1-2传感器的一般特性重点

合集下载

传感器的一般特性

传感器的一般特性

• 通常用下面四个指标来表示传感器的动态性 能(P37): (1)时间常数τ (2)上升时间tr (3)响应时间t5、t2 (4)超调量

• 2.频域性能指标(P32) 通常在正弦信号作用下测定传感器动 态性能的频域指标,称为频率法。具体方 法是在传感器输入端加恒定幅值的正弦信 号,测出不同频率下稳定输出信号的幅值, 绘制出幅频特性曲线。 频域通常有下面三个动态性能指标: (1)通频带 b (2)工作频带 (3)相位误差
• 2.2传感器的动态特性 传感器的动态特性是指输入量随时间动态变 化时,其输出与输入的关系。传感器所检测的物 理量大多数是时间的函数,为使传感器输出信号 及时准确地反映输入信号的变化,不仅要求它具 有良好的静态特性,还要求它具有良好的动态特 性。 为研究传感器的动态特性,可建立其动态数 学模型,用数学中的逻辑推理和运算方法,分析 传感器在动态变化的输入量作用下,输出量如何 随时间改变。也常用实验手段研究传感器的动态 特性,即给传感器一个“标准”信号(正弦输入 和阶跃输入),测出其输出随时间的变化关系, 进而得到其各项动态特性技术指标。
1.理想的线性特性 当a0=a2 =a3=…=an=0时,具有这种特性。此时 y=a1x,静态特性曲线是一条直线,传感器的灵敏 度为Sn=y/x=a1=常数 2.非线性项仅有一次项和偶次项 即y= a1x+a2x2+a4x4+… 因不具有对称性,其线性范围较窄,所以在设 计传感器时一般很少采用这种特性。当出现 时,必须采取线性化补偿措施。
• 2.2.1传感器的动态数学模型 要精确建立传感器或其测试系统的数学 模型是很困难的,在工程上采取一些近似, 略去一些影响不大的因素。通常把传感器 看成一个线性时不变系统,用常系数线性 微分方程来描述其输出量y与输入量x之间的 关系。 对于一个复杂的系统或输入信号,求解 微分方程是很难的,常用一些足以反映系 统动态特性的函数,将系统的输出与输入 联系起来,这些函数有传递函数、频率响 应函数和脉冲响应函数等。

第一章 传感器的一般特性2zz

第一章   传感器的一般特性2zz

7、漂移

漂移是指传感器的被测量不变,而其输出 量却发生了不希望有的改变。
y 灵敏度漂移
零点漂移 灵敏度漂移 时间漂移(时漂) 温度漂移(温漂)
2 1 零点漂移 O x
8 分辨力和阈值
(1)阈值:当传感器的输入从零开始缓慢增加时, 只有在达到了某一值后,输出才发生可观测的变化,这 个值说明了传感器可测出的最小输入量,称为传感器的 阈值。 (2)分辨力:当传感器的输入从非零的任意值缓慢 增加时,只有在超过某一输入增量后,输出才发生可观 测的变化,这个输入增量称为传感器的分辨力。
取较大者为
RMax
ΔRmax2 ΔRmax1
R ( R Max yFS ) 100%
x
6.稳定性 稳定性表示传感器在较长时间内保持 其性能参数的能力,故又称长期稳定性。 稳定性可用相对误差或绝对误差表示。 表示方式如: 个月不超过 %满量程输 出。有时也采用给出标定的有效期来表示。
第一章 传感器的一般特性
在工程应用中,任何测量装置性能的优劣总要 以一系列的指标参数衡量,通过这些参数可以方便地 知道其性能。这些指标又称之为特性指标。 传感器可看作二端口网络,即有两个输入端和 两个输出端,输出输入特性是其基本特性,可用静态 特性和动态特性来描述。
输入
传感器
输出
1. 1 传感器的静特性
九、抗干扰能力
设计、选用、购买
1、量程和范围
传感器所能测量的最大被测量(输入量)的数值称为测量上
限,最小被测量称为测量下限,上限与下限之间的区间,则 称为测量范围。

