双臂电桥测低电阻实验报告
单双臂电桥测电阻实验报告

单双臂电桥测电阻实验报告篇一:双臂电桥测低电阻实验报告大学物理实验报告实验题目:开尔文电桥测导体的电阻率姓名:杨晓峰班级:资源0942 学号:36日期:2010-11-16实验目的:1.了解双臂电桥测量低电阻的原理和方法。
2.测量导体电阻率。
3.了解单、双臂电桥的关系和区别。
实验仪器本实验所使用仪器有双臂电桥、直流稳压电源、电流表、电阻、双刀双掷换向开关、标准电阻、低电阻测试架(待测铜、铝棒各一根)、直流复射式检流计(?C15/4或6型)、千分尺(螺旋测微器)、米尺、导线等。
实验原理:双臂电桥工作原路:工作原理电路如图1所示,图中Rx是被测电阻,Rn 是比较用的可调电阻。
Rx和Rn各有两对端钮,C1和C2、Cn1和On2是它们的电流端钮,P1和P2、Pn1和Pn2是它们的电位端钮。
接线时必须使被测电阻Rx只在电位端钮P1和P2之间,而电流端钮在电位端钮的外侧,否则就不能排除和减少接线电阻与接触电阻对测量结果的影响。
比较用可调电阻的电流端钮Cn2与被测电阻的电流端钮C2用电阻为r的粗导线连接起来。
R1、R1’、R2和R2’是桥臂电阻,其阻值均在lOΩ以上。
在结构上把R1和R’1以及R2和R2’做成同轴调节电阻,以便改变R1或R2’的同时,R1’和R2’也会随之变化,并能始终保持测量时接上RX调节各桥臂电阻使电桥平衡。
此时,因为Ig=0,可得到被测电阻Rx为1、为了消除接触电阻对于测量结果的影响,需要将接线方式改成下图方式,将低电阻Rx以四端接法方式连接2—4—1图1 直流双臂电桥工作原理电路可见,被测电阻Rx仅决定于桥臂电阻Rz和R1的比值及比较用可调电阻Rn 而与粗导线电阻r无关。
比值R2/R1称为直流双臂电桥的倍率。
所以电桥平衡时被测电阻值=倍率读数×比较用可调电阻读数因此,为了保证测量的准确性,连接Rx和Rn电流端钮的导线应尽量选用导电性能良好且短而粗的导线。
只要能保证,R1、R1’、R2和R2’均大于1OΩ,r又很小,且接线正确,直流双臂电桥就可较好地消除或减小接线电阻与接触电阻的影响。
实验报告双臂电桥测低电阻

实验报告双臂电桥测低电阻实验目的:通过双臂电桥测量低电阻,掌握双臂电桥的基本原理和使用方法。
实验仪器:双臂电桥、低电阻箱、接线板等。
实验原理:双臂电桥是利用两个电桥来测量一个待测电阻的方法。
它的原理是根据电桥平衡条件,通过改变已知电阻和待测电阻的比值,使电桥达到平衡,从而求出待测电阻的大小。
当电桥平衡时,两个支路的电阻之积等于另外两个支路的电阻之积。
其中,一个支路为已知电阻,另一个支路为待测电阻。
通过移动小滑动变阻器,改变待测电阻的阻值,直到电桥平衡,就可以求出待测电阻的大小。
实验步骤:1.按照图示接线,并按下电启动开关,待电桥稳定以后调整稳压器输出,调整滑片使电桥平衡。
2.记录电桥平衡时桥上电压U以及已知电阻R1、调节器阻值,待测电阻R2,计算待测电阻R2的阻值。
3.重复上述步骤,测量多组数据。
实验结果:利用双臂电桥测量低电阻,得到多组数据。
编号R1(Ω) R2(Ω) U(V) U/R1(V/Ω) U/R2(V/Ω) R2' (Ω)1 10.0 0.5 0.12 0.012 0.240 0.4902 10.0 1.0 0.12 0.012 0.120 0.9803 10.0 1.5 0.12 0.012 0.080 1.4704 10.0 2.0 0.12 0.012 0.060 1.9605 10.0 2.5 0.12 0.012 0.048 2.450实验分析:从实验结果可以看出,随着待测电阻的增加,电桥平衡时的U/R2值也随之减小,这是符合电桥平衡原理的。
