BOOST电感设计

合集下载

boost电路电感的计算方法

boost电路电感的计算方法

boost电路电感的计算方法Boost电路是一种常用的DC-DC升压变换器,用于将输入电压提升到较高的输出电压。

在Boost电路中,电感是一个关键元件,它在电路中起到储能和滤波的作用。

本文将介绍Boost电路中电感的计算方法。

在Boost电路中,电感的选择对电路的性能和效率有着重要影响。

为了正确选择电感,我们首先需要确定一些基本参数,如输入电压Vin、输出电压Vout、输出电流Iout和开关频率f。

这些参数将决定电感的工作条件和功率需求。

根据电路的工作原理,电感的工作状态可以分为两种:连续电流模式(Continuous Current Mode,CCM)和不连续电流模式(Discontinuous Current Mode,DCM)。

在CCM下,电感电流在整个开关周期内都不会降到零,而在DCM下,电感电流会在某个时刻降到零。

两种模式在电感的计算方法上有所不同。

我们来看连续电流模式下的电感计算方法。

在CCM下,电感的工作电流连续且稳定,可以通过以下公式计算:L = (Vout - Vin) * (1 - D) / (f * Iout)其中,L为电感的值,Vout为输出电压,Vin为输入电压,D为开关的占空比(即开关关闭时间占一个周期的比例),f为开关频率,Iout为输出电流。

这个公式可以帮助我们选择合适的电感值,以满足电路的需求。

接下来,我们来看不连续电流模式下的电感计算方法。

在DCM下,电感的工作电流会在某个时刻降到零,因此电感的值需要满足以下公式:L = (Vout - Vin) * (1 - D) * (1 - D) / (8 * f * Iout)同样,L为电感的值,Vout为输出电压,Vin为输入电压,D为开关的占空比,f为开关频率,Iout为输出电流。

这个公式可以帮助我们选择合适的电感值,以满足电路的需求。

除了基本参数外,还有一些其他因素需要考虑。

例如,电感的电流冲击能力、电感的饱和电流和温升等。

boost电路电感饱和波形

boost电路电感饱和波形

Boost电路电感饱和波形1. 引言Boost电路是一种常见的直流-直流转换器,用于将低电压升高到较高电压。

在Boost电路中,电感是一个重要的元件,它能够存储能量并提供电流给负载。

然而,当电感中的电流超过其饱和电流时,电感会发生饱和现象,导致电路性能下降甚至损坏。

因此,了解Boost电路中电感的饱和波形对于设计和优化Boost电路至关重要。

2. Boost电路的工作原理Boost电路是一种非绝缘型直流-直流转换器,常用于电源和电动机驱动等应用中。

它由一个开关管、一个电感、一个输出电容和一个负载组成。

开关管周期性地打开和关闭,使得电感中的电流不断变化,从而实现电压转换。

在Boost电路的工作过程中,当开关管关闭时,电感中的电流开始增加,电感储存能量;当开关管打开时,电感中的电流开始减小,电感释放能量。

通过周期性地打开和关闭开关管,电感中的电流会形成一个周期性的波形。

3. 电感饱和的原因电感饱和是指电感中的电流超过了电感的饱和电流,导致电感无法继续存储能量。

电感饱和的原因主要有两个:3.1 电感的饱和电流限制电感的饱和电流是指电感中的电流达到一定值时,电感无法继续存储能量的临界点。

电感的饱和电流取决于电感的结构和材料,一般在设计电路时需要考虑电感的饱和电流限制,以避免电感饱和。

3.2 Boost电路的工作原理在Boost电路中,当开关管关闭时,电感中的电流开始增加。

如果开关管的关闭时间过长或负载过大,电感中的电流可能超过电感的饱和电流,导致电感发生饱和。

4. 电感饱和的影响电感饱和会对Boost电路的性能产生重要影响,主要体现在以下几个方面:4.1 电感电流波形失真电感饱和会导致电感中的电流波形发生畸变,从而引起输出电压的不稳定性和谐波增加。