量程---测量上限与下限的代数差。
测量范围为-20~+20℃,量程为40℃; 测量范围为-5~+10g,量程为15g; 测量范围为100~1000Pa,量程为900Pa;

传感器考试知识点总括

传感器考试知识点总括

传感器知识要点要点回顾第二章常用传感器基本概念:1--有关传感器的定义、基本组成涵盖框图;2--传感器的基本特性(灵敏度、线性度、重复性、精确度、稳定性、动态特性、环境参数)3--传感器的分类方法和种类,何谓能量控制型传感器(电阻、电容、电感)也称无源型传感器、何谓能量转换型传感器(压电、磁电、热电、光电)也称有源传感器。

4—电阻型传感器要求掌握公式,见书第6页,三个相关参数,对于电阻应变式:电阻应变片的电阻相对变化率是与应变成正比的。

掌握应变选择原则:当测量较小应变时,应选用压阻效应工作的应变片,而测量大应变时,应选用应变效应工作的应变片。

5---对于金属丝应变片在测量被测物体的应变时,电阻的相对变化主要由哪个参数决定的(丝的几何尺寸)来决定的。

6—对于电容式传感器,请掌握其测量原理,相关公式,对应的三个参数的含义,要求掌握变极距有关灵敏度的计算公式:见书第14页2.27,其灵敏度显然是非线性的,其使用时有条件的。

7—对于电感式传感器要掌握测量原理,计算公式,掌握自感式、互感式、差动式结构的特点,请注意实际工程应用的接法。

见书第21页。

图2.23b.反向串联。

掌握电涡流基本原理。

利用涡电流传感器测量物体位移时,如果被测物体是塑料材料,此时可否进行位移测量,如果不能,应采取什么措施才能测量。

8--- 有关压电传感器,要掌握压电效应,何谓正压电效应,何谓逆压电效应,压电效应的等效电路,压电传感器对测量电路的要求,见书第26-27。

压电式传感器可以采用多片压电晶片串联或并联,一般并联接法适宜于测量缓变信号,串联接法适宜于测量高频信号。

为了使输出电压几乎不受电缆长度变化的影响,其前置放大器应采用电荷放大器。

为什么说压电式传感器一般适合动态测量而不适合静态测量?9---对于磁电式传感器,要求掌握测量原理,基本公式,请看书第28页,恒磁通动圈式传感器,输出感应电势与线圈运动的速度成正比,如在测量电路中接入积分电路和微分电路,则可用来测量位移和加速度。

传感器原理与应用复习范围

传感器原理与应用复习范围

绪论一、传感器:将各种非电量(包括物理量、化学量、生物量等),按照一定的规律转换成便于处理和传输的另一种物理量(一般为电量)的装置。

二、传感技术:是利用各种功能材料实现信息检测的一门应用技术,是检测(传感)原理、材料科学、工艺加工等三要素的最佳结合。

三、传感器的组成:传感器一般有敏感元件、转换原件和测量电路三部分组成,有事还需要加辅助电源。

四、传感器分类:1.按输入量分类如输入量分别为温度、压力、位移、速度、加速度、湿度等非电量时,则相应的传感器称为温度传感器、压力传感器、位移传感器、速度传感器、加速度传感器、湿度传感器等。

2.按测量原理分类现有传感器的测量原理主要是基于电磁原理和固体物理学理论。

如根据变电阻的原理,相应的有电位器式、应变式传感器;根据变磁阻的原理,相应的有电感式、差动变压器式、电涡流式传感器;根据半导体有关理论,则相应的有半导体力敏、热敏、光敏、气敏等固态传感器。

3.按结构型和物性型分类所谓结构型传感器,主要是通过机械结构的几何形状或尺寸的变化,将外界被测参数转换成相应的电阻、电感、电容等物理量的变化,从而检测出被测信号,这种传感器目前应用的最为普遍。