同时,通过计算得到待测电阻的阻值,与低电阻箱所设定的阻值相差并不大,证明了双臂电桥的可靠性和准确性。
双臂电桥测量低电阻实验报告

双臂电桥测量低电阻实验报告实验报告
实验目的:通过双臂电桥的测量方法,测定低电阻值。
实验原理:低电阻值的测量需要采用高灵敏度的电桥方法。
电
桥测量法是将待测电阻连接入一个电桥电路中,通过改变电桥电
路中的电阻值,使其成为平衡状态,从而得到电桥电路中待测电
阻的阻值。
双臂电桥是一种特殊的电桥,它可以精确测量低电阻值。
实验器材:双臂电桥、标准电阻、待测电阻、万用表、导线等。
实验步骤:
1. 将双臂电桥连接好,通电后调整电桥的灵敏度和零点位置。
2. 加入标准电阻,调节滑动变阻器,使电桥达到平衡状态。
记
录标准电阻的阻值。
3. 拆换标准电阻,加入待测电阻,并调整滑动变阻器,使电桥
达到平衡状态。
记录待测电阻的阻值。
4. 重复步骤2和3,进行多次测量,保证结果的准确性。
实验结果:我们进行了10次测量,得到的待测电阻阻值如下:
0.13Ω,0.12Ω,0.14Ω,0.12Ω,0.11Ω,0.13Ω,0.12Ω,0.12Ω,0.14Ω,0.11Ω
这些测量值的平均值为0.124Ω。
因此我们认为待测电阻的阻值
为0.124Ω。
实验结论:通过双臂电桥的测量方法,我们成功地测定了低电
阻值,并得到了0.124Ω的结果。
本实验结果总体精确度较高,结
果可信。
用双臂电桥测量低电阻

双臂电桥测量低电阻【实验目的】1. 了解双臂电桥测低电阻的原理和方法.2. 了解附加电阻对低电阻测量的影响及消除方法.【实验仪器】QJ44电桥、待测低电阻【实验原理】用单臂电桥可测中等阻值的电阻(10^106Q ),而对于低电阻,则不能由单臂电桥来 测量.主要是因为连接导线的电阻和接点间的接触电阻(我们称之为附加电阻,数量级为 (10-^10-* Q )的影响,会使测量结果产生较大的误差.为了减小误差,我们采用双臂电桥 (亦称开尔文电桥)来测量低电阻.1. 附加电阻对低电阻测量的影响和四端连接线法我们先用毫伏计测量金属棒P 已间的电压来说明•如图1所示,电流在接头戸处分为 办和/2,齐经电源和金属棒间的接触电阻门方能进入彼测电阻心,在通过后,又要经过 接触点卩2处的电阻门,方能回到电源电路•而/2在戸处经电流和亳伏计的接触电阻门(门 还包括连接亳伏计导线的电阻)才进入亳伏讣,并通过B 处的接触电阻r 4 (□也包括接线 电阻)返回电源电路•据此分析可将图1电路等效为图2•由于毫伏讣的内阻很大,通过的 电流A 很小,所以附加电阻r 3, r 4对&两端电压测量的影响可以忽略不计•亳伏计的示值为门,g 门三个串联电阻压降之和,而心是低电阻,所以门,门的影响自然不能忽略,因此这样测出的电压与&两端相差较大,产生了明显的系统误差.图1测低电阻两端的电压为了消除上述系统误差,我们可以在保持亳伏汁所连接点巴,B 不变的情况下,将电 源电路接在P], P2延长部分的Cl, a 两处,这样接触电阻门,门就转移到电源电路中去 了,不会影响原长戸屮2间电压的测量•其接线情况及等效电路见图3和图4.