ??,由 ??= ??+ ??= 1 ?????????+ 1?????????,即可得出结果;2 2△ ?????? △ ??????(3) 当 ∠ ??????= 45 °时, △??????为等腰直角三角形,得出????= ????,求出 ????= 2+??,则2+ ??= 2√3 ,得出 ??= 2√3 - 2 ,代入 (2) 的 S 与 t 的函教关系式即可得出结果;(4) 过1点 N 作????⊥????于 Q ,求出 ????= 2 ????= 2 √3 ,????= √3??, ????= ??, ????= 4 -??,由??1?????????,??= ?? + ?? + ??1?????????+ 1(????+ ????)?= =2△ ?????? 2△ ?????? △ ?????? 梯形 ????????△ ?????? 21????+ 2 ?????????,代入即可得出结果.本题是四边形综合题,主要考查了角平分线的性质、全等三角形的判定与性质、勾股定理、等腰直角三角形的判定与性质、三角函数、三角形面积的计算、梯形面积的计算等知识;熟练掌握三角函数定义与三角形面积的计算是解题的关键.。

山东省青岛市2020年中考数学试卷(解析版)

山东省青岛市2020年中考数学试卷(解析版)

青岛市2020年中考数学试卷(考试时间:120分钟;满分:120分)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!本试题分第Ⅰ卷和第Ⅱ卷两部分,共有24道题.第Ⅰ卷1—8题为选择题,共24分;第Ⅱ卷9—14题为填空题,15题为作图题,16—24题为解答题,共96分.要求所有题目均在答题卡上作答,在本卷上作答无效.第(Ⅰ)卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.81-的相反数是( ). A .8 B .8- C .81 D .81- 【答案】C【解析】试题分析:利用知识点:性质符号相反,绝对值相等的两个数是互为相反数,知:81-是81 考点:相反数定义 2.下列四个图形中,是轴对称图形,但不是中心对称图形的是( ).【答案】A【解析】试题分析:利用知识点:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,知:选项A 是轴对称图形,但不是中心对称图形;选项B 和C,既是轴对称图形又是中心对称图形;选项D 是中心对称图形,但不是轴对称图形。

考点:轴对称图形和中心对称图形的定义3.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是( ).A 、众数是6吨B 、平均数是5吨C 、中位数是5吨D 、方差是34 【答案】C【解析】试题分析:用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2= [(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2].数据:3,4,5,6,6,6,中位数是5.5,故选C考点:方差;平均数;中位数;众数4.计算326)2(6m m -÷的结果为( ).A .m -B .1-C .43D .43- 【答案】D【解析】试题分析:()4386)2(666326-=-÷=-÷m m m m 考点:(1)、同底数幂的乘除法运算法则;(2)、积的乘方运算法则;(3)、幂的乘方运算5. 如图,若将△ABC 绕点O 逆时针旋转90°则顶点B 的对应点B 1的坐标为( )A.)2,4(-B.)4,2(-C. )2,4(-D.)4,2(-【答案】B【解析】试题分析:将△ABC 绕点O 逆时针旋转90°后,图形如下图所以B 1的坐标为)4,2(-考点:(1)、同底数幂的乘除法运算法则;(2)、积的乘方运算法则;(3)、幂的乘方运算6. 如图,AB 是⊙O 的直径,C ,D ,E 在⊙O 上,若∠AED =20°,则∠BCD 的度数为( )A 、100°B 、110°C 、115°D 、120°【答案】B【解析】试题分析:如下图,连接AD ,AD∵∠AED =20°∴∠ABD=∠AED =20°∵AB 是⊙O 的直径∴∠ADB =90°∴∠BAD =70°∴∠BCD=110°考点:圆的性质与计算 7. 如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AE ⊥BC ,垂足为E ,3=AB ,AC =2,BD =4,则AE 的长为( )A .23 B .23C .721D .7212 【答案】D【解析】试题分析:∵平行四边形ABCD ,AC =2,BD =4∴AO=1,BO=2 ∵3=AB∴△ABO 是直角三角形,∠BAO=90°∴BC=()7232222=+=+AC AB在直角△ABC 中 AE BC AC AB S ABC ⋅=⋅=∆2121 AE ⋅=⨯7212321 AE=7212 考点:平行四边形的性质,勾股定理,面积法求线段长度8. 一次函数)0(≠+=k b kx y 的图像经过点A (4,1--),B (2,2)两点,P 为反比例函数xkb y = 图像上的一个动点,O 为坐标原点,过P 作y 轴的垂线,垂足为C , 则△PCO 的面积为( )A 、2B 、4C 、8D 、不确定【答案】A【解析】试题分析:如下图,把点A (4,1--),B (2,2)代入)0(≠+=k b kx y 得22--=x y ,即k=-2,b=-2所以反比例函数表达式为xy 4= 设P (m ,n ),则nm 4=,即mn=4△PCO 的面积为21OCPC=21mn=2 考点: 一次函数、反比例函数图像与性质第Ⅱ卷二、填空题(本题满分18分,共有6道小题,每小题3分)9.近年来,国家重视精准扶贫,收效显著,据统计约65 000 000人脱贫。

山东省青岛市崂山区2020年中考数学一模试卷(含解析)

山东省青岛市崂山区2020年中考数学一模试卷(含解析)

山东省青岛市崂山区2020年中考数学一模试卷一、选择题1.的相反数是()A.﹣6 B.6 C.D.2.下列计算正确的是()A.4a2﹣2a2=2 B.3a+a=3a2C.4a6÷2a3=2a2D.﹣2a•a=﹣2a23.如图所示,点A,B,C在圆O上,若∠AOB=64°,则∠C的度数是()A.64°B.30°C.32°D.34°4.实数a,b在数轴上的位置如图所示,化简|a|+的结果是()A.﹣2a﹣b B.﹣b C.2a+b D.﹣2a+b5.若关于x的一元二次方程(a﹣1)x2﹣2x+2=0有实数根,则整数a的最大值为()A.﹣1 B.0 C.1 D.26.如图,在平面直角坐标系中,△OBC的顶点O(0,0),B(﹣6,0),且∠OCB=90°,OC=BC,则点C关于y轴对称的点的坐标是()A.(3,3)B.(﹣3,3)C.(﹣3,﹣3)D.(,)7.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC,垂足为D,点E是边BC的中点,AD=ED =4,则BC的长为()A.4B.4C.8 D.88.已知双曲线y=的图象如图所示,则函数y=ax2与y=ax+b的图象大致是()A.B.C.D.二、填空题(本题满分18分,共有6道小题,每小题3分)9.据最新研究发现,新型冠状病毒的平均直径为0.0000001米,用科学记数法表示0.0000001为.10.计算:=.11.如图是23名射击运动员的一次测试成绩的频数分布折线图,则射击成绩的中位数.12.某公司销售甲、乙两种球鞋,去年卖出12200双,今年甲种鞋卖出的量比去年增加6%,乙种球鞋卖出的数量比去年减少5%,两种球鞋的总销量增加了50双.求去年甲,乙两种球鞋各卖出多少双?若设去年甲种球鞋卖了x双,乙种球鞋卖了y双,则根据题意可列方程组为.13.如图,⊙O的半径为4,过圆外一点P画⊙O的两条切线PA和PB,A、B为切点,若∠P =60°,则阴影部分的面积是.