高中数学竞赛训练题一 (1)
浙江省高中数学竞赛模拟试题(1)及参考答案

浙江省高中数学竞赛模拟试题(1)及参考答案第一试(时间:8:00-9:20 满分:120)一、填空题:本大题共8小题,每小题8分,共64分. 1.已知函数()()221,0a f x x ax b x R x x x=++++∈≠,若实数,a b 使方程()0f x =有实根,则22a b +的最小值是2.在正三棱台111ABC A B C -中,上底面积11112A B C S =△,下底面积27ABC S =△.若底边BC 到截面11AB C 的距离等于三棱台的高,则11AB C S =△ 3.从1,2,3,,100中取出三个不同的数,使得其不能组成一个三角形的三边长的不同取法有 种4.已知22122cos cos ,,,22sin sin x y x y z i y x ππ⎡∈=+⎢⎣,且12z =若2z x yi =+,则21z z -的取值范围是 . 5. 函数()442222,2233222f x y x y x y xy x y x y =++-++-++的最小值为6.设()()111313,20n n n n n n n x x x x x x --+=+=+>-,则数列{}n x 的通项公式为7.如图,设,P Q 分别是两个同心圆(半径分别为6,4)上的动点.当,P Q 分别在圆上运动时,线段PQ 的中点M 所形成的区域面积为8.设[]122010,,,2,2a a a ∈-且1220100a a a +++=,则333122010a a a +++的最大值为二、解答题:本大题共3小题,共56分.9.(本小题满分16分). 设复数z 满足12z +>.证明:311z +>.10.(本小题满分20分)给定整数a ,设()32f x ax bx cx =++,其中,b c Z ∈,满足()()()11,22f ff =-=求出所有满足条件的函数()f x .11.(本小题满分20分)给定椭圆22221135x y +=及点()10,0D .(1)求r 的值使得对于椭圆的左顶点A ,存在椭圆上的另两点12,M M ,满足以D 为圆心、r 为半径的圆是12AM M △的内切圆;(2)证明:对于椭圆的下顶点,也存在椭圆上的另两点12,N N ,使得D 是12AN N △的内切圆,并确定此时直线12N N 的方程.浙江省高中数学竞赛模拟试题(1)及参考答案加试(时间:9:40-12:10 满分:180)一、(本小题满分40分) 已知ABC △的内心为I ,ABC △的内切圆I 切边BC 于点D ,,ABD ACD △△的内心分别是,b c J J ,b c AJ J △的外心为O .求证:,,A O I 三点共线.二、(本小题满分40分)设,,,0,a b c d >且4a b c d +++=.求证:222222221111a b c d a b c d+++≥+++三、(本小题满分50分)已知正整数n 满足()2014,,20141n n >=.令(){}1,,1,n A k N k n n k =∈≤≤={}{}1,1,n n n n n n B k A k A C k A k A =∈+∉=∈-∉对任意n k A ∈,记nA k k S n⎡⎤=⎢⎥⎣⎦,其中[]x 表示不超过x 的最大整数,A 表示集合A 中元素的个数. 证明:(1)()()nnk n k k n k k B k C S S S S --∈∈-=--∏∏;(2)()()mod nnB k n k nk C S S A n -∈-≡∏四、(本小题满分50分)某国建了一座时间机器,形似一条圆形地铁轨道,其上均匀设置了个站台(依次编号为1,2,…,)分别对应一个年份,起始站及终点站均为第一站(对应).为节约成本,机器每次运行一圈,只在其中一半的站台停靠.出于技术原因,每次至多行驶三站必须停靠依次,且所停靠的任两个站台不能是圆形轨道的对径点.试求不同停靠方式的种数.浙江省高中数学竞赛模拟试题(1)及参考答案第一试参考解答(时间:8:00-9:20 满分:120)一、填空题:本大题共8小题,每小题8分,共64分. 1.已知函数()()221,0a f x x ax b x R x x x=++++∈≠,若实数,a b 使方程()0f x =有实根,则22a b +的最小值是2.在正三棱台111ABC A B C -中,上底面积11112A B C S =△,下底面积27ABC S =△.