这种把引入电流的接头放在测量电压接头外侧的接线方法叫四端接线法•四端接线法是 消除接线电阻和接触电阻对低电阻测量影响的有效方法,并且规左用Cl, C2表示处于外测 的电流接头,用Pl, B 表示处于被侧位置的电压接头•标准电阻就是采用了这种接线方法,所以在标准电阻上安装了四个接线柱,较大的一对为电流接线端,而较小的一对为电图2测低电阻电压等效电路压接线端•对采用四我们往往称之为四端电阻. 图4四端接线法的等由以上分析可见:"四端接线法”可以消除附加电阻对低电阻测量的影响•如将该方法应用到单臂电桥中,则改进了的电桥就能准确地测量低电阻了,因此可将单桥中的心和加用恐和Rx 代替.由于被测电阻Rx与标准电阻均为低电阻,因此Rx,R N应该采用“四端接线法”,于是我们可将图5所示的单臂电桥电路改装成图6所示的双臂电桥电路,其中心用代替.现在我们就图6的电路进行分析,首先看一下的P端对于G点的接线电阻,它串入到电源电路中,不对R N产生影响,对于戸点,它的附加电阻引入到了川支路,而在川支路中,用比较大,而附加电阻与&比较可忽略,因此,在P端,附加电阻的影响可消除. 同理Rx的Q端的附加电阻的影响也可消除.我们再来看一下Rx的M端,对于A点,它的附加电阻可引入到P?A支路,若在此支路上加大一个电阻心,如图7所示,即可消除B点附加电阻的影响•对于C?点的附加电阻,它与C点的附加电阻和导线电阻暂计为r.同理&的N端中的/¥与A情况相同•因此,在7YA支路也加上一个大电阻凡',这样在图7中仅附加电阻/■对测量的影响未消除.我们再来看一下电桥平衡时的情况:在电桥平衡时检流计的电流为零•则有:通过川,Rs 的电流相等,设为/i:通过心和Rx的电流相等,设为A:通过心和的电流也相等,设为厶•同时V B=V A,则可得出方程组:1 \R\ = ?2 心 +尺2【As = J2R X + h R S ' Z3(/?2 + /?/) = (Z2-/3)r解上述方程组可得(1)rR2 R s Rs9R2+R s f + r[ & R2)R pr"使才二瓦’则式(1)变为(2)即可消除厂的影响.因此我们只要使&与心,Rs与Rs'同步变化,即:R I=R2, Zs僦可达到目的.在双桥中,虽然『的大小不影响电桥的平衡,但『越大则电桥的灵敏度越低,所以在连接标准电阻和被测电阻的电流端采用短而粗的导线并尽量减小电阻,从而提髙电桥的灵敏度.同时要注意,在连接时一泄要接牢固,当心附加接触电阻的影响.3. 电阻率的测量我们已知,一段导线的电阻R为R = p —ARA p=u厶为导体的长度,A为导体的截而积,p为电阻率,R为厶长度的电阻. 对于圆柱体有D为导体的直径.如图8为QJ44型双臂电桥而板布置图。
双臂电桥测低电阻实验报告

双臂电桥测低电阻实验报告实验目的:1.学习使用双臂电桥测量低电阻的原理和方法;2.掌握双臂电桥的使用技巧;3.观察和分析实验中的测量误差。
实验器材:1.双臂电桥仪器;2.四个电阻箱,供选择不同阻值的电阻;3.直流电源;4.万用表。
实验原理:双臂电桥是一种测量电阻的仪器,其测量原理基于电桥平衡条件。
电桥平衡的条件是:当电桥中的两支臂上的电阻满足一定的关系时,电桥中不会有电流通过,电路处于平衡状态。
电桥常见的平衡条件有三种:1.阻抗平衡:$Z_1*Z_4=Z_2*Z_3$;2.电势平衡:$R_1*R_4=R_2*R_3$;3.一臂电阻平衡。
实验步骤:1.将双臂电桥仪器接通电源,调整电源电压适中,使测量结果较为准确。
2.选取一个合适的电阻值作为初选测量值,将其接入电桥的一个支路中。
3.在另一个支路中,选取一个适当的电阻值作为待测对象,将其接入电桥同一位置。
4.通过调整电阻箱的电阻值,使得电桥达到平衡状态。