(结果保留π)14.如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE 上的点G处,折痕为AF.若AD=2,则BF的长为.三、作图题(本题满分4分)15.请用直尺、圆规作图,不写作法,但要保留作图痕迹.如图,点A为⊙O上的一点,以点A顶点作圆内接正方形ABCD.四、解答题(本题共有9道题,满分74分)16.计算:(1)化简:;(2)解不等式组,并把解集表示在数轴上.17.垃圾分类是对垃圾传统收集处理方式的改变,是对垃圾进行有效处理的一种科学管理方法.为了增强同学们垃圾分类的意识,某班举行了专题活动,对200件垃圾进行分类整理,得到下列统计图表,请根据统计图表回答问题:(其中A:可回收垃圾;B:厨余垃圾;C:有害垃圾;D:其它垃圾).类别件数A70B bC cD48(1)a=;b=;(2)补全图中的条形统计图;(3)有害垃圾C在扇形统计图中所占的圆心角为多少?18.为了丰富校园文化生活,提高学生的综合素质,促进中学生全面发展,学校开展了多种社团活动.小明喜欢的社团有:合唱社团、足球社团、书法社团、科技社团(分别用字母A,B,C,D依次表示这四个社团),并把这四个字母分别写在四张完全相同的不透明的卡片的正面上,然后将这四张卡片背面朝上洗匀后放在桌面上.(1)小明从中随机抽取一张卡片是足球社团B的概率是.(2)小明先从中随机抽取一张卡片,记录下卡片上的字母后不放回,再从剩余的卡片中随机抽取一张卡片,记录下卡片上的字母.请你用列表法或画树状图法求出小明两次抽取的卡片中有一张是科技社团D的概率.19.小华为了测量楼房AB的高度,他从楼底的B处沿着斜坡向上行走20m,到达坡顶D处.已知斜坡的坡角为15°.小华的身高ED是1.6m,他站在坡顶看楼顶A处的仰角为45°,求楼房AB的高度.(计算结果精确到1m)(参考数据:sin15°=,cos15°=,tan15°=)20.某中学购买A、B品牌篮球分别花费了2400元、1950元,且购买A品牌篮球数量是购买B品牌篮球数量的2倍,购买一个B品牌篮球比购买一个A品牌篮球多花50元.(1)求购买一个A品牌、一个B品牌的篮球各需多少元?(2)该学校决定再次购进A、B两种品牌篮球共30个,恰逢百货商场对两种品牌篮球的售价进行调整,A品牌篮球售价比第一次购买时提高了10%,B品牌篮球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌篮球的总费用不超过3200元,那么该学校此次最多可购买多少个B品牌篮球?21.如图,平行四边形ABCD的对角线AC、BD交于点O,分别过点C、D作CF∥BD,DF∥AC,连接BF交AC于点E.(1)求证:△FCE≌△BOE;(2)当∠ADC=90°时,判断四边形OCFD的形状?并说明理由.22.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?23.问题提出:如何将一个长为17,宽为1的长方形经过剪一剪,拼一拼,形成一个正方形.(下列所有图中每个小方格的边长都为1,剪拼过程中材料均无剩余)问题探究:我们从长为5,宽为1的长方形入手.(1)如图①是一个长为5,宽为1的长方形.把这个长方形剪一剪、拼一拼后形成正方形,则正方形的面积应为,设正方形的边长为a,则a=.(2)我们可以把有些带根号的无理数的被开方数表示成两个正整数平方和的形式,比如==.类比此,可以将(1)中的a表示成a=.(3)=的几何意义可以理解为:以长度2和3为直角边的直角三角形的斜边长为;类比此,(2)中的a可以理解为以长度和为直角边的直角三角形斜边的长.(4)剪一剪:由(3)可画出如图②的分割线,把长方形分成A、B、C、D、E五部分.(5)拼一拼:把图②中五部分拼接得到如图③的正方形.问题解决:仿照上面的探究方法请把图④中长为17,宽为1的长方形剪一剪,在图⑤中画出拼成的正方形.(说明:图④的分割过程不作评分要求,只对图⑤中画出的最终结果评分)24.如图,Rt△ABC中,∠C=90°,BC=8cm,AC=6cm.点P从B出发沿BA向A运动,速度为每秒1cm,点E是点B以P为对称中心的对称点,点P运动的同时,点Q从A出发沿AC向C运动,速度为每秒2cm,当点Q到达顶点C时,P,Q同时停止运动,设P,Q两点运动时间为t秒.(1)当t为何值时,PQ∥BC?(2)设四边形PQCB的面积为y,求y关于t的函数关系式;(3)四边形PQCB面积能否是△ABC面积的?若能,求出此时t的值;若不能,请说明理由;(4)当t为何值时,△AEQ为等腰三角形?(直接写出结果)参考答案一、选择题(本题满分24分,共有8道小题,每小题3分)1.的相反数是()A.﹣6 B.6 C.D.【分析】根据相反数定义:只有符号不同的两个数叫做互为相反数进行解答即可.解:的相反数是﹣,故选:C.2.下列计算正确的是()A.4a2﹣2a2=2 B.3a+a=3a2C.4a6÷2a3=2a2D.﹣2a•a=﹣2a2【分析】根据整式的除法,合并同类项的方法,以及单项式乘单项式的方法逐一判断即可.解:∵4a2﹣2a2=2a2,∴选项A不正确;∵3a+a=4a,∴选项B不正确;∵4a6÷2a3=2a3,∴选项C不正确;∵﹣2a•a=﹣2a2,∴选项D正确.故选:D.3.如图所示,点A,B,C在圆O上,若∠AOB=64°,则∠C的度数是()A.64°B.30°C.32°D.34°【分析】利用圆周角定理即可解决问题.解:∵=,∴∠AOB=2∠ACB,∵∠AOB=64°,∴∠ACB=32°.故选:C.4.实数a,b在数轴上的位置如图所示,化简|a|+的结果是()A.﹣2a﹣b B.﹣b C.2a+b D.﹣2a+b【分析】根据二次根式的性质化简解答即可.解:由图可知:a<0<b,且|a|>|b|,∴,故选:A.5.若关于x的一元二次方程(a﹣1)x2﹣2x+2=0有实数根,则整数a的最大值为()A.﹣1 B.0 C.1 D.2【分析】由关于x的一元二次方程(a﹣1)x2﹣2x+2=0有实数根,则a﹣1≠0,且△≥0,即△=(﹣2)2﹣8(a﹣1)=12﹣8a≥0,解不等式得到a的取值范围,最后确定a 的最大整数值.解:∵关于x的一元二次方程(a﹣1)x2﹣2x+2=0有实数根,∴△=(﹣2)2﹣8(a﹣1)=12﹣8a≥0且a﹣1≠0,∴a≤且a≠1,∴整数a的最大值为0.故选:B.6.如图,在平面直角坐标系中,△OBC的顶点O(0,0),B(﹣6,0),且∠OCB=90°,OC=BC,则点C关于y轴对称的点的坐标是()A.(3,3)B.(﹣3,3)C.(﹣3,﹣3)D.(,)【分析】等腰直角三角形,直角顶点在斜边垂直平分线上,求出C点的坐标,再根据关于y轴对称的点的坐标之间的关系就可以得到.解:已知∠OCB=90°,OC=BC∴△OBC为等腰直角三角形,又因为顶点O(0,0),B(﹣6,0)过点C作CD⊥OB于点D,则OD=OC=3所以C点坐标为(﹣3,3),点C关于y轴对称的点的坐标是(3,3)故选:A.7.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC,垂足为D,点E是边BC的中点,AD=ED =4,则BC的长为()A.4B.4C.8 D.8【分析】根据AD⊥BC,AD=ED=4,利用勾股定理可以得到AE的长,然后根据∠BAC=90°,E是点BC的中点,可以得到BC=2AE,从而可以解答本题.解:∵AD⊥BC,AD=ED=4,∴AE==4,又∵∠BAC=90°,E是点BC的中点,∴BC=2AE=8,故选:D.8.已知双曲线y=的图象如图所示,则函数y=ax2与y=ax+b的图象大致是()A.B.C.D.【分析】由反比例函数的图象可知ab<0,分a>0与a<0两种情况讨论,分析选项可得答案.解:根据反比例函数的图象,ab<0,当a>0时,b<0,y=ax2开口向上,过原点,y=ax+b过一、三、四象限;此时,A选项符合,当a<0时,b>0,y=ax2开口向下,过原点,y=ax+b过一、二、四象限;此时,没有选项符合.故选:A.