若底边BC 到截面11AB C 的距离等于三棱台的高,则11AB C S =△3.从1,2,3,,100中取出三个不同的数,使得其不能组成一个三角形的三边长的不同取法有 种4.已知22122cos cos ,,,22sin sin x y x y z i y x ππ⎡⎤∈-=+⎢⎥⎣⎦,且12z =,若2z x yi =+,则21z z -的取值范围是 .5. 函数()442222,2233222f x y x y x y xy x y x y =++-++-++的最小值为6.设()()111313,20n n n n n n n x x x x x x --+=+=+>-,则数列{}n x 的通项公式为7.如图,设,P Q 分别是两个同心圆(半径分别为6,4)上的动点.当,P Q 分别在圆上运动时,线段PQ 的中点M 所形成的区域面积为8.设[]122010,,,2,2a a a ∈-且1220100a a a +++=,则333122010a a a +++的最大值为二、解答题:本大题共3小题,共56分. 9.设复数z 满足12z +>.证明:311z +>.10.给定整数a ,设()32f x ax bx cx =++,其中,b c Z ∈,满足()()()11,22f f f =-=求出所有满足条件的函数()f x .11.给定椭圆22221135x y +=及点()10,0D .(1)求r 的值使得对于椭圆的左顶点A ,存在椭圆上的另两点12,M M ,满足以D 为圆心、r 为半径的圆是12AM M △的内切圆;(2)证明:对于椭圆的下顶点,也存在椭圆上的另两点12,N N ,使得D 是12AN N △的内切圆,并确定此时直线12N N 的方程.浙江省高中数学竞赛模拟试题(1)及参考答案试参考解答(时间:9:40-12:10 满分:180)一、(本小题满分40分)已知ABC △的内心为I ,ABC △的内切圆I 切边BC 于点D ,,ABD ACD △△的内心分别是,b c J J ,b c AJ J △的外心为O .求证:,,A O I 三点共线. 证明:设I 分别切边,CA AB 于点,E F ,ABD △的内切圆切AD 于点X ,ACD △的内切圆切AD 于点Y ,则2DX DA DB AB DA DB BF AF DA AF =+-=+--=-, 同理22DY DA AF DX =-=.从而,X Y 重合,所以b c J J AD ⊥.因为b c AJ J △的外心为O ,所以1222b bc b c AOJ J AO AJ J XAJ DAC ππ-∠∠==-∠=∠=∠.从而111222b b BAO BAJ J AO BAD DAC BAC ∠=∠+∠=∠+∠=∠,所以,,A O I 三点共线.二、(本小题满分40分)设,,,0,a b c d >且4a b c d +++=.求证:222222221111a b c d a b c d+++≥+++三、(本小题满分50分)已知正整数n 满足()2014,,20141n n >=.令(){}1,,1,n A k N k n n k =∈≤≤={}{}1,1,n n n n n n B k A k A C k A k A =∈+∉=∈-∉对任意n k A ∈,记n A k k S n⎡⎤=⎢⎥⎣⎦,其中[]x 表示不超过x 的最大整数,A 表示集合A 中元素的个数. 证明:(1)()()nnkn k k n k k B k C SS S S --∈∈-=--∏∏;(2)()()mod nnB k n k n kC S S A n -∈-≡∏四、(本小题满分50分)某国建了一座时间机器,形似一条圆形地铁轨道,其上均匀设置了个站台(依次编号为1,2,…,)分别对应一个年份,起始站及终点站均为第一站(对应).为节约成本,机器每次运行一圈,只在其中一半的站台停靠.出于技术原因,每次至多行驶三站必须停靠依次,且所停靠的任两个站台不能是圆形轨道的对径点.试求不同停靠方式的种数.。
高中数学竞赛试题及答案

高中数学竞赛试题及答案一、选择题(每题3分,共15分)1. 下列哪个数不是有理数?A. πB. √2C. 1/3D. -3.142. 若函数f(x) = 2x^2 + 3x + 1,求f(-2)的值。
A. -1B. 3C. 5D. 73. 一个圆的半径为5,它的面积是多少?A. 25πB. 50πC. 75πD. 100π4. 已知等差数列的首项为3,公差为2,求第5项的值。