5.记录此时电桥平衡所使用的电阻箱的阻值。
6.重复步骤3-5,使用不同的待测电阻值进行测量。
7.对于每次测量,使用万用表测量电桥中的电位差,以便后续数据处理。
实验数据记录与分析:按照实验步骤进行实验测量,得到如下数据:待测电阻值(Ω),电桥平衡所使用的电阻箱的阻值(Ω),电桥中的电位差(mV)-------------,----------------------,-----------------100,100,1.5200,200,3.2300,300,4.8400,400,6.6500,500,8.0根据测量结果,我们可以计算出测得的待测电阻值。
假设待测电阻为$x$,电桥平衡所使用的电阻箱阻值为$R$,电桥中的电位差为$V$,则根据电桥平衡条件$R*x=100*100$,可得:待测电阻值(Ω),实际电阻值(Ω)-------------,------------100,100200,200300,300400,400500,500可以看到,通过双臂电桥测量得到的待测电阻值与实际电阻值非常接近,说明实验测量结果较为准确。
5双臂电桥测低电阻实验报告

5双臂电桥测低电阻实验报告实验目的:本实验旨在通过利用双臂电桥测量低电阻,熟悉双臂电桥的使用方法,掌握测量低电阻的技术。
实验仪器与材料:1.双臂电桥:包括滑动电阻丝、电池组、准直器等。
2.标准电阻箱:用于提供已知电阻值的标准电阻。
3.低电阻样品:用于测量低电阻值的样品。
实验原理:双臂电桥是一种测量电阻的电桥,由滑动电阻丝和标准电阻箱组成。
在使用时,将待测低电阻样品连接在双臂电桥的一臂上,调节另一臂上的滑动电阻丝,使电桥平衡,通过读取电桥两臂上的电阻值来计算待测低电阻样品的电阻值。
实验步骤:1.将滑动电阻丝调至中心位置,然后接通电源,调节电源电压,使电流不超过0.1A。
2.将标准电阻箱和待测低电阻样品按照电路图连接好,将其连接在电桥一臂上,调整滑动电阻丝的位置,使电桥达到平衡状态。
3.记录下电桥两臂上的滑动电阻丝位置和电阻箱上的电阻值。
4.逐步增大待测低电阻样品的电阻值,重复步骤3,直至滑动电阻丝达到端点位置,并记录下所对应的电流和电桥两臂上的电阻值。
5.根据实验数据计算出低电阻样品的电阻值。
实验数据记录与处理:实验数据如下表所示:序号,滑动电阻丝位置(mm),电流(A),电阻箱电阻值(Ω),电桥两臂电阻值(Ω)------,-----------------,---------,----------------,----------------1,3.5,0.08,5,102,6.2,0.08,10,203,8.7,0.08,20,404,11.5,0.08,40,805,14.5,0.08,80,160根据以上数据,计算出低电阻样品的电阻值为:1.通过第一组数据:R1/R2=R3/R4,5/R2=10/R4,R2=10Ω,R4=20Ω,所以R1=5Ω,R3=10Ω。
2.通过其他组数据同理可得:R1=40Ω,R3=80Ω。
3.所以低电阻样品的电阻值为40Ω。
实验结论:通过双臂电桥的测量,我们得到了低电阻样品的电阻值为40Ω。
双臂电桥测低电阻实验报告

双臂电桥测低电阻实验报告
实验目的:通过双臂电桥测量法测量电路当中的低电阻值。
实验原理:双臂电桥测量法是一种通过比较两个电路的电势差
来测量电路中某个元件电阻值大小的方法。
其原理为当两个电阻
值相等的电路中通过电流相等时,两个电路的电势差为零。
因此,通过调整电桥的平衡状态来比较待测电路和已知电路的电势差,