物性型传感器则是利用某些材料本身物理性质的变化而实现测量,它是以半导体、电介质、铁电体等作为敏感材料的固态器件。

五、传感器的发展趋向1.传感器的固态化,2、传感器的集成化和多功能化3.传感器的图像化4.传感器的智能化第1章传感器的一般特性§1-1 传感器的静态特性传感器在被测量的各个值处于稳定状态时,输出量和输入量之间的关系称为静态特性。

传感器静态特性的主要指标有以下几点:一、线性度(非线性误差)在规定条件下,传感器校准曲线与拟合直线间最大偏差与满量程(F·S)输出值的百分比称为线性度。

二、灵敏度传感器的灵敏度指到达稳定工作状态时输出变化量与引起此变化的输入变化量之比。

线性传感器校准曲线的斜率就是静态灵敏度K。

1-1测量的基本概念、测量误差1-2传感器及其基本特性

1-1测量的基本概念、测量误差1-2传感器及其基本特性

作图法求灵敏度过程 切点 y Δy
传感器 特性曲线
x1
y K x
0 Δx
xmax
x
2、分辨力:
指传感器能检出被测信 号的最小变化量,是有量纲 的数。当被测量的变化小于 分辨力时,传感器对输入量 的变化无任何反应。对数字 仪表而言,如果没有其他附 加说明,可以认为该表的最 后一位所表示的数值就是它 的分辨力。一般地说,分辨 力的数值小于等于仪表的最 大绝对误差。
传感器实例
温度传感器
压力传感器
液位传感器
三、传感器基本特性
传感器的特性一般指输入、输出特性。 包括:灵敏度、分辨力、线性度、稳定度、 电磁兼容性、可靠性等。
1、灵敏度 :
灵敏度是指传感器在稳态下输出变化值与 输入变化值之比,用K 来表示:
dy y K dx x
(1-6)
对线性传感器而言,灵敏度为一常数;对非 线性传感器而言,灵敏度随输入量的变化而变 化。
产生粗大误差的一个例子
2.系统误差:
系统误差也称装置误差,它反映 了测量值偏离真值的程度。凡误差的 数值固定或按一定规律变化者,均属 于系统误差。
系统误差是有规律性的,因此可 以通过实验的方法或引入修正值的方 法计算修正,也可以重新调整测量仪 表的有关部件予以消除。
夏天摆钟变慢的原 因是什么?
3.随机误差
误差产生的因素:
1.粗大误差
明显偏离真值的误差称为粗大误差,也叫 过失误差。粗大误差主要是由于测量人员的粗 心大意及电子测量仪器受到突然而强大的干扰 所引起的。如测错、读错、记错、外界过电压 尖峰干扰等造成的误差。就数值大小而言,粗 大误差明显超过正常条件下的误差。当发现粗 大误差时,应予以剔除。

传感器原理及应用期末考试重点课后题复习

传感器原理及应用期末考试重点课后题复习

1—1 综合传感器的概念。

答:从广义角度定义:凡是利用一定的物质(物理、化学、生物)法则、定理、定律、效应等进行能量转换与信息转换,并且输出与输入严格一一对应的器件或装置;从狭义角度定义:能把外界非电信号转换成电信号输出的器件或装置;国家标准定义是:“能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置"。