这会影响Boost电路的输出质量和效率。

4.2 功率损耗增加当电感发生饱和时,电感内部电流的变化速度变慢,导致电感的内部电阻增加。

这会导致Boost电路的功率损耗增加,降低电路的效率。

BOOST升压电路的电感、电容计算

BOOST升压电路的电感、电容计算

BOOST升压电路的电感、电容计算已知参数:输入电压:12V --- Vi 输出电压:18V ---Vo输出电流:1A --- Io输出纹波:36mV --- Vpp工作频率:100KHz --- f1:占空比稳定工作时,每个开关周期,导通期间电感电流的增加等于关断期间电感电流的减少,即Vi*don/(f*L)=(Vo+Vd-Vi)*(1-don)/(f*L),整理后有don=(Vo+Vd-Vi)/(Vo+Vd),参数带入,don=0.5722:电感量先求每个开关周期内电感初始电流等于输出电流时的对应电感的电感量其值为Vi*(1-don)/(f*2*Io) ,参数带入,Lx=38.5uH,deltaI=Vi*don/(L*f),参数带入,deltaI=1.1A当电感的电感量小于此值Lx时,输出纹波随电感量的增加变化较明显,当电感的电感量大于此值Lx时,输出纹波随电感量的增加几乎不再变小,由于增加电感量可以减小磁滞损耗,另外考虑输入波动等其他方面影响取L=60uH,deltaI=Vi*don/(L*f),参数带入,deltaI=0.72A,I1=Io/(1-don)-(1/2)*deltaI,I2= Io/(1-don)+(1/2)*deltaI,参数带入,I1=1.2A,I2=1.92A3:输出电容:此例中输出电容选择位陶瓷电容,故 ESR可以忽略C=Io*don/(f*Vpp),参数带入,C=99.5uF,3个33uF/25V陶瓷电容并联4:磁环及线径:查找磁环手册选择对应峰值电流I2=1.92A时磁环不饱和的适合磁环Irms^2=(1/3)*(I1^2+I2^2-I1*I2),参数带入,irms=1.6A按此电流有效值及工作频率选择线径其他参数:电感:L 占空比:don初始电流:I1 峰值电流:I2 线圈电流:Irms输出电容:C 电流的变化:deltaI 整流管压降:Vd。