A. 11B. 13C. 15D. 175. 以下哪个是二次方程x^2 - 5x + 6 = 0的根?A. 2B. 3C. -2D. -3二、填空题(每题4分,共20分)6. 一个三角形的内角和为______度。
7. 若a,b,c是三角形的三边,且a^2 + b^2 = c^2,则此三角形是______三角形。
8. 一个正六边形的内角为______度。
9. 将一个圆分成4个扇形,每个扇形的圆心角为______度。
10. 若sinθ = 1/2,且θ在第一象限,则cosθ = ______。
三、解答题(每题10分,共65分)11. 证明:对于任意实数x,等式e^x ≥ x + 1成立。
12. 解不等式:2x^2 - 5x + 3 > 0。
13. 已知数列{an}的通项公式为an = 3n - 2,求前n项和Sn。
14. 求函数y = x^3 - 3x^2 + 2x的极值点。
15. 已知椭圆的方程为x^2/a^2 + y^2/b^2 = 1(a > b > 0),求椭圆的焦点坐标。
四、附加题(10分)16. 一个圆内接正六边形的边长为a,求圆的半径。
答案一、选择题1. A2. B3. B4. C5. A二、填空题6. 1807. 直角8. 1209. 9010. √3/2三、解答题11. 证明:设g(x) = e^x - (x + 1),则g'(x) = e^x - 1。
当x < 0时,g'(x) < 0,当x > 0时,g'(x) > 0。
高中数学竞赛试题汇总

高中数学竞赛试题汇总高中数学竞赛模拟试题一一试一、填空题(共8小题,8×7=56分)1、已知点(x,y)在直线x+2y=3上移动,当2x+4y取最小值时,点(x,y)与原点的距离是。
2、设f(n)为正整数n(十进制)的各数位上的数字的平方之和,比如记f1(n)=f(n),fk+1(n)=f(fk(n)),f(123)=12+22+32=14.k=1,2,3.则f2010(2010)=。
3、如图,正方体ABCD-A1B1C1D1的二面角度数是。
4、在1,2.2010中随机选取三个数,能构成递增等差数列的概率是。
5、若正数a,b,c满足abc=-(b+ca+ca+b),则ba+c的最大值是。
6、在平面直角坐标系xoy中,给定两点M(-1,2)和N(1,4),点P在X轴上移动,当∠MPN取最大值时,点P的横坐标是。
7、已知数列a,a1,a2.an。
满足关系式(3-an+1)(6+an)=18且a=3,则∑(i=1 to n)ai的值是。
8、函数f(x)=sinx+tanxcosx+tanxcosx+cotxsinx+cotx的最小值为。
二、解答题(共3题,14+15+15=44分)9、设数列{an}满足条件:a1=1,a2=2,且an+2=an+1+an (n=1,2,3.),求证:对于任何正整数n,都有:na(n+1)≥1+(n/2)(an)2,3.10、已知曲线M:x2-y2=m,x>0,m为正常数.直线l与曲线M的实轴不垂直,且依次交直线y=x、曲线M、直线y=-x于A、B、C、D4个点,O为坐标原点。
1)若|AB|=|BC|=|CD|,求证:△AOD的面积为定值;2)若△BOC的面积等于△AOD面积的1/3,求证:|AB|=|BC|=|CD|。
11、已知α、β是方程4x2-4tx-1=0(t∈R)的两个不等实根,函数f(x)=2x-t的定义域为[α,β]。
求证:2α+1<2β+1.Ⅰ)求函数g(t)=max{f(x)}-min{f(x)};Ⅱ)证明:对于u1,u2,u3∈(0,π),若sinu1+sinu2+sinu3=1/2,则1113+g(tanu1)g(tanu2)g(tanu3)<6.二试考试时间:150分钟总分:200分)一、(本题50分)如图,O1和O2与△ABC的三边所在的三条直线都相切,E,F,G,H为切点,并且EG、FH的延长线交于P点。
高中的数学竞赛试题及答案

高中的数学竞赛试题及答案高中数学竞赛试题一、选择题(每题5分,共20分)1. 下列哪个数不是有理数?A. πB. √2C. 0.333...(无限循环)D. 1/32. 如果函数f(x) = 2x^2 - 5x + 3在x = 2时取得最小值,那么f(2)的值是多少?A. -1B. 1C. 3D. 53. 已知等差数列的前三项分别为3, 8, 13,求第10项的值。
A. 43B. 48C. 53D. 584. 若sinx = 1/2,求cosx的值(假设x在第一象限)。