通常有敏感元件和转换元件组成;1—2 一个可供实用的传感器有那几部分构成?各部分的功能是什么?用框图显示传感器系统。

答:组成——由敏感元件、转换元件、基本电路组成。

1。

敏感元件:是直接受被测物理量;以确定关系输出另一物理量的元2.转换元件;是将敏感元件输出的非电量转换成电路参数及电流或电压等电信号。

3。

基本转换电路则将该电路转换成便于传输处理电量。

1—3 如果家用小车采用超声波雷达,需要那几部分组成?请画出图.第2章2-1 衡量传感器静态特性的主要指标有哪些?说说它们的含义。

答:1、线性度: 表征传感器输出-输入校准曲线与所选定的拟合直线之间的吻合(或偏离)程度的指标。

2、灵敏度:传感器输出量增量与被测输入量增量之比。

3、分辨力:传感器在规定测量范围内所能检测出的被测输入量的最小变化量。

4、回差:反映传感器在正(输入量增大)反(输入量减小)行程过程中,输出-输入曲线的不重合程度指标。

5、重复性:衡量传感器在同一工作条件下,输入量按同一方向作全程连续多次变动时,所得特性曲线间一致程度的指标。

6、阈值:是能使传感器输出端产生可测变化量的最小被测输入量值,即零位附近的分辨力。

7、稳定性:传感器在相当长时间内仍保持其性能的能力。

8、漂移:指在一定时间间隔内,传感器输出量存在着与被测输人量无关的、不需要的变化.9、静态误差(精度):指传感器在满量程内任一点输出值相对其理论值的可能偏离(逼近)程度.它表示采用该传感器进行静态测量时所得数值的不确定度。

2-2 计算传感器线性度的方法有哪几种?有什么差别?1、理论直线法:以传感器的理论特性线作为拟合直线,与实际测试值无关.优点是简单、方便,但输出平均值与拟合直线间的最大偏差很大。

武汉大学传感器技术课件-传感器一般特性

武汉大学传感器技术课件-传感器一般特性
传感器技术
主讲人: 吴琼水
武汉大学电子信息学院
第1章 传感器的一般特性
1.1 传感器静态特性
静态特性指标
(1)线性度 (2)灵敏度 (3)精确度(精度) (4)最小检测量和分辨力 (5)迟滞 (6)重复性 (7)稳定性 (8)漂移
线性度(Linearity)
在规定的条件下,传感器静态校准曲线(实际曲线)与拟合直线间最大偏差 与满量程输出值的百分比称为线性度。
传感器技术
主讲人: 吴琼水
武汉大学电子信息学院
第1章 传感器的一般特性
1.1 传感器静态特性
静态特性指标
(1)线性度 (2)灵敏度 (3)精确度(精度) (4)最小检测量和分辨力 (5)迟滞 (6)重复性 (7)稳定性 (8)漂移
迟滞
传感器在输入量由小到大(正行程)及输入量由大到小(反行程)变化期间其输入 输出特性曲线不重合的现象称迟滞。
例:某电子秤: 增加砝码
电桥输出 减砝码输出
0 g —— 50g —— 100g —— 200g 0.5 mv --- 2.0mv -- 4.0mv --- 8.0mv 0.6 mv --- 2.2mv ---4.5mv --- 8.0mv
H
H max
/Y FS
100%
产生这种现象的主要原因是由于传感器敏感元件材 料的物理性质和机械另部件的缺陷所造成的,例如弹 性敏感元件弹性滞后、运动部件摩擦、传动机构的间 隙、紧固件松动等。
准确度
说明传感器输出值与真值的偏离程度。准确度是系统误差大小的标志。
精确度
是精密度与准确度两者的综合优良程度。
低精密度, 低正确度
高精密度, 低正确度
低精密度, 高正确度