二、填空题(本题满分18分,共有6道小题,每小题3分)9.据最新研究发现,新型冠状病毒的平均直径为0.0000001米,用科学记数法表示0.0000001为1×10﹣7.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,n为由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.0000001=1×10﹣7,故答案为:1×10﹣7.10.计算:=8 .【分析】直接利用二次根式的性质以及零指数幂的性质、负整数指数幂的性质分别化简得出答案.解:原式=6﹣1+3=8.故答案为:8.11.如图是23名射击运动员的一次测试成绩的频数分布折线图,则射击成绩的中位数9 .【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,据此可得.解:∵共有23个数据,∴射击成绩的中位数是第12个数据,即中位数为9,故答案为:9.12.某公司销售甲、乙两种球鞋,去年卖出12200双,今年甲种鞋卖出的量比去年增加6%,乙种球鞋卖出的数量比去年减少5%,两种球鞋的总销量增加了50双.求去年甲,乙两种球鞋各卖出多少双?若设去年甲种球鞋卖了x双,乙种球鞋卖了y双,则根据题意可列方程组为.【分析】设去年甲种球鞋卖了x双,乙种球鞋卖了y双,根据条件“去年卖出12200双,今年甲种鞋卖出的量比去年去年增加6%,乙种球鞋卖出的数量比去年减少5%,两种球鞋的总销量增加了50双”建立方程组即可.解:设去年甲种球鞋卖了x双,乙种球鞋卖了y双,则根据题意可列方程组为.故答案为:.13.如图,⊙O的半径为4,过圆外一点P画⊙O的两条切线PA和PB,A、B为切点,若∠P =60°,则阴影部分的面积是16﹣π.(结果保留π)【分析】连接OP,根据切线的性质得到∠OAP=90°,根据正切的定义求出AP,根据扇形面积公式、三角形面积公式计算,得到答案.解:连接OP,∵PA和PB是⊙O的两条切线,∴PA=PB,∠OAP=90°,∠OPA=∠APB=30°,∴∠AOP=60°,AP==4,∴阴影部分的面积=(×4×4﹣)×2=16﹣π,故答案为:16﹣π.14.如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE 上的点G处,折痕为AF.若AD=2,则BF的长为﹣1 .【分析】设BF=x,则FG=x,CF=2﹣x,在Rt△GEF中,利用勾股定理可得EF2=(﹣2)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(2﹣x)2+12,从而得到关于x方程,求解x即可.解:设BF=x,则FG=x,CF=2﹣x.在Rt△ADE中,利用勾股定理可得AE=.根据折叠的性质可知AG=AB=2,所以GE=﹣2.在Rt△GEF中,利用勾股定理可得EF2=(﹣2)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(2﹣x)2+12,所以(﹣2)2+x2=(2﹣x)2+12,解得x=﹣1,∴BF=﹣1,故答案为:﹣1.三、作图题(本题满分4分)15.请用直尺、圆规作图,不写作法,但要保留作图痕迹.如图,点A为⊙O上的一点,以点A顶点作圆内接正方形ABCD.【分析】先作直径AC,再过O点作AC的垂线交⊙O于C、D,则四边形ABCD为正方形.解:如图,正方形ABCD为所作.四、解答题(本题共有9道题,满分74分)16.计算:(1)化简:;(2)解不等式组,并把解集表示在数轴上.【分析】(1)根据分式的减法和乘法可以解答本题;(2)根据解一元一次不等式组的方法可以求得该不等式组的解集,并在数轴上表示出来.解:(1)===;(2),由不等式①,得x≥﹣1,由不等式②,得x<3,故原不等式组的解集是﹣1≤x<8,在数轴上表示如下图所示.17.垃圾分类是对垃圾传统收集处理方式的改变,是对垃圾进行有效处理的一种科学管理方法.为了增强同学们垃圾分类的意识,某班举行了专题活动,对200件垃圾进行分类整理,得到下列统计图表,请根据统计图表回答问题:(其中A:可回收垃圾;B:厨余垃圾;C:有害垃圾;D:其它垃圾).类别件数A70B bC cD48(1)a=35 ;b=62 ;(2)补全图中的条形统计图;(3)有害垃圾C在扇形统计图中所占的圆心角为多少?【分析】(1)从两个统计图可得,“B组”的有62人,占调查人数的31%,可求出调查人数b;再求出A组70占全班人数的百分比,即可得出a的值,(2)求出“C组”人数,即可补全条形统计图:(3)样本中,“C组”占,因此圆心角占360°的,可求出度数;解:(1)62÷31%=200,70÷200=35%,故答案为:35,62;(2)200﹣70﹣62﹣48=20,补全条形统计图如图所示:(3)360°×=36°,答:有害垃圾C在扇形统计图中所占的圆心角为36°.18.为了丰富校园文化生活,提高学生的综合素质,促进中学生全面发展,学校开展了多种社团活动.小明喜欢的社团有:合唱社团、足球社团、书法社团、科技社团(分别用字母A,B,C,D依次表示这四个社团),并把这四个字母分别写在四张完全相同的不透明的卡片的正面上,然后将这四张卡片背面朝上洗匀后放在桌面上.(1)小明从中随机抽取一张卡片是足球社团B的概率是.(2)小明先从中随机抽取一张卡片,记录下卡片上的字母后不放回,再从剩余的卡片中随机抽取一张卡片,记录下卡片上的字母.请你用列表法或画树状图法求出小明两次抽取的卡片中有一张是科技社团D的概率.【分析】(1)直接根据概率公式求解;(2)利用列表法展示所有12种等可能性结果,再找出小明两次抽取的卡片中有一张是科技社团D的结果数,然后根据概率公式求解.解:(1)小明从中随机抽取一张卡片是足球社团B的概率=;(2)列表如下:A B C DA(B,A)(C,A)(D,A)B(A,B)(C,B)(D,B)C(A,C)(B,C)(D,C)D(A,D)(B,D)(C,D)由表可知共有12种等可能结果,小明两次抽取的卡片中有一张是科技社团D的结果数为6种,所以小明两次抽取的卡片中有一张是科技社团D的概率为=.19.小华为了测量楼房AB的高度,他从楼底的B处沿着斜坡向上行走20m,到达坡顶D处.已知斜坡的坡角为15°.小华的身高ED是1.6m,他站在坡顶看楼顶A处的仰角为45°,求楼房AB的高度.(计算结果精确到1m)(参考数据:sin15°=,cos15°=,tan15°=)【分析】作DH⊥AB于H,根据余弦的定义求出BC,根据正弦的定义求出CD,结合题意计算即可.解:作DH⊥AB于H,∵∠DBC=15°,BD=20,∴BC=BD•cos∠DBC=20×=19.2,CD=BD•sin∠DBC=20×=5,由题意得,四边形ECBF和四边形CDHB是矩形,∴EF=BC=19.2,BH=CD=5,∵∠AEF=45°,∴AF=EF=19.2,∴AB=AF+FH+HB=19.2+1.6+5=25.8≈26m,答:楼房AB的高度约为26m.20.某中学购买A、B品牌篮球分别花费了2400元、1950元,且购买A品牌篮球数量是购买B品牌篮球数量的2倍,购买一个B品牌篮球比购买一个A品牌篮球多花50元.(1)求购买一个A品牌、一个B品牌的篮球各需多少元?(2)该学校决定再次购进A、B两种品牌篮球共30个,恰逢百货商场对两种品牌篮球的售价进行调整,A品牌篮球售价比第一次购买时提高了10%,B品牌篮球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌篮球的总费用不超过3200元,那么该学校此次最多可购买多少个B品牌篮球?【分析】(1)设购买一个A品牌的篮球需x元,则购买一个B品牌的篮球需(x+50)元,根据购买A品牌足球数量是购买B品牌足球数量的2倍列出方程解答即可;(2)设此次可购买a个B品牌篮球,则购进A品牌篮球(30﹣a)个,根据购买A、B两种品牌篮球的总费用不超过3200元,列出不等式解决问题.