第4讲 生活中的变量关系及函数的概念

第4讲 生活中的变量关系及函数的概念
第4讲 生活中的变量关系及函数的概念

生活中的变量关系及函数的概念

【学习目标】

(1)了解函数是描述变量之间的依赖关系的重要数学模型。

(2)理解函数的概念,会用集合与对应的语言刻画函数,了解构成函数的要素,在学会运用区间表示数集的基础上,会求一些简单函数的定义域和值域,初步掌握换元法的简单运用.

【要点梳理】

要点一:函数关系与依赖关系的联系

(1)具有依赖关系的两个变量,不一定具有函数关系;

(2)当且仅当对于其中一个变量的每一个值,另一个变量都有唯一确定的值时,才称这两个变量之间有函数关系;

(3)运用图形语言说明变量x,y间的关系:

结合依赖关系及函数(初中)的定义可知,图2-1中变量x,y间具有依赖关系,但不具有函数关系;而图2-2中变量x,y间具有函数关系和依赖关系.

要点二:函数的定义

设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.

记作:y=f(x),x∈A.

其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.

要点诠释:

(1)A、B集合的非空性;(2)对应关系的存在性、唯一性、确定性;(3)A中元素的无剩余性;(4)B中元素的可剩余性。

要点三:构成函数的三要素:定义域、对应关系和值域

(1)构成函数的三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全—致,即称这两个函数相等(或为同一函数);

(2)两个函数相等当且仅当它们的定义域和对应关系完全—致,而与表示自变量和函数值的字母无关.

要点四:区间的概念

(1)区间的分类:开区间、闭区间、半开半闭区间;

(2)无穷区间;

(3)区间的数轴表示.

区间表示:

x a x b a b

<<= {x|a≤x≤b}=[a,b];

{|}(,);

(]

x a x b a b

≤<=;

{|},

{|},

x a x b a b

<≤=;[)

(][)

≤=∞≤=+∞.

x x b b x a x a

{|}-,; {|},

要点五:函数定义域的求法

(1)当函数是以解析式的形式给出时,其定义域就是使函数解析式有意义的自变量的取值的集合.具体地讲,就是考虑分母不为零,偶次根号的被开方数、式大于或等于零,零次幂的底数不为零以及我们在后面学习时碰到的所有有意义的限制条件.

(2)当函数是由实际问题给出时,其定义域不仅要考虑使其解析式有意义,还要有实际意义.

(3)求函数的定义域,一般是转化为解不等式或不等式组的问题,注意定义域是一个集合,其结果必须用集合或区间来表示.

要点六:函数值域的求法

实际上求函数的值域是个比较复杂的问题,虽然给定了函数的定义域及其对应法则以后,值域就完全确定了,但求值域还是特别要注意讲究方法,常用的方法有:

观察法:通过对函数解析式的简单变形,利用熟知的基本函数的值域,或利用函数的图象的“最高点”和“最低点”,观察求得函数的值域;

配方法:对二次函数型的解析式可先进行配方,在充分注意到自变量取值范围的情况下,利用求二次函数的值域方法求函数的值域;

判别式法:将函数视为关于自变量的二次方程,利用判别式求函数值的范围,常用于一些“分式”函数等;此外,使用此方法要特别注意自变量的取值范围;

换元法:通过对函数的解析式进行适当换元,将复杂的函数化归为几个简单的函数,从而利用基本函数的取值范围来求函数的值域.

求函数的值域没有通用的方法和固定的模式,除了上述常用方法外,还有最值法、数形结合法等.总之,求函数的值域关键是重视对应法则的作用,还要特别注意定义域对值域的制约.

【典型例题】

类型一:函数关系与依赖关系

例1.某宾馆有相同标准的床位100张,根据经验,该宾馆的床价(即每张床每天的租金)不超过10元时,床位可以全部租出;当床价高于10元时,每提高1元,将有3张床位空闲.为了获得较好的效益,该宾馆需给床位定一个合适的价格,条件是:(1)要方便结账,床价应为1元的整数倍.(2)该宾馆每日的费用支出为575元,床位出租的收入必须高于支出,而且高出得越多越好.若用x表示床价,y表示该宾馆一天出租床位的净收入(即除去每日的支出费用后的收入).则净收入y是否是床价x的函数?若是,写出y与x的函数关系;若不是,请说明理由.