A. √3/2B. -√3/2C. 1/2D. -1/2二、填空题(每题4分,共12分)5. 计算(2x^3 - 3x^2 + 4x - 5) / (x - 1)的商式和余数。
商式为:________余数为:______6. 已知复数z = 3 + 4i,求其共轭复数。
共轭复数为:______7. 一个圆的半径为5,求其内接正六边形的边长。
边长为:______三、解答题(每题18分,共54分)8. 证明:对于任意正整数n,n^5 - n 总是能被30整除。
9. 已知函数g(x) = x^3 - 6x^2 + 11x - 6,求其导数g'(x),并找出g(x)的极值点。
10. 解不等式:|x + 2| + |x - 3| > 4。
四、证明题(每题10分,共10分)11. 证明:对于任意实数a和b,(a^2 + b^2)(1/a^2 + 1/b^2) ≥ 2。
五、附加题(每题15分,共15分)12. 一个圆的半径为r,圆内接正n边形的边长为s。
证明:s =2r*sin(π/n)。
高中数学竞赛试题答案一、选择题1. A(π是无理数)2. B(f(2) = 4 - 10 + 3 = -3,但题目要求最小值,故应为B)3. C(公差d = 13 - 8 = 5,第10项a_10 = 3 + 9*5 = 53)4. A(根据勾股定理,cosx = √3/2)二、填空题5. 商式为:2x^2 - x - 5,余数为:-36. 共轭复数为:3 - 4i7. 边长为:10三、解答题8. 证明略。
数学竞赛试题及答案高中生

数学竞赛试题及答案高中生试题一:代数问题题目:已知\( a, b \) 是方程 \( x^2 + 5x + 6 = 0 \) 的两个实根,求 \( a^2 + 5a + 6 \) 的值。
解答:根据韦达定理,对于方程 \( x^2 + bx + c = 0 \),其根\( a \) 和 \( b \) 满足 \( a + b = -b \) 和 \( ab = c \)。
因此,对于给定的方程 \( x^2 + 5x + 6 = 0 \),我们有 \( a + b =-5 \) 和 \( ab = 6 \)。
由于 \( a \) 是方程的一个根,我们可以将 \( a \) 代入方程得到 \( a^2 + 5a + 6 = 0 \)。
所以 \( a^2 + 5a + 6 = 0 \)。
试题二:几何问题题目:在一个直角三角形中,已知直角边长分别为 3 厘米和 4 厘米,求斜边的长度。
解答:根据勾股定理,直角三角形的斜边长度 \( c \) 可以通过直角边 \( a \) 和 \( b \) 计算得出,公式为 \( c = \sqrt{a^2 + b^2} \)。
将给定的边长代入公式,我们得到 \( c = \sqrt{3^2 + 4^2} =\sqrt{9 + 16} = \sqrt{25} = 5 \) 厘米。
试题三:数列问题题目:一个等差数列的首项 \( a_1 = 3 \),公差 \( d = 2 \),求第 10 项 \( a_{10} \) 的值。
解答:等差数列的通项公式为 \( a_n = a_1 + (n - 1)d \),其中\( n \) 是项数。
将给定的值代入公式,我们得到 \( a_{10} = 3 + (10 - 1) \times 2 = 3 + 9 \times 2 = 3 + 18 = 21 \)。
试题四:组合问题题目:从 10 个不同的球中选取 5 个球,求不同的选取方式有多少种。
竞赛数学高中试题及答案

竞赛数学高中试题及答案试题一:多项式问题题目:已知多项式 \( P(x) = x^3 - 3x^2 + 2x - 5 \),求 \( P(2) \) 的值。
解答:将 \( x = 2 \) 代入多项式 \( P(x) \) 中,得到:\[ P(2) = 2^3 - 3 \times 2^2 + 2 \times 2 - 5 = 8 - 12 + 4 -5 = -5 \]试题二:几何问题题目:在直角三角形 ABC 中,角 C 是直角,若 \( AB = 10 \) 且\( AC = 6 \),求斜边 BC 的长度。
解答:根据勾股定理,直角三角形的斜边 \( BC \) 可以通过以下公式计算:\[ BC = \sqrt{AB^2 - AC^2} = \sqrt{10^2 - 6^2} = \sqrt{100 - 36} = \sqrt{64} = 8 \]试题三:数列问题题目:给定数列 \( a_n = 2n - 3 \),求数列的前 5 项。