第1章传感器的一般特性MOOC1_2_02

第1章传感器的一般特性MOOC1_2_02

,为静态灵敏度。
如果传感器中含有单个储能元件,则在微分方程中出现Y的一阶导数,便可 以用一阶微分方程表示。
(二)一阶传感器的数学模型:
dY (t ) a1 + a0Y (t ) = b0 X (t ) dt
例:不带保护套管的热电偶插入恒温水浴中进行温度测量。
建立数学模型:
设 m1——热电偶的质量 C1——热电偶的比热 T1——热接点的温度 T0——被测介质的温度 R1——介质的与热电偶之间的热阻
如果用算子D表示d / dt , 则上式可表示为:
(an D + an −1 D
n m
n −1
+ ⋅⋅⋅ + a1 D + a0 )Y (t )
m −1
=(bm D + bm−1 D
+ ⋅⋅⋅ + b1 D + b0 )X(t)
绝大多数传感器的输出与输入的关系均可以用零阶、一阶或二阶 微分方程来描述。
a 式中: τ = 1 a0 b0 K= a0
,为时间常数; ,为静态灵敏度。
一般数学模型
(二)一阶传感器的数学模型:
微分方程为:
(τ D +1)Y (t) = KX(t)
a 式中: τ = 1 a0 b0 K= a0
,为时间常数;
dY (t ) a1 + a0Y (t ) = b0 X (t ) dt
(一)零阶传感器的数学模型:
在零阶传感器中,只有a0与b0两个系数,微分方程为:
也可以写成:
a0Y (t ) = b0 X (t ) b0 Y (t ) = X (t ) a0
一般数学模型
(一)零阶传感器的数学模型:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