解:(1)设购买一个A品牌的篮球需x元,则购买一个B品牌的篮球需(x+50)元,由题意得=×2,解得:x=80,经检验x=80是原方程的解,x+50=130.答:购买一个A品牌的篮球需80元,购买一个B品牌的篮球需130元.(2)设此次可购买a个B品牌篮球,则购进A品牌篮球(30﹣a)个,由题意得80×(1+10%)(30﹣a)+130×0.9a≤3200,解得a≤19,∵a是整数,∴a最大等于19,答:该学校此次最多可购买19个B品牌蓝球.21.如图,平行四边形ABCD的对角线AC、BD交于点O,分别过点C、D作CF∥BD,DF∥AC,连接BF交AC于点E.(1)求证:△FCE≌△BOE;(2)当∠ADC=90°时,判断四边形OCFD的形状?并说明理由.【分析】(1)证明四边形OCFD是平行四边形,得出OD=CF,证出OB=CF,即可得出△FCE≌△BOE(AAS);(2)证出四边形ABCD是矩形,由矩形的性质得出OC=OD,即可得出四边形OCFD为菱形.【解答】证明:(1)∵CF∥BD,DF∥AC,∴四边形OCFD是平行四边形,∠OBE=∠CFE,∴OD=CF,∵四边形ABCD是平行四边形,∴OB=OD,∴OB=CF,在△FCE和△BOE中,,∴△FCE≌△BOE(AAS);(2)当△ADC满足∠ADC=90°时,四边形OCFD为菱形;理由如下:∵∠ADC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∴OC=OD,∴四边形OCFD为菱形.22.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?【分析】(1)根据题意易求y与x之间的函数表达式.(2)已知函数解析式,设y=4800可从实际得x的值.(3)利用x=﹣求出x的值,然后可求出y的最大值.解:(1)根据题意,得y=(2400﹣2000﹣x)(8+4×),即y=﹣x2+24x+3200;(2)由题意,得﹣x2+24x+3200=4800.整理,得x2﹣300x+20000=0.解这个方程,得x1=100,x2=200.要使百姓得到实惠,取x=200元.∴每台冰箱应降价200元;(3)对于y=﹣x2+24x+3200=﹣(x﹣150)2+5000,当x=150时,y最大值=5000(元).所以,每台冰箱的售价降价150元时,商场的利润最大,最大利润是5000元.23.问题提出:如何将一个长为17,宽为1的长方形经过剪一剪,拼一拼,形成一个正方形.(下列所有图中每个小方格的边长都为1,剪拼过程中材料均无剩余)问题探究:我们从长为5,宽为1的长方形入手.(1)如图①是一个长为5,宽为1的长方形.把这个长方形剪一剪、拼一拼后形成正方形,则正方形的面积应为 5 ,设正方形的边长为a,则a=.(2)我们可以把有些带根号的无理数的被开方数表示成两个正整数平方和的形式,比如==.类比此,可以将(1)中的a表示成a=.(3)=的几何意义可以理解为:以长度2和3为直角边的直角三角形的斜边长为;类比此,(2)中的a可以理解为以长度 1 和 2 为直角边的直角三角形斜边的长.(4)剪一剪:由(3)可画出如图②的分割线,把长方形分成A、B、C、D、E五部分.(5)拼一拼:把图②中五部分拼接得到如图③的正方形.问题解决:仿照上面的探究方法请把图④中长为17,宽为1的长方形剪一剪,在图⑤中画出拼成的正方形.(说明:图④的分割过程不作评分要求,只对图⑤中画出的最终结果评分)【分析】问题探究:(1)根据长方形的面积即可得到正方形的面积以及边长;(2)根据5=1+4,即可得到结论;(3)根据=,即可得到结论;问题解决:将长为17,宽为1的长方形分割成7部分,即可把7部分拼接得到边长为的正方形.解:问题探究:(1)正方形的面积应为1×5=5,∵a2=5,a>0,∴a=,故答案为:5,;(2)=,故答案为:;(3)∵=,∴可以理解为以长度为1和2为直角边的直角三角形的斜边的长,故答案为:1,2;问题解决:如图④,将长为17,宽为1的长方形分割成7部分,把图④中7部分拼接得到如图⑤的边长为的正方形.24.如图,Rt△ABC中,∠C=90°,BC=8cm,AC=6cm.点P从B出发沿BA向A运动,速度为每秒1cm,点E是点B以P为对称中心的对称点,点P运动的同时,点Q从A出发沿AC向C运动,速度为每秒2cm,当点Q到达顶点C时,P,Q同时停止运动,设P,Q两点运动时间为t秒.(1)当t为何值时,PQ∥BC?(2)设四边形PQCB的面积为y,求y关于t的函数关系式;(3)四边形PQCB面积能否是△ABC面积的?若能,求出此时t的值;若不能,请说明理由;(4)当t为何值时,△AEQ为等腰三角形?(直接写出结果)【分析】(1)先在Rt△ABC中,由勾股定理求出AB=10,再由BP=t,AQ=2t,得出AP =10﹣t,然后由PQ∥BC,根据平行线分线段成比例定理得出=,列出比例式=,求解即可;(2)根据S四边形PQCB=S△ACB﹣S△APQ=AC•BC﹣AP•AQ•sin A,即可得出y关于t的函数关系式;(3)根据四边形PQCB面积是△ABC面积的,列出方程t2﹣8t+24=×24,解方程即可;(4)△AEQ为等腰三角形时,分三种情况讨论:①AE=AQ;②EA=EQ;③QA=QE,每一种情况都可以列出关于t的方程,解方程即可.解:(1)Rt△ABC中,∵∠C=90°,BC=8cm,AC=6cm,∴AB=10cm.∵BP=t,AQ=2t,∴AP=AB﹣BP=10﹣t.∵PQ∥BC,∴=,∴=,解得t=;(2)∵S四边形PQCB=S△ACB﹣S△APQ=AC•BC﹣AP•AQ•sin A∴y=×6×8﹣×(10﹣t)•2t•=24﹣t(10﹣t)=t2﹣8t+24,即y关于t的函数关系式为y=t2﹣8t+24;(3)四边形PQCB面积能是△ABC面积的,理由如下:由题意,得t2﹣8t+24=×24,整理,得t2﹣10t+12=0,解得t1=5﹣,t2=5+(不合题意舍去).故四边形PQCB面积能是△ABC面积的,此时t的值为5﹣;(4)△AEQ为等腰三角形时,分三种情况讨论:①如果AE=AQ,那么10﹣2t=2t,解得t=;②如果EA=EQ,那么(10﹣2t)×=t,解得t=;③如果QA=QE,那么2t×=5﹣t,解得t=.故当t为秒秒秒时,△AEQ为等腰三角形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列各式计算正确的是( )A.633-=B.1236⨯=C.3535+=D.1025÷=【答案】B【解析】A选项中,∵63、不是同类二次根式,不能合并,∴本选项错误;B选项中,∵123=36=6⨯,∴本选项正确;C选项中,∵35=35⨯,而不是等于3+5,∴本选项错误;D选项中,∵10102=5÷≠,∴本选项错误;故选B.2.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用的时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示,下列说法错误的是()A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟70米C.小明在上述过程中所走的路程为6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度【答案】C【解析】根据图像,结合行程问题的数量关系逐项分析可得出答案.【详解】从图象来看,小明在第40分钟时开始休息,第60分钟时结束休息,故休息用了20分钟,A正确;小明休息前爬山的平均速度为:28007040=(米/分),B正确;小明在上述过程中所走的路程为3800米,C错误;小明休息前爬山的平均速度为:70米/分,大于休息后爬山的平均速度:380028002510060-=-米/分,D正确.故选C.考点:函数的图象、行程问题.3.把不等式组24030xx-≥⎧⎨->⎩的解集表示在数轴上,正确的是()A .B .C .D .【答案】A【解析】分别求出各个不等式的解集,再求出这些解集的公共部分并在数轴上表示出来即可.