解答:根据数列公式 \( a_n = 2n - 3 \),我们可以计算出前 5 项:\[ a_1 = 2 \times 1 - 3 = -1 \]\[ a_2 = 2 \times 2 - 3 = 1 \]\[ a_3 = 2 \times 3 - 3 = 3 \]\[ a_4 = 2 \times 4 - 3 = 5 \]\[ a_5 = 2 \times 5 - 3 = 7 \]数列的前 5 项为:-1, 1, 3, 5, 7。
试题四:概率问题题目:一个袋子里有 5 个红球和 3 个蓝球,随机抽取 2 个球,求抽到一个红球和一个蓝球的概率。
解答:首先计算总的可能组合数,即从 8 个球中抽取 2 个球的组合数:\[ \text{总组合数} = \binom{8}{2} = \frac{8 \times 7}{2} = 28 \]然后计算抽到一个红球和一个蓝球的组合数:\[ \text{有利组合数} = \binom{5}{1} \times \binom{3}{1} = 5 \times 3 = 15 \]所以,抽到一个红球和一个蓝球的概率为:\[ P = \frac{\text{有利组合数}}{\text{总组合数}} =\frac{15}{28} \]试题五:函数问题题目:若函数 \( f(x) = x^2 - 4x + 4 \),求 \( f(x) \) 的最小值。
全国高中数学竞赛(四川预赛试题及解答)(1)

2012年全国数学竞赛(四川初赛)一、单项选择题(本大题共6个小题,每小题5分,共30分)1、设集合{}2|560S x x x =--<,{}|2|3T x x =+≤,则S T ⋂=( ) A 、{|51}x x -≤<- B 、{|55}x x -≤< C 、{|11}x x -<≤ D 、{|15}x x ≤<2、正方体1111ABCD A B C D -中1BC 与截面11BB D D 所成的角是( ) A 、6π B 、4π C 、3πD 、2π3、已知2()23f x x x =-+,()1g x kx =-,则“||2k ≤”是“()()f x g x ≥在R 上恒成立”的( )A 、充分但不必要条件B 、必要但不充分条件C 、充要条件D 、既不充分也不必要条件4、设正三角形1∆的面积为1S ,作1∆的内切圆,再作内切圆的内接正三角形,设为2∆,面积为2S ,如此下去作一系列的正三角形34,,∆∆L ,其面积相应为34,,S S L , 设11S =,12n n T S S S =+++L,则lim n n T →+∞=()A 、65B 、43C 、32D 、25、设抛物线24y x =的焦点为F ,顶点为O ,M 是抛物线上的动点,则||||MO MF 的最大值为( )A 、B 、C 、43D6、设倒圆锥形容器的轴截面为一个等边三角形,在此容器内注入水,并放入半径为r 的一个实心球,此时球与容器壁及水面恰好都相切,则取出球后水面高为( )A 、rB 、r 2C 、r 312D 、r 315二、填空题(本大题共6个小题,每小题5分,共30分)7、如图,正方形ABCD 的边长为3E为DC的中点,AE 与BD 相交于F ,则FD DE ⋅u u u r u u u r的值是.8、261()x x x+-的展开式中的常数项是 .(用具体数字作答)9、设等比数列{}n a 的前n 项和为n S ,满足2(1)4n n a S +=,则20S 的值为 .10、不超过2012的只有三个正因数的正整数个数为 .11、已知锐角,A B 满足tan()2tan A B A +=,则tan B 的最大值是 .12、从1,2,3,4,5组成的数字不重复的五位数中,任取一个五位数abcde,满足条件“a b c d e<><>”的概率是.三、解答题(本大题共4个小题,每小题20分,共80分)13、设函数()sin1f x x x=+,(I)求函数()f x在[0,]2π上的最大值与最小值;(II)若实数cba,,使得1)()(=-+cxbfxaf对任意Rx∈恒成立,求a cb cos的值.14、已知,,a b c R+∈,满足()1abc a b c++=,(I)求()()S a c b c=++的最小值;(II)当S取最小值时,求c的最大值.15、直线1y kx =+与双曲线221x y -=的左支交于A 、B 两点,直线l 经过点(2,0)-和AB的中点,求直线l 在y 轴的截距b 的取值范围.16、设函数2()(1)n n f x x x =-在1[,1]2上的最大值为n a (1,2,3,n =L ).