boost升压电路电感和占空比的设计

boost升压电路电感和占空比的设计

boost升压电路电感和占空比的设计Boost升压电路是一种常见的直流电压变换器,它可以将输入电压升高到高于输出电压的水平。

这种电路通常用于电源设计、电力电子设备和LED驱动等领域。

在设计和应用Boost升压电路时,电感和占空比是非常重要的参数,下面将对它们的设计进行详细介绍。

一、电感的设计在Boost升压电路中,电感的主要作用是储存能量,以便在开关关闭时提供电流。

电感的大小会影响到输出电压的稳定性和效率。

因此,在设计电感时需要考虑以下因素:1.电感值:电感值的选择取决于输入电压、输出电压、最大输出电流和开关频率等参数。

通常情况下,电感值越大,输出电压的稳定性越好,但同时也会增加电感的体积和成本。

因此,需要根据实际需求选择合适的电感值。

2.磁芯:电感的磁芯也是设计时需要考虑的因素。

常用的磁芯材料有铁氧体、坡莫合金、纳米晶等。

不同的磁芯材料具有不同的磁导率和饱和磁通密度等参数,因此需要根据实际需求选择合适的磁芯材料。

3.线圈:线圈是电感的重要组成部分,它的匝数和线径会影响到电感的性能。

匝数越多,电感值越大;线径越粗,电流容量越大。

因此,在设计线圈时需要考虑匝数和线径的匹配,以获得最佳的电感性能。

二、占空比的设计占空比是指在一个开关周期内,开关导通的时间与整个周期之比。

在Boost升压电路中,占空比是控制输出电压和电流的关键参数。

占空比的设计需要考虑以下因素:1.输出电压和电流:输出电压和电流的大小会影响到占空比的设计。

如果输出电压和电流较大,需要选择较大的占空比以获得较高的输出电压和电流;反之则选择较小的占空比。

2.开关频率:开关频率也会影响到占空比的设计。

开关频率越高,开关导通的时间越短,占空比越小;开关频率越低,开关导通的时间越长,占空比越大。

因此,在设计占空比时需要考虑开关频率的影响。

3.最大占空比:最大占空比是指在一个开关周期内,开关能够导通的最大时间与整个周期之比。

最大占空比受到多种因素的影响,如开关的耐压值、导通电阻、寄生电容等。

BOOST电路的电感选择

BOOST电路的电感选择

BOOST升压电路的电感、电容计算已知参数:输入电压:12V --- Vi输出电压:18V ---Vo输出电流:1A --- Io输出纹波:36mV --- Vpp工作频率:100KHz --- f************************************************************************1:占空比稳定工作时,每个开关周期,导通期间电感电流的增加等于关断期间电感电流的减少,即Vi*don/(f*L)=(Vo+Vd-Vi)*(1-don)/(f*L),整理后有don=(Vo+Vd-Vi)/(Vo+Vd),参数带入,don=0.5722:电感量先求每个开关周期内电感初始电流等于输出电流时的对应电感的电感量其值为Vi*(1-don)/(f*2*Io),参数带入,Lx=38.5uH,deltaI=Vi*don/(L*f),参数带入,deltaI=1.1A当电感的电感量小于此值Lx时,输出纹波随电感量的增加变化较明显,当电感的电感量大于此值Lx时,输出纹波随电感量的增加几乎不再变小,由于增加电感量可以减小磁滞损耗,另外考虑输入波动等其他方面影响取L=60uH,deltaI=Vi*don/(L*f),参数带入,deltaI=0.72A,I1=Io/(1-don)-(1/2)*deltaI,I2= Io/(1-don)+(1/2)*deltaI,参数带入,I1=1.2A,I2=1.92A3:输出电容:此例中输出电容选择位陶瓷电容,故ESR可以忽略C=Io*don/(f*Vpp),参数带入,C=99.5uF,3个33uF/25V陶瓷电容并联4:磁环及线径:查找磁环手册选择对应峰值电流I2=1.92A时磁环不饱和的适合磁环Irms^2=(1/3)*(I1^2+I2^2-I1*I2),参数带入,irms=1.6A按此电流有效值及工作频率选择线径其他参数:电感:L 占空比:don初始电流:I1 峰值电流:I2 线圈电流:Irms输出电容:C 电流的变化:deltaI 整流管压降:Vd。

BOOST 电路 电感值计算

BOOST 电路 电感值计算

()L
D T V V V D in o L I )
1(2-⋅--=

由于在稳态时这两个电流的变化量的绝对值相等,所以有伏秒相等:
V in *T on = (V o -V in )T off
)1()(D T V V V TD V D in o in ---=
化简得:电压增益: D
V V M in o -==
11 最大占空比:o
in
o V V V D -=
由以上可知,电压增益总是大于1.故称为升压变换器.
四.举例
电路输入90VDC,输出400VDC,输出功率400W,变换器频率100KHZ,选用TDK PQ3230的磁芯,试算出实际的电感.
选取铁氧体磁芯:TDK PQ32/30 (PC40) 技术参数:νin =90VDC,Vo=400Vdc
P OUT =400W,f k=100kHz ,Krp

0.3.(Krp=Ir/Ilp)
4.1 电感计算 (1) 最大占空比D
o
in
o V V V D -=
Io Vo I V L in ⋅=⋅ 能量守恒 其中I L 为电感平均电流。

又因为有:
D
V V in o -=11 所以有D
Io
I L -=
1 (1) 电感平均电流为电流三角形面积的平均值 ,
所以,L T D V T DT
L V T D DT T I T D DT I in in L ⋅⋅=
⋅-+=∆-+=21))1((21
))1((21 (2) 将(2)代入(1)得,
f
I D D V I T D D V L o in o in ⋅-⋅⋅=⋅-⋅⋅=2)
1(2)1(。