【详解】2x40 30x-≥⎧⎨-⎩①>②由①,得x≥2,由②,得x<1,所以不等式组的解集是:2≤x<1.不等式组的解集在数轴上表示为:.故选A.【点睛】本题考查的是解一元一次不等式组.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABCC.AB2=AD•AC D.AD AB AB BC=【答案】D【解析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.【详解】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴AC ABAB AD=,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、ADAB=ABBC不能判定△ADB∽△ABC,故此选项符合题意.故选D.【点睛】点评:本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似.5.如图,甲圆柱型容器的底面积为30cm2,高为8cm,乙圆柱型容器底面积为xcm2,若将甲容器装满水,然后再将甲容器里的水全部倒入乙容器中(乙容器无水溢出),则乙容器水面高度y(cm)与x(cm2)之间的大致图象是()A.B.C.D.【答案】C【解析】根据题意可以写出y关于x的函数关系式,然后令x=40求出相应的y值,即可解答本题.【详解】解:由题意可得,y=308x⨯=240x,当x=40时,y=6,故选C.【点睛】本题考查了反比例函数的图象,根据题意列出函数解析式是解决此题的关键.6.如图分别是某班全体学生上学时乘车、步行、骑车人数的分布直方图和扇形统计图(两图都不完整),下列结论错误的是( )A.该班总人数为50 B.步行人数为30C.乘车人数是骑车人数的2.5倍D.骑车人数占20%【答案】B【解析】根据乘车人数是25人,而乘车人数所占的比例是50%,即可求得总人数,然后根据百分比的含义即可求得步行的人数,以及骑车人数所占的比例.【详解】A 、总人数是:25÷50%=50(人),故A 正确;B 、步行的人数是:50×30%=15(人),故B 错误;C 、乘车人数是骑车人数倍数是:50%÷20%=2.5,故C 正确;D 、骑车人数所占的比例是:1-50%-30%=20%,故D 正确.由于该题选择错误的,故选B .【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.7.二次函数y=ax 2+bx+c 的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b 与反比例函数y=c x在同一平面直角坐标系中的图象可能是( )A .B .C .D .【答案】C【解析】试题分析:∵二次函数图象开口方向向下,∴a <0,∵对称轴为直线2b x a=->0,∴b >0,∵与y 轴的正半轴相交,∴c >0,∴y ax b =+的图象经过第一、二、四象限,反比例函数c y x=图象在第一三象限,只有C 选项图象符合.故选C .考点:1.二次函数的图象;2.一次函数的图象;3.反比例函数的图象.8.将一副三角板按如图方式摆放,∠1与∠2不一定互补的是( )A.B. C. D.【答案】D【解析】A选项:∠1+∠2=360°-90°×2=180°;B选项:∵∠2+∠3=90°,∠3+∠4=90°,∴∠2=∠4,∵∠1+∠4=180°,∴∠1+∠2=180°;C选项:∵∠ABC=∠DEC=90°,∴AB∥DE,∴∠2=∠EFC,∵∠1+∠EFC=180°,∴∠1+∠2=180°;D选项:∠1和∠2不一定互补.故选D.点睛:本题主要掌握平行线的性质与判定定理,关键在于通过角度之间的转化得出∠1和∠2的互补关系. 9.如图,点O为平面直角坐标系的原点,点A在x轴上,△OAB是边长为4的等边三角形,以O为旋转中心,将△OAB按顺时针方向旋转60°,得到△OA′B′,那么点A′的坐标为()A .(2,23)B .(﹣2,4)C .(﹣2,22)D .(﹣2,23)【答案】D 【解析】分析:作BC ⊥x 轴于C ,如图,根据等边三角形的性质得4,2,60OA OB AC OC BOA ====∠=,则易得A 点坐标和O 点坐标,再利用勾股定理计算出224223BC =-=,然后根据第二象限点的坐标特征可写出B 点坐标;由旋转的性质得60,AOA BOB OA OB OA OB ∠'=∠'==='=',则点A′与点B 重合,于是可得点A′的坐标.详解:作BC ⊥x 轴于C ,如图,∵△OAB 是边长为4的等边三角形∴4,2,60OA OB AC OC BOA ====∠=,∴A 点坐标为(−4,0),O 点坐标为(0,0),在Rt △BOC 中,224223BC =-=,∴B 点坐标为(2,23)-;∵△OAB 按顺时针方向旋转60,得到△OA′B′,∴60,AOA BOB OA OB OA OB ∠'=∠'==='=',∴点A′与点B 重合,即点A′的坐标为(2,3)-,故选D.点睛:考查图形的旋转,等边三角形的性质.求解时,注意等边三角形三线合一的性质.10.为确保信息安全,信息需加密传输,发送方将明文加密后传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a ,b 对应的密文为a +2b ,2a -b ,例如:明文1,2对应的密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是( )A .3,-1B .1,-3C .-3,1D .-1,3【答案】A【解析】根据题意可得方程组2127a b a b +=⎧⎨-=⎩,再解方程组即可. 【详解】由题意得:2127a b a b +=⎧⎨-=⎩, 解得:31a b =⎧⎨=-⎩, 故选A .二、填空题(本题包括8个小题)11.不等式组20262x x ->⎧⎨->⎩①②的解是________. 【答案】x >4【解析】分别解出不等式组中的每一个不等式,然后根据同大取大得出不等式组的解集.【详解】由①得:x >2;由②得 :x >4;∴此不等式组的解集为x >4;故答案为x >4.【点睛】考查了解一元一次不等式组,一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.12.如图,在平面直角坐标系xOy 中,点A 的坐标为A(1,0),等腰直角三角形ABC 的边AB 在x 轴的正半轴上,∠ABC=90°,点B 在点A 的右侧,点C 在第一象限。

将△ABC 绕点A 逆时针旋转75°,如果点C 的对应点E 恰好落在y 轴的正半轴上,那么边AB 的长为____.2【解析】依据旋转的性质,即可得到60OAE ∠=︒,再根据1OA =,90EOA ∠=︒,即可得出2AE =,2AC =.最后在Rt ABC ∆中,可得到2AB BC ==【详解】依题可知,45BAC ∠=︒,75CAE ∠=︒,AC AE =,∴60OAE ∠=︒,在Rt AOE ∆中,1OA =,90EOA ∠=︒,60OAE ∠=︒,2AE ∴=,2AC ∴=.∴在Rt ABC ∆中,2AB BC ==.故答案为:2.【点睛】本题考查了坐标与图形变化,等腰直角三角形的性质以及含30°角的直角三角形的综合运用,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.13.如图,在△ABC 中,点E ,F 分别是AC ,BC 的中点,若S 四边形ABFE =9,则S 三角形EFC =________.【答案】3【解析】分析:由已知条件易得:EF ∥AB ,且EF :AB=1:2,从而可得△CEF ∽△CAB ,且相似比为1:2,设S △CEF =x ,根据相似三角形的性质可得方程:194x x =+,解此方程即可求得△EFC 的面积. 