(I )求数列{}n a 的通项公式;(II )求证:对任何正整数(2)n n ≥,都有21(2)n a n ≤+成立;(III )设数列{}n a 的前n 项和为n S ,求证:对任意正整数n ,都有716n S <成参考解答一、选择题(本大题共6个小题,每小题5分,共30分)1、C2、A3、A4、B5、B6、D二、填空题(本大题共6个小题,每小题5分,共30分) 7、32- 8、5- 9、0 10、14 11、412、215三、解答题(本大题共4个小题,每小题20分,共80分)13、解:(I )由条件知()2sin()13f x x π=++,(5分)由02x π≤≤知,5336x πππ≤+≤,于是1sin()123x π≤+≤ 所以2x π=时,()f x 有最小值12122⨯+=; 当6x π=时,()f x 有最大值2113⨯+=. (10分)(II )由条件可知2sin()2sin()133a xb xc a b ππ+++-++=对任意的x R ∈恒成立,∴2sin()2sin()cos 2cos()sin (1)0333a xb xc b x c a b πππ+++⋅-+⋅++-= ∴2(cos )sin()2sin cos()(1)033a b c x b c x a b ππ+⋅+-⋅+++-=∴cos 0sin 010a b c b c a b +=⎧⎪=⎨⎪+-=⎩,(15分)由sin 0b c =知0b =或sin 0c =。
【精品】数学奥林匹克竞赛高中训练题集【共36份】

奥林匹克数学竞赛高中训练题集
目 录
数学奥林匹克高中训练题(01) ........................................................................................................................... 1 数学奥林匹克高中训练题(02) ........................................................................................................................... 3 数学奥林匹克高中训练题(03) .............................................................................................. 4 数学奥林匹克高中训练题(04) ........................................................................................................................... 6 数学奥林匹克高中训练题(05) ...................................................................................................
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新高中数学奥数竞赛训练题一
一.选择题(每小题6分,共36分)
1.如果100,0,log log 3
x y x y y x >>+=, 144xy =,那么x y +的值是( ) .203A .263B .243C .103D
2. 设函数)10()(||≠>=-a a a x f x 且,f (-2)=9,则 ( )
A. f (-2)>f (-1)
B. f (-1)>f (-2)
C. f (1)>f (2)
D. f (-2)>f (2)
3.已知二次函数()f x 满足(1)(1),f x f x -=+4(1)1,f -≤≤-1(2)5,f -≤≤则(3)f 的取值范围是( )
A. 7(3)26f ≤≤
B. 4(3)15f -≤≤
C. 1(3)32f -≤≤
D. 2825(3)33f -
≤≤ 4.如图1,设P 为△ABC 内一点,且2155
AP AB AC =+u u u r u u u r u u u r , 则△ABP 的面积与△ABC 的面积之比为 ( )
A.