注:
①零点处的最小检测 量称为阈值。 ②K越大表明传感器检 测微量的能力越高。
18
(二)分辨力
反映传感器能够有效辨别最小输入变化量的能力。
例如:
温度检测装置显示器显示温度变化最小值为0.01℃。
水表最小显示水量为0.001m3。 数字式仪表的分辨力用数字指示值的最后一位数所代 表的输入量表示。
2021/2/11
4
静态特性描述(数学模型)
从传感器的性能看, 希望具有线性关系, 即具有理想 的输出输入关系。如果不考虑迟滞和蠕变等因素, 其输 出与输入关系可用一个代数方程表示为:
y a 0 a 1 x a 2x2 .. .a .n .xn .
式中 a0——输入量x为零时的输出量; a1, a2, ……,an——非线性项常系数。
K的最佳估计值,拟合直线的拟合精度最高,但计算较为
复杂。
2021/2/11
12
最小二乘法原理
就是使各测量点实际输出数据Y i与对应拟合直
线输出值 Yˆi 偏差的平方和为最小。
n
n
n
2i (Yi Yˆi )2 [Yi (a0 KX i )]2 min
i 1
i 1
i 1
n——校准点数。
K随X变 化而变 化。
0
X
K Y 常数
X
0
X
K dY 常数
dX
2021/2/11
图1-6 传感器灵敏度的定义
15
三、精确度
(一)精密度δ 指在相同条件下,用传感器对被测量进行多次重复
测量,测量结果的分散程度。
δ表明测量结果重复一致的程度,反映随机误差的大 小,越小精密度越高。
(二)正确度ε 指测量结果偏离真值大小的程度,反映系统误差的
线的一段, 使输出-输入特性线性化。所采用的直线称
为拟合直线。
2021/2/11
7
一、线性度(非线性误差)
定义:
在规定条件下,传感器校准曲线与拟合直线之
间的最大偏差与满量程(F ·S)输出值的百分比称为
传感器的线性度(或非线性误差)。
Y
拟合直线
校准曲线
Ymax
计算公式
∆Ymax
YF·S
(X0,Y0) 0
信号
静态信号
动态信号
与t无关的 稳定状态信号
随t变化极其缓慢 的准静态信号
确定性信号
非确定性信号 (随机信号)
周期信号
瞬变信号
测试要求:
无论对什么输入量,都要求实现不失真测试。
2021/2/11
3
1.1 传感器的静态特性
静态特性的定义:
被测量的各个值处于稳定状态时,传感器的输出与 输入的关系。
dx 0 dt
2021/2/11
6
静态校准曲线 通过静态标定获得。即在标准工作状态下,用
一定精度等级的标准设备对传感器进行循环往复测 试,得到其输入输出曲线即为静态校准曲线。
拟合直线
在实际中, 为了数据处理的方便, 希望得到线性关
系, 如果传感器非线性的方次不高,输入量变化范围较
小, 可用一条直线(切线或割线)近似的代表实际曲
大小,越小正确度越高。
2021/2/11
16
(三)精确度τ 含有精密度和正确度两者之和的意思。一切测
量都要求既精密又正确。 精确度通常用测量结果的相对误差来表示。
传感器与测量仪表的精确等级A
A A 100% Y
FS
注:A按一系列标准
百分数分挡。
A ——传感器的精度;
∆A——传感器测量范围内允许的最大绝对误差。
x 求出a0、K即得到拟合直
线方程。
特点:简单直观,但未考虑所有校准点数据的分布,拟合精
度较低,用在非线性度较小的情况下。
2021/2/11
11
(二)最小二乘法拟合
Y
拟合直线方程
∆Ymax
Yi
YF·S
Yˆi
0
Xi
X
图1-5 最小二乘线性度拟合
Y a0 KX
求出a0、K即可得到 拟合直线方程。
பைடு நூலகம்
特点:利用了所有测量数据(xi,yi), 来求方程中系数a0、
i 1
n
n
n
n
X
2 i
Yi
Xi
X iYi
a0 i1
i1 i i1
i 1
n
n
n
X
2 i
(
Xi )2
i 1
i 1
2021/2/11
14
二、灵敏度
定义:
是指传感器达到稳定工作状态时输出量变化量ΔY 与引起此变化的输入变化量ΔX的比值, 即
线性传感器
Y
K Y X
非线性传感器
Y dY
dX
2021/2/11
17
四、最小检测量与分辨力
(一)最小检测量M
指在规定测量范围内,传感器所能检测出的被测输入 量的最小变化量。M越小表明检测微量的能力越高。
一般用能够引起输出若干倍噪声电平的被测输入变化 量表示。
M CN K
C——系数,一般取1~5; N——噪声电平; K——传感器的灵敏度。
2021/2/11
传感器的主要特性
主要内容:
一、传感器的静态特性 二、传感器的动态特性
2021/2/11
1
在生产过程和科学实验中, 要对各种各样的参数 进行检测和控制, 就要求传感器能感受被测非电量 的变化并将其不失真地变换成相应的电量, 这取决 于传感器的基本特性, 即输出—输入特性。
2021/2/11
2
传感器的输入量:
图1-2 2021/2/11
Xmax
线性度的表示
L
Ymax YF S
100%
X
8
线性度实质上反映的是校准曲线与拟合直线间的偏 差程度。
拟合直线即基准直线,人为作出。基准直线不同,线性 度也不同,见图1-3。
2021/2/11
9
y
yFS
ΔYmax
x
0
xm
(a) 理论拟合
y
yFS
ΔYmax
y
ΔYmax
如,滑动电位器
U0
lx l
Ui
2021/2/11
5
y
y
y
0
x
0
x
0
x
(a)理想线性
y
可见:各项系
(b)只有偶次非线性项
数(c)不只有同奇,次非决线性 定项
y
图3.1 线性了度特 性 曲 线 的
x
0
x
具体形式各不
0
x 相同。
线性项
(c)只有奇次非线性项
(d)实际特性曲线
图3.1 线性度 图1-1 传感器4种典型静态特性曲线
K
a0
2i 2 (Yi KX i a0 )( X i ) 0 2i 2 (Yi KX i a0 )(1) 0
2021/2/11
13
求解以上二式,即可得到K 、a0,即
n
n
n
n X iYi X i Yi
K
i 1 n
i 1
i 1
n
n
X
2 i
(
Xi )2
i 1
ΔYmax
x
(b) 过零旋转拟合
y
yFS
ΔYmax
0
xm
(c) 端基连线拟合
x0
xm
(d) 最小二乘拟合
2021/2/11
图1-3 基准直线的不同拟合方法
x
10
(一)端基法拟合
拟合直线方程表示为
Y
b0
Y a0 KX
ΔYmax
YF·S
a0
0
xm
图1-4 端基线性度拟合
a0——Y轴上截距; K——直线a0b0的斜率。
相关文档
最新文档