举一反三:

【变式1】由于环境气候的原因,夏季高山上的温度要比山下低.著名风景旅游区泰山夏季山脚平均温度为26℃,从山脚起每升高100 m,气温就降低0.7℃,则温度y是否是爬山高度x的函数?若是,写出y与x之间的函数关系;若不是,请说明理由.

类型二:函数的概念

例2.已知集合{}1,2,3A =,{}4,5B =,则从A 到B 的函数()f x 有 个.

举一反三:

【变式1】下列各问的对应关系是否是给出的实数集R 上的一个函数?为什么?

(1):f x →

2

,0,x x R x

≠∈; (2):g x →y ,2,,y x x N y R =∈∈;

(3):h *A B N ==,对任意的,x A ∈|3|x x →-.

例3.下列函数f (x )与g (x )是否表示同一个函数,为什么? (1)0

)1x ()x (f -=;1)x (g = (2)x )x (f =;2x )x (g =

(3)2

x )x (f =;2

)1x ()x (g += (4)|x |)x (f =;2x )x (g =

举一反三:

【变式】设x R ∈,定义符号函数1,0sgn 0,01,0x x x x >??

==??-

则( )

A. sgn x x x =

B. sgn x x x =

C. sgn x x x =

D. sgn x x x =

类型三:函数定义域的求法

例4.求下列函数的定义域(用区间表示).

(1)

2-1

()-3x f x x =

; (2)()f x = (3)()f x =.

举一反三:

【变式1】求下列函数的定义域(用区间表示):

(1)3

f (x)|x 1|2

=

--;

(2)1

f (x)x 1

=

-;

(3)()f x =

例4.(1)已知函数()f x 的定义域为[1,2],求函数(21)y f x =+的定义域; (2)已知函数(21)y f x =+的定义域[1,2],求函数()f x 的定义域;

(3)已知函数(21)y f x =+的定义域[1,2],求函数(21)y f x =-的定义域.

举一反三:

【变式1】已知(1)f x +的定义域为[)2,3-,求1

(2)f x

+的定义域.

例5.已知函数()f x x =,()4g x x m =--+ (1)解关于x 的不等式()20g f x m +->????;

(2)若函数()f x 的图象恒在()g x 图像的上方,求实数m 的取值范围.

类型四:求函数的值及值域

例6. 已知f(x)=2x 2

-3x-25,g(x)=2x-5,求: (1)f(2),g(2); (2)f(g(2)),g(f(2)); (3)f(g(x)),g(f(x))

7. 求值域(用区间表示):(1)y=x 2

-2x+4,①[]4,1x ∈--;②[]2,3x ∈-;

-2

(2)()()3

x f x f x x ==

+.

举一反三:

【变式1】 求下列函数的值域:

(1)1y =;(2)213

x y x +=-;(3)22

11x y x -=+;(4)y =

【巩固练习】

1.若函数()f x =

) A. [)0,1 B. ()0,1 C. (](),01,-∞+∞ D. ()(),01,-∞+∞

2.函数2y =的值域是( )

A .[2,2]-

B .[1,2]

C .[0,2]

D .[2,2]-

3.如图所示,垂直于x 轴的直线EF 从坐标原点O 向右移动,若E 是EF 与x 轴的交点,设OE =x (0≤x ≤a ),EF 在移动过程中扫过平行四边形OABC 的面积为y (图中阴影部分),则函数y =f (x )的图像大致是( ).

4.设{}{}|02,|12M x x N y y =≤≤=≤≤,给出下列四个图形,如下图所示,其中能表示从集合M 到N 的函数关系的有 ( )个.

A .1个

B .2个

C .3个

D .4个

5.已知函数2,0

(),()(1)0,1,0

x x f x f a f x x >?=+=?+≤?若则实数a 的值等于( )

A .-3

B .-1

C .1

D .3 6.已知函数)2(+=x f y 定义域是]21[,-,则的定义域是( ) A .]2

5

1[, B . [1

4]-, C . D .