15 B. 25 C. 14 D.13
5. 设在xoy 平面上,20y x <≤,01x ≤≤所围成图形的面积为13,则集合{}{}2(,)|||||1,(,)|||1M x y y x N x y y x =-≤=≥+的交集M N ⋂所表示图形的面积是( ) A. 31 B. 23 C. 1 D. 43
62007x y
=的正整数解(,)x y 的组数是( ) A .1组 B. 2 组 C. 4组 D. 8组
二.填空题(每小题9分,共54分)
7.函数213
()log (56)f x x x =-+的单调递增区间为 .
8.已知0
2sin 2sin 5=α,则)1tan()1tan(00-+αα的值是_____________________. 9.设{}n a 是一个等差数列,12119,3,a a ==记16n n n n A a a a ++=+++L L ,则n A 的最小值为
10.函数()f x 满足(1)1003f =,且对任意正整数n 都有
2(1)(2)()()f f f n n f n +++=L L ,则(2006)f 的值为
11..已知⎪⎩
⎪⎨⎧≤+≥-≥03030y x y x y ,则x 2+y 2的最大值是
12.对于实数x ,当且仅当n ≤x <n +1(n ∈N +)时,规定[x ]=n ,则不等式 045][36][42<+-x x 的解集为
三.解答题(每小题20分,共60分)
13.设集合A =12log (3)2x x ⎧⎫⎪⎪-≥-⎨⎬⎪⎪⎩⎭
,B =21a x x a ⎧⎫>⎨⎬-⎩⎭,若A ∩B ≠∅,求实数a 的取值范围.
14.三角形ABC 的顶点C (,)x y 的坐标满足不等式22
82,3x y y y +≤+≥.边AB 在横坐标轴上.如果已知点Q (0,1)与直线AV 和BC 的距离均为1,求三解形ABC 面积的的最大值.
15.设函数()y f x =的定义域为R ,当0x <时,()1f x >,且对任意实数,x y ,有()()()f x y f x f y +=成立,数列{}n a 满足1(0)a f =且
*11()().(2)
n n f a n N f a +=∈-- (1)求2008a 的值;
(2
)若不等式12111(1)(1)(1)n
a a a +++≥L L 对一切*n N ∈均成立,求k 的最大值.
数学竞赛训练题一参考答案
1.B 2.A 3.C 4.A 5.B 6.D
7. (,2)-∞- 8.23-
.. 9. 57 10.12007
11. 9 12. 82<≤x
13. 解:a ∈(-1,0)∪(0,3)
14.解:点C 在如图的弓形区域内.设1200(,0),(,0),(,)A a B a C x y ,由点Q 到直线AC ,BC 的距离等于1得
201010202020(2)20,
(2)20.y a x a y y a x a y -+-=-+-=
这说明12,a a 是方程2000(2)20y a x a y -+-=的2个根.所以 22
0001212204[(2)]()4,(2)x y y AB a a a a y +-=+-=- 这里0[3,4]y ∈.首先固定0y ,欲使AB 最大,需
2209(1).x y =--
因此当0[3,4]y ∈为某一定值时,点C 应位于弓形弧上.所以
000011322ABC S AB y y y ∆=⋅≤≤=时取等号)
115.(1)1,0,(1)(1)(0),(0) 1.(0)1x y f f f f a f =-=-=-=∴==∴∈∴1212212112112112112解:令得 当x>0时,-x<0,f(0)=f(x)f(-x)=1, 0<f(x)<1.设x ,x R,且x <x ,则x -x >0,f(x -x )<1,
f(x )-f(x )=f(x )-f(x +x -x )=f(x )[1-f(x -x )]>0. f(x )>f(x ),函数
y=111200812
()(2) 1.(1
2)(0),20.22
1,4015
111(2)
(1)(1)(1)
111(1)(1
)(1)11(1)(1n n n n n n n n f a f a f an an f a a a a a n a a a a a +++--=∴+--=--=-=∴=-=+
++≥+++≤++L L L L n+1n f(x)在R 上是单调递减函数.
1由f(a )=得f(-2-a )
即由,知k .设F(n)=1)(1)()0
111(1)(1)(1)(1)(1)1,(1)()()()(1)a a F n a a a F n F n F n F n F n F n F +>++++=+=>+>∴≥=≤L L L L 则且又即所以,k 即k。