详解:∵在△ABC 中,点E ,F 分别是AC ,BC 的中点,∴EF 是△ABC 的中位线,∴EF ∥AB ,EF :AB=1:2, ∴△CEF ∽△CAB ,∴S △CEF :S △CAB =1:4,设S △CEF =x ,∵S △CAB =S △CEF +S 四边形ABFE ,S 四边形ABFE =9,∴194x x =+, 解得:3x =,经检验:3x =是所列方程的解.故答案为:3.点睛:熟悉三角形的中位线定理和相似三角形的面积比等于相似比的平方是正确解答本题的关键. 14.如图,已知函数y =x+2的图象与函数y =k x (k≠0)的图象交于A 、B 两点,连接BO 并延长交函数y =k x(k≠0)的图象于点C ,连接AC ,若△ABC 的面积为1.则k 的值为_____.【答案】3【解析】连接OA.根据反比例函数的对称性可得OB=OC,那么S△OAB=S△OAC=12S△ABC=2.求出直线y=x+2与y轴交点D的坐标.设A(a,a+2),B(b,b+2),则C(-b,-b-2),根据S△OAB=2,得出a-b=2 ①.根据S△OAC=2,得出-a-b=2 ②,①与②联立,求出a、b的值,即可求解.【详解】如图,连接OA.由题意,可得OB=OC,∴S△OAB=S△OAC=12S△ABC=2.设直线y=x+2与y轴交于点D,则D(0,2),设A(a,a+2),B(b,b+2),则C(-b,-b-2),∴S△OAB=12×2×(a-b)=2,∴a-b=2 ①.过A点作AM⊥x轴于点M,过C点作CN⊥x轴于点N,则S△OAM=S△OCN=12 k,∴S△OAC=S△OAM+S梯形AMNC-S△OCN=S梯形AMNC=2,∴12(-b-2+a+2)(-b-a)=2,将①代入,得∴-a-b=2 ②,①+②,得-2b=6,b=-3,①-②,得2a=2,a=1,∴A(1,3),∴k=1×3=3.故答案为3.【点睛】本题考查了反比例函数与一次函数的交点问题,反比例函数的性质,反比例函数图象上点的坐标特征,三角形的面积,待定系数法求函数的解析式等知识,综合性较强,难度适中.根据反比例函数的对称性得出OB=OC是解题的突破口.15.如图,在△ABC中,AB=AC,以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD,若∠A=32°,则∠CDB的大小为_____度.【答案】1【解析】根据等腰三角形的性质以及三角形内角和定理在△ABC中可求得∠ACB=∠ABC=74°,根据等腰三角形的性质以及三角形外角的性质在△BCD中可求得∠CDB=∠CBD=12∠ACB=1°.【详解】∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°,又∵BC=DC,∴∠CDB=∠CBD=12∠ACB=1°,故答案为1.【点睛】本题主要考查等腰三角形的性质,三角形外角的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.16.已知图中的两个三角形全等,则∠1等于____________.【答案】58°【解析】如图,∠2=180°−50°−72°=58°,∵两个三角形全等,∴∠1=∠2=58°.故答案为58°.17.4的算术平方根为______. 【答案】2【解析】首先根据算术平方根的定义计算先4=2,再求2的算术平方根即可.【详解】∵4=2, ∴4的算术平方根为2.【点睛】本题考查了算术平方根,属于简单题,熟悉算数平方根的概念是解题关键.18.将三角形纸片(ABC ∆)按如图所示的方式折叠,使点B 落在边AC 上,记为点'B ,折痕为EF ,已知3AB AC ==,4BC =,若以点'B ,F ,C 为顶点的三角形与ABC ∆相似,则BF 的长度是______.【答案】127或2 【解析】由折叠性质可知B’F=BF ,△B’FC 与△ABC 相似,有两种情况,分别对两种情况进行讨论,设出B’F=BF=x ,列出比例式方程解方程即可得到结果.【详解】由折叠性质可知B’F=BF ,设B’F=BF=x ,故CF=4-x当△B’FC ∽△ABC ,有'B F CF AB BC =,得到方程434x x -=,解得x=127,故BF=127; 当△FB’C ∽△ABC ,有'B F FC AB AC =,得到方程433x x -=,解得x=2,故BF=2; 综上BF 的长度可以为127或2. 【点睛】本题主要考查相似三角形性质,解题关键在于能够对两个相似三角形进行分类讨论.三、解答题(本题包括8个小题)19.如图,已知△ABC 中,AB=BC=5,tan ∠ABC=34.求边AC 的长;设边BC 的垂直平分线与边AB 的交点为D ,求AD DB 的值.【答案】(1)AC=10;(2)35AD BD =. 【解析】(1)过A 作AE ⊥BC ,在直角三角形ABE 中,利用锐角三角函数定义求出AC 的长即可;(2)由DF 垂直平分BC ,求出BF 的长,利用锐角三角函数定义求出DF 的长,利用勾股定理求出BD 的长,进而求出AD 的长,即可求出所求.【详解】(1)如图,过点A 作AE ⊥BC ,在Rt △ABE 中,tan ∠ABC=34AE BE =,AB=5, ∴AE=3,BE=4,∴CE=BC ﹣BE=5﹣4=1,在Rt △AEC 中,根据勾股定理得:AC=2231+=10;(2)∵DF 垂直平分BC ,∴BD=CD ,BF=CF=52, ∵tan ∠DBF=34DF BF =, ∴DF=158, 在Rt △BFD 中,根据勾股定理得:BD=2251528⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭=258, ∴AD=5﹣258=158, 则35AD BD =.【点睛】本题考查了解直角三角形的应用,正确添加辅助线、根据边角关系熟练应用三角函数进行解答是解题的关键.20.鲜丰水果店计划用12元/盒的进价购进一款水果礼盒以备销售.()1据调查,当该种水果礼盒的售价为14元/盒时,月销量为980盒,每盒售价每增长1元,月销量就相应减少30盒,若使水果礼盒的月销量不低于800盒,每盒售价应不高于多少元?()2在实际销售时,由于天气和运输的原因,每盒水果礼盒的进价提高了25%,而每盒水果礼盒的售价比(1)中最高售价减少了1%5m ,月销量比(1)中最低月销量800盒增加了%m ,结果该月水果店销售该水果礼盒的利润达到了4000元,求m 的值. 【答案】(1)若使水果礼盒的月销量不低于800盒,每盒售价应不高于20元;(2)m 的值为25.【解析】(1)设每盒售价应为x 元,根据月销量=980-30×超出14元的部分结合月销量不低于800盒,即可得出关于x 的一元一次不等式,解之取其最大值即可得出结论;(2)根据总利润=每盒利润×销售数量,即可得出关于m 的一元二次方程,解之取其正值即可得出结论.【详解】解:()1设每盒售价x 元.依题意得:()9803014800x --≥解得:20x ≤答:若使水果礼盒的月销量不低于800盒,每盒售价应不高于20元()2依题意:()1201%12125%5m ⎡⎤⎛⎫--⨯+ ⎪⎢⎥⎝⎭⎣⎦()8001+m%4000⨯= 令:%m t =化简:240t t -=解得:10t =(舍)214t = 25m ∴=,答:m 的值为25.【点睛】考查一元二次方程的应用,一元一次不等式的应用,读懂题目,找出题目中的等量关系或不等关系是解题的关键.21.由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)【答案】(1)甲型号的产品有10万只,则乙型号的产品有10万只;(2)安排甲型号产品生产15万只,乙型号产品生产5万只,可获得最大利润91万元.【解析】(1)设甲型号的产品有x 万只,则乙型号的产品有(20﹣x )万只,根据销售收入为300万元可列方程18x+12(20﹣x )=300,解方程即可;(2)设安排甲型号产品生产y 万只,则乙型号产品生产(20﹣y )万只,根据公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元列出不等式,求出不等式的解集确定出y 的范围,再根据利润=售价﹣成本列出W 与y 的一次函数,根据y 的范围确定出W 的最大值即可.