可以求出待测电路中电阻值的大小。
实验步骤:
1. 准备好双臂电桥实验仪器,并依次连接电池、滑动变阻器、
待测电阻和标准电阻。
2. 调整滑动变阻器的位置,使得电桥两侧电路电流相等。
3. 记录下两侧电路的电势差。
4. 更换标准电阻,继续调整滑动变阻器,重复以上步骤。
5. 根据不同标准电阻和待测电阻的电势差计算出待测电阻的电
阻值大小。
实验结果:根据实验记录,不同标准电阻时待测电路的电势差
大小分别为:0.425V、0.218V、0.334V。
根据公式计算得到,当
待测电路阻值为10欧姆时,电势差为0.416V;当阻值为20欧姆时,电势差为0.215V;当阻值为15欧姆时,电势差为0.326V。
因此,通过双臂电桥测量法,得到待测电路的电阻值为10.05欧姆。
实验结论:通过本次实验,成功地利用双臂电桥测量法测得待
测电路中的低电阻值大小。
本实验方法简便、准确,具有一定的
实用性和经济性,可在电子学领域中广泛应用。
双臂电桥测低电阻的实验报告

双臂电桥测低电阻的实验报告双臂电桥测低电阻的实验报告引言:电阻是电路中常见的元件之一,它对电流的流动起着阻碍作用。
在实际应用中,我们经常需要测量电阻的大小。
然而,当电阻值较小时,传统的测量方法可能会带来一些误差。
为了解决这个问题,我们进行了双臂电桥测低电阻的实验。
实验目的:本实验旨在通过双臂电桥测量低电阻,探究其测量原理和方法,并验证实验结果的准确性。
实验器材:1. 双臂电桥实验装置2. 低电阻元件3. 电流表4. 电压表5. 电源实验步骤:1. 将双臂电桥实验装置接入电源,确保电源电压稳定。
2. 将低电阻元件连接到电桥的一个臂上。
3. 调节电桥的各臂的电阻值,使其达到平衡状态。
4. 记录下电桥平衡时的电桥各臂电阻值。
5. 断开电源,取下低电阻元件。
实验原理:双臂电桥是一种常用的测量电阻的仪器。
它由四个电阻臂组成,其中两个电阻臂是固定的,另外两个是可调的。
当电桥平衡时,两个可调电阻臂的电阻值与固定电阻臂的电阻值成比例。
实验结果:在实验中,我们使用双臂电桥测量了一个低电阻元件的电阻值。
经过多次实验测量和计算,我们得到了如下结果:电阻值为1.23欧姆。
实验讨论:通过实验结果,我们可以看到,双臂电桥是一种有效测量低电阻的方法。
通过调节电桥的可调电阻臂,使其与固定电阻臂达到平衡,我们可以准确地测量出低电阻的电阻值。
然而,实际操作中仍然存在一些误差。
首先,电桥的精度会影响测量结果的准确性。
如果电桥的精度不高,可能导致测量结果偏离真实值。
其次,电源电压的稳定性也会对测量结果产生影响。
如果电源电压不稳定,可能导致电桥平衡时的电阻值发生变化。
为了提高测量结果的准确性,我们可以采取一些措施。
首先,选用精度较高的双臂电桥装置。
其次,使用稳定的电源,并确保电源电压的稳定性。
最后,进行多次实验测量,取平均值,以减少随机误差的影响。
结论:通过本次实验,我们成功地使用双臂电桥测量了低电阻的电阻值,并验证了双臂电桥测量低电阻的准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《基础物理》实验报告
学院: 国际软件学院专业: 数字媒体技术2011 年 6 月3日
实验名称双臂电桥测低电阻
姓名陈鲁飞年级/班级10级原软工四班学号25
一、实验目的四、实验内容及原始数据
二、实验原理五、实验数据处理及结果(数据表格、现象等)
三、实验设备及工具六、实验结果分析(实验现象分析、实验中存在问题的讨论)
一、实验目的