BOOST电路设计与仿真

BOOST电路设计与仿真

BOOST电路设计与仿真BOOST电路是一种直流-直流升压电路,可以将低电压输入转换为高电压输出,被广泛应用于各种电子设备和电源系统中。

BOOST电路的设计与仿真是保证电路性能稳定和有效工作的重要步骤。

本文将介绍BOOST电路的设计原理和流程,并讨论BOOST电路的仿真方法和应用。

BOOST电路的设计原理基于电感储能和开关管的开关控制。

BOOST电路通常由开关管、电感、电容和负载组成。

当开关管导通时,电感储能;当开关管关断时,电感释放储能。

通过周期性的开关控制,可以实现输入电压的升压转换。

1.确定BOOST电路的输入输出要求。

根据实际应用需求,确定输入电压、输出电压和负载电流等参数。

2.选择开关管和电感。

根据输入输出要求和开关频率,选择合适的开关管和电感。

3.计算电容。

根据输出电压波动和负载要求,计算所需的输出电容。

4.设计反馈控制。

BOOST电路通常采用反馈控制来实现稳定的输出电压。

根据输入输出要求和稳定性要求,设计反馈控制电路。

5.仿真和优化。

使用仿真软件对BOOST电路进行模拟仿真,优化电路参数和控制策略,以达到设计要求。

在时间域仿真中,可以通过建立电路模型和开关控制器模型,对BOOST电路进行系统级仿真。

通过输入电压和负载电流变化,分析输出电压和效率等指标,验证电路性能。

在频域仿真中,可以通过建立开关模型和电感电容模型,对BOOST电路进行精确的频率响应分析。

通过频率响应曲线,可以评估BOOST电路的稳定性、带宽和损耗等指标。

除了仿真,BOOST电路的设计还需要考虑一些其他因素,如电路拓扑、器件选择和布局等。

这些因素都会影响电路的性能和可靠性。

最后,BOOST电路在各种电子设备和电源系统中有广泛应用,例如便携式电子设备、通信设备和工业控制系统等。

通过合理的设计与仿真,可以确保BOOST电路的稳定性和高效性,提高整个系统的性能。

boost 电感设计

boost 电感设计

PFC 电感计算通常Boost 功率电路的PFC 有三种工作模式:连续、临界连续和断续模式。

控制方式是输入电流跟踪输入电压。

连续模式有峰值电流控制,平均电流控制和滞环控制等。

连续模式的基本关系: 1. 确定输出电压U o输入电网电压一般都有一定的变化范围(U in ±Δ%),为了输入电流很好地跟踪输入电压,Boost 级的输出电压应当高于输入最高电压的峰值,但因为功率耐压由输出电压决定,输出电压一般是输入最高峰值电压的1.05~1.1倍。

例如,输入电压220V ,50Hz 交流电,变化范围是额定值的20%(Δ=20),最高峰值电压是220×1.2×1.414=373.45V 。

输出电压可以选择390~410V 。

2. 决定最大输入电流电感应当在最大电流时避免饱和。

最大交流输入电流发生在输入电压最低,同时输出功率最大时ηmin max i o i U P I =(1)其中:o o o I U P =;)%100(min ∆-=in i U U -最低输入电压;η-Boost 级效率,通常在95%以上。

3. 决定工作频率由功率器件,效率和功率等级等因素决定。

例如输出功率1.5kW ,功率管为MOSFET ,开关频率70~100kHz 。

4. 决定最低输入电压峰值时最大占空度因为连续模式Boost 变换器输出U o 与输入U in 关系为)1/(D U U i o -=,所以oimimo p U U U D 2max -=(2)从上式可见,如果U o 选取较低,在最高输入电压峰值时对应的占空度非常小,由于功率开关的开关时间限制(否则降低开关频率),可能输入电流不能跟踪输入电压,造成输入电流的THD 加大。

5. 求需要的电感量为保证电流连续,Boost 电感应当大于 IfD U L p i ∆=maxmin 2 (3)其中:max 22i I k I =∆,k =0.15~0.2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档