【详解】(1)设甲型号的产品有x 万只,则乙型号的产品有(20﹣x )万只,根据题意得:18x+12(20﹣x )=300,解得:x=10,则20﹣x=20﹣10=10,则甲、乙两种型号的产品分别为10万只,10万只;(2)设安排甲型号产品生产y 万只,则乙型号产品生产(20﹣y )万只,根据题意得:13y+8.8(20﹣y )≤239,解得:y≤15,根据题意得:利润W=(18﹣12﹣1)y+(12﹣8﹣0.8)(20﹣y )=1.8y+64,当y=15时,W 最大,最大值为91万元.所以安排甲型号产品生产15万只,乙型号产品生产5万只时,可获得最大利润为91万元.考点:一元一次方程的应用;一元一次不等式的应用;一次函数的应用.22.如图,AB ∥CD ,以点A 为圆心,小于AC 长为半径作圆弧,分别交AB ,AC 于E ,F 两点,再分别以E ,F 为圆心,大于12EF 长为半径作圆弧,两条圆弧交于点P ,连接AP ,交CD 于点M ,若∠ACD=110°,求∠CMA 的度数______.【答案】∠CMA =35°.【解析】根据两直线平行,同旁内角互补得出70CAB ∠=︒,再根据AM 是CAB ∠的平分线,即可得出MAB ∠的度数,再由两直线平行,内错角相等即可得出结论.【详解】∵AB ∥CD ,∴∠ACD+∠CAB=180°.又∵∠ACD=110°,∴∠CAB=70°,由作法知,AM 是CAB ∠的平分线,∴1352MAB CAB ∠=∠=︒. 又∵AB ∥CD ,∴∠CMA=∠BAM=35°.【点睛】本题考查了角平分线的作法和意义,平行线的性质等知识解决问题.解题时注意:两直线平行,内错角相等.23.某市扶贫办在精准扶贫工作中,组织30辆汽车装运花椒、核桃、甘蓝向外地销售.按计划30辆车都要装运,每辆汽车只能装运同一种产品,且必须装满,根据下表提供的信息,解答以下问题:若装运核桃的汽车为x 辆,装运甘蓝的车辆数是装运核桃车辆数的2倍多1,假设30辆车装运的三种产品的总利润为y 万元.求y 与x 之间的函数关系式;若装花椒的汽车不超过8辆,求总利润最大时,装运各种产品的车辆数及总利润最大值.【答案】 (1)y=﹣3.4x+141.1;(1)当装运核桃的汽车为2辆、装运甘蓝的汽车为12辆、装运花椒的汽车为1辆时,总利润最大,最大利润为117.4万元.【解析】(1)根据题意可以得装运甘蓝的汽车为(1x+1)辆,装运花椒的汽车为30﹣x ﹣(1x+1)=(12﹣3x )辆,从而可以得到y 与x 的函数关系式;(1)根据装花椒的汽车不超过8辆,可以求得x 的取值范围,从而可以得到y 的最大值,从而可以得到总利润最大时,装运各种产品的车辆数.【详解】(1)若装运核桃的汽车为x 辆,则装运甘蓝的汽车为(1x+1)辆,装运花椒的汽车为30﹣x ﹣(1x+1)=(12﹣3x )辆,根据题意得:y=10×0.7x+4×0.5(1x+1)+6×0.8(12﹣3x )=﹣3.4x+141.1.(1)根据题意得:()29382130x x x -≤⎧⎨++≤⎩, 解得:7≤x≤293, ∵x 为整数,∴7≤x≤2.∵10.6>0,∴y 随x 增大而减小,∴当x=7时,y 取最大值,最大值=﹣3.4×7+141.1=117.4,此时:1x+1=12,12﹣3x=1.答:当装运核桃的汽车为2辆、装运甘蓝的汽车为12辆、装运花椒的汽车为1辆时,总利润最大,最大利润为117.4万元.【点睛】本题考查了一次函数的应用,解题的关键是熟练的掌握一次函数的应用.24.如图,∠A=∠B ,AE=BE ,点D 在AC 边上,∠1=∠2,AE 和BD 相交于点O .求证:△AEC ≌△BED ;若∠1=40°,求∠BDE 的度数.【答案】(1)见解析;(1)70°.【解析】(1)根据全等三角形的判定即可判断△AEC ≌△BED ;(1)由(1)可知:EC=ED ,∠C=∠BDE ,根据等腰三角形的性质即可知∠C 的度数,从而可求出∠BDE 的度数.【详解】证明:(1)∵AE 和BD 相交于点O ,∴∠AOD=∠BOE .在△AOD 和△BOE 中,∠A=∠B ,∴∠BEO=∠1.又∵∠1=∠1,∴∠1=∠BEO ,∴∠AEC=∠BED .在△AEC 和△BED 中,A B AE BEAEC BED ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AEC ≌△BED (ASA ).(1)∵△AEC ≌△BED ,∴EC=ED ,∠C=∠BDE .在△EDC 中,∵EC=ED ,∠1=40°,∴∠C=∠EDC=70°,∴∠BDE=∠C=70°.【点睛】本题考查了全等三角形的判定与性质,解题的关键是熟练的掌握全等三角形的判定与性质.25.如图是一副扑克牌中的三张牌,将它们正面向下洗均匀,甲同学从中随机抽取一张牌后放回,乙同学再从中随机抽取一张牌,用树状图(或列表)的方法,求抽出的两张牌中,牌面上的数字都是偶数的概率.【答案】13 【解析】画树状图展示所有9种等可能的结果数,再找出两次抽取的牌上的数字都是偶数的结果数,然后根据概率公式求解.【详解】画树状图为:共有9种等可能的结果数,其中两次抽取的牌上的数字都是偶数的结果数为2,所以两次抽取的牌上的数字都是偶数的概率=26=13. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求事件A 或B 的概率.26.如图,二次函数y =12x 2+bx+c 的图象交x 轴于A 、D 两点,并经过B 点,已知A 点坐标是(2,0),B 点坐标是(8,6).求二次函数的解析式;求函数图象的顶点坐标及D 点的坐标;二次函数的对称轴上是否存在一点C ,使得△CBD 的周长最小?若C 点存在,求出C 点的坐标;若C 点不存在,请说明理由.【答案】(1)y=12x 1﹣4x+6;(1)D 点的坐标为(6,0);(3)存在.当点C 的坐标为(4,1)时,△CBD 的周长最小 【解析】(1)只需运用待定系数法就可求出二次函数的解析式;(1)只需运用配方法就可求出抛物线的顶点坐标,只需令y=0就可求出点D 的坐标;(3)连接CA ,由于BD 是定值,使得△CBD 的周长最小,只需CD+CB 最小,根据抛物线是轴对称图形可得CA=CD ,只需CA+CB 最小,根据“两点之间,线段最短”可得:当点A 、C 、B 三点共线时,CA+CB 最小,只需用待定系数法求出直线AB 的解析式,就可得到点C 的坐标.【详解】(1)把A (1,0),B (8,6)代入212y x bx c =++,得14202164862b c b c ⎧⨯++=⎪⎪⎨⎪⨯++=⎪⎩ 解得:46b c =-⎧⎨=⎩∴二次函数的解析式为21462y x x =+﹣; (1)由2211464222y x x x =+=﹣(﹣)﹣,得 二次函数图象的顶点坐标为(4,﹣1).令y=0,得214602x x +=﹣, 解得:x 1=1,x 1=6,∴D 点的坐标为(6,0);(3)二次函数的对称轴上存在一点C ,使得CBD 的周长最小.连接CA ,如图,∵点C 在二次函数的对称轴x=4上,∴x C =4,CA=CD ,∴CBD 的周长=CD+CB+BD=CA+CB+BD ,根据“两点之间,线段最短”,可得当点A 、C 、B 三点共线时,CA+CB 最小,此时,由于BD 是定值,因此CBD 的周长最小.设直线AB 的解析式为y=mx+n ,把A (1,0)、B (8,6)代入y=mx+n ,得208m n m n +=⎧⎨+=⎩ 解得:12m n =⎧⎨=-⎩∴直线AB 的解析式为y=x ﹣1.当x=4时,y=4﹣1=1,∴当二次函数的对称轴上点C 的坐标为(4,1)时,CBD 的周长最小.【点睛】本题考查了(1)二次函数综合题;(1)待定系数法求一次函数解析式;(3)二次函数的性质;(4)待定系数法求二次函数解析式;(5)线段的性质:(6)两点之间线段最短.