7.定义域为R 的函数()y f x =值域为[],a b ,则()f x a +的值域为( ) A .[2]a a b +, B . [0],b-a C . []a ,b D . []a -,a+b

8.已知函数2

2

()1x f x x

=+,则1111

(1)(2)()(3)()(4)()(2010)()2342010

f f f f f f f f f +++++++???++的值是( )

A .2008

B .2009

C . 1

20092

D . 2010

9.函数()f x =

的定义域是 . 10.若函数()y f x =的定义域是[]0,1,则函数()()()(2)01F x f x a f x a a =+++<<的定义域是 .

11.已知??

?<-≥=0

,10

,1)(x x x f ,则不等式(2)(2)5x x f x ++?+≤的解集是 .

12.已知*

,a b N ∈,()()(),(1)2,f a b f a f b f +==则(2)(3)(4)(2011)

(1)(2)(3)(2010)

f f f f f f f f +++???+= .

13.当m 为何值时,方程2

4||5,x x m -+=(1)无解;(2)有两个实数解;(3)有三个实数解;(4)有四个实数解.

14.已知函数2

()f x ax bx c =++,且满足(0)0,(1)()1,f f x f x x =+-=+求()f x 的值域.

15.设()211f x x x =--+, (1)求()0f x <的解集;

(2)当1x <-时,()()f x f a >,求实数a 的取值范围.

16.已知函数对任意的实数,a b ,都有()()()f ab f a f b =+成立. (1)求(0),(1)f f 的值;

(2)求证:1()()0(0)f f x x x

+=≠;

(3)若(2),(3)(,)f m f n m n ==均为常数,求(36)f 的值.

函数概念与基本初等函数第四讲指数函数对数函数幂函数答案

专题二函数概念与基本初等函数I 第四讲指数函数、对数函数、幂函数答案部分2019 年 1. 解析由题意知,m 太阳 E E 太阳 ,将数据代入,可得lg 太阳10.1 m lg E 天狼星天狼星 2 , E 天狼星 所以 E .故选A. 太阳 10 10.1 E 天狼星 sin xx , x[ n,n ], 2.解析因为cos x x f x 2 sin x x f x sin x x xcos x x 2 2

所 cos x x 所以f x为 [ n,n ]上的奇函数,因此排除A; n 0 ,因此排除B,C; sin n n f n 又 又 cos n n 2 1 n 2 故选D.3.解析:由函数y ,y log x 1 ,单调性相反,且函数 x 1 log a

1 a 图像恒 a x 2 2 1 可各满足要求的图象为D.故选D.过 ,0 2 2010-2018 年 1 1. D【解析】c log 1 y log x 为增函数, 3 log 5,因为 3 5 3 7 所以 log 5 log 3 3 log 3 1. 3 2 因为函数 1 x 1 1 1 0 y ()为减函数,所以()()1,故c a b,故选D. 3 4 2. B【解析】当x 0时,因为

ex 4 ex 4 x 0 ,所以此时 x e e f (x) x 2 1 0 ,故排除A. D; 1 又f (1) e 2 e ,故排除C,选B. 3. B【解析】解法一设所求函数图象上任一点的坐标为(x, y),则其关于直线x 1的对称 点的坐标为(2 x, y) ,由对称性知点(2 x, y) 在函数f (x) ln x 的图象上,所以y ln(2 x) ,故选B. 解法二由题意知,对称轴上的点(1, 0) 即在函数y ln x 的图象上也在所求函数的图象上,代入选项中的函数表达式逐一检验, 排除A, 2(1 x) ,0 x 2知,f (x) 在(0,1) 上单调递增,在(1, 2) 上