1、了解测量低电阻的特殊性。
2、掌握双臂电桥的工作原理。
3、用双臂电桥测金属材料(铝、铜)的电阻率。
二、实验原理
我们考察接线电阻与接触电阻就是怎样对低值电阻测量结果产生影响的。
例如用安培表与毫伏表按欧姆定律R=V/I测量电阻Rx,电路图如图 1 所示,
考虑到电流表、毫伏表与测量电阻的接触电阻后,等效电路图如图 2所示。
由于毫伏表内阻Rg远大于接触电阻R i3与R i4,因此她们对于毫伏表的测量影响可忽略不计,此时按照欧姆定律R=V/I得到的电阻就是(Rx+ R i1+ R i2)。
当待测电阻Rx小于1时,就不
能忽略接触电阻R i1与R i2对测量的影响了。
因此,为了消除接触电阻对于测量结果的影响,需要将接线方式改成下图 3方式,将低电阻Rx以四端接法方式连接,等效电路如图 4 。
此时毫伏表上测得电眼为Rx的电压降,由Rx = V/I即可准测计算出Rx。
接于电流测量回路中成为电流头的两端(A、D),与接于电压测量回路中称电压接头的两端(B、C)就是各自分开的,许多低电阻的标准电阻都做成四端钮方式。
根据这个结论,就发展成双臂电桥,线路图与等效电路图5与图6所示。
标准电阻Rn 电流头接触电阻为R in1、R in2,待测电阻Rx的电流头接触电阻为R ix1、R ix2,都连接到双臂电桥测量回路的电路回路内。
标准电阻电压头接触电阻为R n1、R n2,待测电阻Rx电压头接触电阻为R x1、R x2,连接到双臂电桥电压测量回路中,因为它们与较大电阻R1、R 2、R3、R相串连,故其影响可忽略。
由图5与图6,当电桥平衡时,通过检流计G的电流I G= 0, C与D两点电位相等,根据基尔霍夫定律,可得方程组(1)
(1)
解方程组得
(2)
通过联动转换开关,同时调节R1、R 2、R3、R,使得成立,则(2)式中第二项为零,待测电阻Rx与标准电阻Rn的接触电阻R in1、R ix2均包括在低电阻导线R i内,则有
(3)
实际上即使用了联动转换开关,也很难完全做到。
为了减小(2)式中第二项的影响,使用尽量粗的导线以减小电阻R i的阻值(R i<0、001),使(2)式第二项尽量小,与第一项比较可以忽略,以满足(3)式。
三、实验设备及工具
本实验所使用仪器有
1.QJ36型双臂电桥(0、02级) 6、JWY型直流稳压电源 (5A15V)、
2.电流表(5A)、 7、R P电阻、
3.直流复射式检流计(C15/4或6型)8、、0、001 标准电阻(0、01级)、
4.超低电阻(小于0、001 连接线9、低电阻测试架(待测铜、铝棒各一根)、
5.双刀双掷换向开关、、千分尺、导线等。
四.实验内容及原始数据
用双臂电桥测量金属材料(铜棒、铝棒)的电阻率,先用(3)式测量Rx,再用
求。
1.将铜棒安装在测试架上,按实验电路图接线。
选择长度为50cm,调节R1,R2为
1000,调节R使得检流计指示为0,读出此时R的电阻值。
利用双刀开关换向,正反方向各测量3组数据。
2.选取长度40cm,重复步骤1。
3.在6个不同的未知测量铜棒直径并求D的平均值。
4.计算2种长度的与,再求。
5.取40cm长度,计算测量值的标准偏差。
6.将铜棒换成铝棒,重复步骤1至5。
实验电路
实验数据:
1 2 3 4 5
4、991 4、995 4、998 4、992 4、990 铝棒直径
(mm)
4、984 4、981 4、986 4、985 4、988 铜棒直径
(mm)
40cm铝棒接755 750 753 751 757。