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.若正比例函数y=mx(m是常数,m≠0)的图象经过点A(m,4),且y的值随x值的增大而减小,则m等于()A.2 B.﹣2 C.4 D.﹣4【答案】B【解析】利用待定系数法求出m,再结合函数的性质即可解决问题.【详解】解:∵y=mx(m是常数,m≠0)的图象经过点A(m,4),∴m2=4,∴m=±2,∵y的值随x值的增大而减小,∴m<0,∴m=﹣2,故选:B.【点睛】本题考查待定系数法,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.2.如图,O为原点,点A的坐标为(3,0),点B的坐标为(0,4),⊙D过A、B、O三点,点C为AB 上一点(不与O、A两点重合),则cosC的值为()A.34B.35C.43D.45【答案】D【解析】如图,连接AB,由圆周角定理,得∠C=∠ABO ,在Rt △ABO 中,OA=3,OB=4,由勾股定理,得AB=5, ∴4cos cos 5OB C ABO AB =∠==. 故选D .3.在△ABC 中,∠C =90°,sinA =45,则tanB 等于( ) A .43 B .34C .35D .45【答案】B【解析】法一,依题意△ABC 为直角三角形,∴∠A+∠B=90°,∴cosB=45,∵22cos sin 1B B +=,∴sinB=35,∵tanB=sin cos B B =34故选B法2,依题意可设a=4,b=3,则c=5,∵tanb=34ba 故选B 4.抛物线y=ax 2﹣4ax+4a ﹣1与x 轴交于A ,B 两点,C (x 1,m )和D (x 2,n )也是抛物线上的点,且x 1<2<x 2,x 1+x 2<4,则下列判断正确的是( ) A .m <n B .m≤n C .m >n D .m≥n【答案】C【解析】分析:将一般式配方成顶点式,得出对称轴方程2x =,根据抛物线2441y ax ax a =-+-与x 轴交于,A B 两点,得出()()244410a a a =--⨯->,求得0a >,距离对称轴越远,函数的值越大,根据121224x x x x <<+<,,判断出它们与对称轴之间的关系即可判定.详解:∵()2244121y ax ax a a x =-+-=--, ∴此抛物线对称轴为2x =,∵抛物线2441y ax ax a =-+-与x 轴交于,A B 两点,∴当24410ax ax a -+-=时,()()244410a a a =--⨯->,得0a >, ∵121224x x x x <<+<,, ∴1222x x ,->- ∴m n >, 故选C .点睛:考查二次函数的图象以及性质,开口向上,距离对称轴越远的点,对应的函数值越大, 5.如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC ,则线段 AC 的长为( )A .3B .2C .6D .4【答案】B【解析】由已知条件可得ABC DAC ~,可得出AC BCDC AC=,可求出AC 的长. 【详解】解:由题意得:∠B=∠DAC ,∠ACB=∠ACD,所以ABC DAC ~,根据“相似三角形对应边成比例”,得AC BCDC AC=,又AD 是中线,BC=8,得DC=4,代入可得AC=2, 故选B. 【点睛】本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答. 6.-2的倒数是( ) A .-2 B .12-C .12D .2【答案】B【解析】根据倒数的定义求解. 【详解】-2的倒数是-12故选B 【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握7.如图,△ABC 是等边三角形,点P 是三角形内的任意一点,PD ∥AB ,PE ∥BC ,PF ∥AC ,若△ABC 的周长为12,则PD+PE+PF =( )A.12 B.8 C.4 D.3【答案】C【解析】过点P作平行四边形PGBD,EPHC,进而利用平行四边形的性质及等边三角形的性质即可.【详解】延长EP、FP分别交AB、BC于G、H,则由PD∥AB,PE∥BC,PF∥AC,可得,四边形PGBD,EPHC是平行四边形,∴PG=BD,PE=HC,又△ABC是等边三角形,又有PF∥AC,PD∥AB可得△PFG,△PDH是等边三角形,∴PF=PG=BD,PD=DH,又△ABC的周长为12,∴PD+PE+PF=DH+HC+BD=BC=13×12=4,故选C.【点睛】本题主要考查了平行四边形的判定及性质以及等边三角形的判定及性质,等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.8.如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣2x(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y=kx(x>0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是()A.53B.34C.43D.23【答案】C【解析】分析:先求出A点坐标,再根据图形平移的性质得出A1点的坐标,故可得出反比例函数的解析式,把O1点的横坐标代入即可得出结论.详解:∵OB=1,AB⊥OB,点A在函数2yx=-(x<0)的图象上,∴当x=−1时,y=2,∴A(−1,2).∵此矩形向右平移3个单位长度到1111A B O C的位置,∴B1(2,0),∴A1(2,2).∵点A1在函数kyx=(x>0)的图象上,∴k=4,∴反比例函数的解析式为4yx=,O1(3,0),∵C1O1⊥x轴,∴当x=3时,43y=,∴P4(3,).3故选C.点睛:考查反比例函数图象上点的坐标特征, 坐标与图形变化-平移,解题的关键是运用双曲线方程求出点A的坐标,利用平移的性质求出点A1的坐标.9.下列计算正确的是()A.a4+a5=a9B.(2a2b3)2=4a4b6C.﹣2a(a+3)=﹣2a2+6a D.(2a﹣b)2=4a2﹣b2【答案】B【解析】分析:根据合并同类项、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式进行计算.详解:A、a4与a5不是同类项,不能合并,故本选项错误;B、(2a2b3)2=4a4b6,故本选项正确;C、-2a(a+3)=-2a2-6a,故本选项错误;D、(2a-b)2=4a2-4ab+b2,故本选项错误;故选:B.点睛:本题主要考查了合并同类项的法则、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式,熟练掌握运算法则是解题的关键.10.4的平方根是( )A.2 B.2C.±2 D.±2【答案】D【解析】先化简4,然后再根据平方根的定义求解即可.【详解】∵4=2,2的平方根是±2,∴4的平方根是±2.故选D.【点睛】本题考查了平方根的定义以及算术平方根,先把4正确化简是解题的关键,本题比较容易出错.二、填空题(本题包括8个小题)11.如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是.【答案】.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF,根据余弦的概念计算即可.由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,∴cos∠EFC=,故答案为:.考点:轴对称的性质,矩形的性质,余弦的概念.12.如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD= ▲°.【答案】1.。

相关文档
最新文档