19.1.1《变量与函数》反思

19.1.1《变量与函数》教学反思 本节课是八年级学生初步接触函数的入门课,必须让学生准确认识变量与常量的特征,初步感受现实世界各种变量之间相互联系的复杂性,同时感受到数学研究方法的化繁为简,知道在初中阶段主要研究两个变量之间的特殊对应关系。 函数定义的关键词是:“两个变量”、“唯一确定”、“与其对应”;函数的要点是:1 有两个变量,2 一个变量的值随另一个变量的值的变化而变化,3 一个变量的值确定另一个变量总有唯一确定的值与其对应;函数的实质是:两个变量之间的对应关系;学习函数的意义是:用运动变化的观念观察事物。与学习进行仔细的研究,有助于函数意义的理解,但是,不可能在一课的学时内真正理解函数的意义,继续布置作业:每个同学列举出几个反映函数关系的实例,培育学生用函数的观念看待现实世界,最后,我还说明了,函数的学习,是我们数学认识的第二个飞跃,代数式的学习,是数学认识的第一次飞跃:由具体的数、孤立的数到一般的具有普遍意义的数,函数的学习,是由静止的不变的数到运动变化的数。 在函数概念的教学中,应突出“变化”的思想和“对应”的思想。从概念的起源来看,函数是随着数学研究事物的运动、变化而出现的,他刻画了客观世界事物间的动态变化和相互依存的关系,这种关系反映了运动变化过程中的两个变量之间的制约关系。因此,变化是函数概念产生的源头,是制约概念学习的关节点,同时也是概念教学的一个重要突破口。教师可以通过大量的典型实例,让学生反复观察、反复比较、反复分析每个具体问题的量与量之间的变化关系,把静止的表达式看动态的变化过程,让他们从原来的常量、代数式、方程式和算式的静态的关系中,逐步过渡到变量、函数这些表示量与量之间的动态的关系上,使学生的认识实现 为了快速明了的引出课题,课前让学生收集一些变化的实例,从学生的生活入手,开门见山,来指明本节课的学习内容。本课的引例较为丰富,但有些内容学生解决较为困难,于是我采取了三种不同的提问方式:1.教师问,学生答; 2.学生自主回答; 3.学生合作交流回答。为了较好的突出重点突破难点,在处理教学活动过程中,让学生思考每个变化活动中反映的是哪个量随哪个量的变化而变化,并提出一个量确定时另一个量是否唯一确定的问题,在得出变量和常量概念的同时渗透函数的概念.为了更好的让学生理解变量和常量的意义,由“问题中分别涉及哪些量?哪些量是变化的,哪些量是始终不变的?”一系列问题,在借助生活实例回答的过程中,归纳总结出变量与常量的概念,并能指出具体问题中的变量与常量。函数的概念是把学生由常量数学的学习引入变量数学的学习的过程,学生初步接触函数的概念,难以理解定义中“唯一确定”的准确含义,我设置了以下二个问题:1.在前面研究的每个问题中,都出现了几个变量?它们之间是相互影响,相互制约的。2.在二个变量中,一个量在变化的过程中每取一个值,另一个量有多少个值与它对应?来理解具体实例中二个变量的特殊对应关系,初步理解函数的概念。为了进一步让学生理解“唯一对应”关系,借助函数图像,使学生直观的感受二个变量之间特殊对应关系-----唯一对应。通过这种从实际问题出发的探究方式,使学生体验从具体到抽象的认识过程,及时给出函数的定义。再从抽象转化到实际应用中去,加深学生对函数概念的理解。为了加强学生辨析函数的能力,我准备了一道思考题,Y2=X中对于X的每一个值Y都

第四讲函数的概念及定义域 求法

第4讲 函数及其表示 【教学目标】 1.了解构成函数的要素,会求一些简单函数的定义域和值域; 2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数。 【教学重难点】 1.理解函数的集合定义 【旧知识回顾】 初中函数的定义:在一个变化过程中,如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数. 在初中,我们学过一些函数,如1y x =+,2 3y x x =+,2 y x = 等, 思考: (1)3=y 是函数吗? (2)x y =与x x y 2 =是同一个函数吗? 【知识点讲解】 1.1 函数的概念 如果A ,B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称B A f →:为从集合A 到集合B 的一个函数,记作 )(x f y =,A x ∈. 其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域; 与x 的值相对应的y 的值叫做函数值,函数值的集合{}A x x f ∈|)(叫做函数的值域. 思考1:{}A x x f ∈|)(______B . 思考2:新的函数定义与函数的传统定义有什么异同点? 思考3:(1)3=y 是函数吗? (2)x y =与x x y 2 =是同一个函数吗? 思考4:2 23y x x =-+函数吗?

1.2 函数的三要素 函数是由三件事构成的一个整体:定义域A ; 值域{}A x x f ∈|)(; 对应法则f . 【例1】 以下关系式表示函数吗?为什么? (1)2 12)(x x x f --=; (2)22)(-+-=x x x f . 练习1:下列可作为函数y= f (x)的图象的是( ) 【例2】已知函数1()2 f x x = +, (1)求函数()f x 的定义域;(2)求(3)f -,2()3 f ;(3)当0a >时,求)(a f ,(1)f a -的值 特别注意:)(a f 是常量,而)(x f 是变量,)(a f 只是)(x f 中一个特殊值. 练习1:已知函数,23)(-=x x f 试求(3)f ,()f a ,2 (1)f x +,((2))f f ,1 (())f f x -. 1.3 对函数符号)(x f 的理解 )(x f y =与) (x f 的含义是一样的,它们都表示y 是x 的函数,其中x 是自变量, )(x f 是函数值,连接的 纽带是法则f ,所以这个符号本身也说明函数是三要素构成的整体.

2.1.1(一)变量与函数的概念教案

第二章函数 §2.1函数 2.1.1 函数 第1课时变量与函数的概念 【学习要求】 1.通过丰富实例,加深对函数概念的理解,学会用集合与对应的语言来刻画函数,体会对应关系在刻 画函数概念中的作用. 2.了解构成函数的三要素. 3.能够正确使用“区间”的符号表示某些集合. 【学法指导】 通过实例体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会用集合与对应刻画函数的必要性的重要性. 填一填:知识要点、记下疑难点 1.函数的概念:设集合A是一个非空的数集,对A中的任意数x,按照确定的法则f,都有唯一确定的数y与它对应,则这种对应关系叫做集合A上的一个函数.记作y=f(x),x∈A.其中x叫做自变量,自变量的取值范围(数集A)叫做这个函数的定义域. 2.区间概念:设a,b∈R,且aa,x≤a,x

第04讲-函数的概念(讲义版)

第04讲函数的概念 一、考情分析 1.了解构成函数的要素,能求简单函数的定义域; 2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数,理解函数图象的作用; 3.通过具体实例,了解简单的分段函数,并能简单应用. 二、知识梳理 1.函数的概念 设A,B是两个非空数集,如果按照确定的法则f,对A中的任意数x,都有唯一确定的数y与它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A. 2.函数的定义域、值域 (1)函数y=f(x)自变量取值的范围(数集A)叫做这个函数的定义域;所有函数值构成的集合{y|y=f(x),x∈A}叫做这个函数的值域. (2)如果两个函数的定义域相同,并且对应法则完全一致,则这两个函数为相等函数. 3.函数的表示法 表示函数的常用方法有解析法、图象法和列表法. 4.分段函数 (1)在函数的定义域内,对于自变量x的不同取值区间,有着不同的对应法则,这种函数称为分段函数. (2)分段函数是一个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集. [微点提醒] 1.直线x=a(a是常数)与函数y=f(x)的图象有0个或1个交点. 2.分段函数无论分成几段,都是一个函数,求分段函数的函数值,如果自变量的范围不确定,要分类讨论. 三、经典例题 考点一求函数的定义域 【例1-2】函数y=1-x2+log2(tan x-1)的定义域为________;

【解析】 (1)要使函数y =1-x 2+log 2(tan x -1)有意义,则1-x 2≥0,tan x -1>0,且x ≠k π+π 2(k ∈Z ). ∴-1≤x ≤1且π4+k π1),则x =2 t -1 , ∴f (t )=lg 2t -1,即f (x )=lg 2 x -1 (x >1). 【例2-2】已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,则f (x )=________; 【解析】设f (x )=ax 2+bx +c (a ≠0), 由f (0)=2,得c =2, f (x +1)-f (x )=a (x +1)2+b (x +1)+2-ax 2-bx -2=2ax +a +b =x -1, 所以???2a =1,a +b =-1, 即?????a =1 2,b =-32. ∴f (x )=12x 2-3 2x +2. 【例2-3】已知函数f (x )的定义域为(0,+∞),且f (x )=2f ? ?? ?? 1x ·x -1,则f (x )=________. 【解析】在f (x )=2f ? ?? ?? 1x ·x -1中, 将x 换成1x ,则1 x 换成x , 得f ? ?? ?? 1x =2f (x )·1x -1,

C语言中变量和函数的声明与定义

变量 在将变量前,先解释一下声明和定义这两个概念。声明一个变量意味着向编译器描述变量的类型,但并不为变量分配存储空间。定义一个变量意味着在声明变量的同时还要为变量分配存储空间。在定义一个变量的同时还可以对变量进行初始化。 局部变量通常只定义不声明,而全局变量多在源文件中定义,在头文件中声明。 局部变量 在一个函数的内部定义的变量是内部变量,它只在本函数范围内有效。自动变量auto 函数中的局部变量,其缺省格式是自动变量类型。例如,在函数体中int b, c=3。和auto int b, c=3。是等价的。 自动变量是动态分配存储空间的,函数结束后就释放。自动变量如不赋初值,则它的值是一个不确定的值。 静态局部变量static 静态局部变量是指在函数体内声明和定义的局部变量,它仅供本函数使用,即其他函数不能调用它。静态局部变量的值在函数调用结束后不消失而保留原值,即其占用的存储单元不释放,在下一次函数调用时,该变量已有值,就是上一次函数调用结束时的值。 静态局部变量在静态存储区分配存储单元,在程序的整个运行期间都不释放。静态局部变量是在编译时赋初值的,即只赋初值一次。

在SDT编译器中,建议对静态局部变量赋初值,否则该静态局部变量的初值为不确定值。在其他编译器中,未初始化的静态局部变量的初值可能为零,这由具体的编译器所决定,使用前最好测试一下。 寄存器变量register 带register修饰符的变量暗示(仅仅是暗示而不是命令)编译程序本变量将被频繁使用,如果可能的话,应将其保留在CPU的寄存器中,以加快其存取速度。 对于现有的大多数编译程序,最好不要使用register修饰符。因为它是对早期低效的C编译程序的一个很有价值的补充。随着编译程序技术的进步,在决定哪些变量应当被存到寄存器中时,现在的C编译程序能比程序员做出更好的决定。 全局变量 在函数之外定义的变量称为外部变量,外部变量是全局变量,它可以为本文件中其他函数所共用。全局变量都是静态存储方式,都是在编译时分配内存,但是作用范围有所不同。 静态外部变量static 静态外部变量只能在本文件中使用。所以静态外部变量应该在当前源文件中声明和定义。 外部变量extern 定义函数中的全局变量时,其缺省格式是外部变量类型。外部变量应该在一个头文件中声明,在当前源文件中定义。外部变量允许其他文件引用。

第四讲 指数函数

§2.2.1 分数指数幂(1) 【教学目标】 1.理解n 次方根及根式的概念; 2.掌握n 次根式的性质,并能运用它进行化简,求值; 3.提高观察、抽象的能力. 【课前导学】 1.如果2x a =,则x 称为a 的 ; 如果3x a =,则x 称为a 的 . 2. 如果*(1,)n x a n n N =>∈,则x 称为a 的 ;0的n 次实数方根等于 . 3. 若n 是奇数,则a 的n 次实数方根记作n a ; 若0>a 则为 数,若o a <则为 数;若n 是偶数,且0>a ,则a 的n 次实数方根为 ;负数没有 次实数方根. 4. 式子n a ()1,n n N * >∈叫 ,n 叫 ,a 叫 ; n = . 5. 若n = ;若n = . 【例题讲解】 例1.求下列各式的值: (1)2 (2)3 (3 (4 *变式:解下列方程(1)3216x =-; (2)422240x x --=

例2.设-3

§2.2.1 分数指数幂(2) 【教学目标】 1.能熟练地进行分数指数幂与根式的互化; 2.熟练地掌握有理指数幂的运算法则,并能进行运算和化简. 3.会对根式、分数指数幂进行互化; 4.培养学生用联系观点看问题. 【课前导学】 1.正数的分数指数幂的意义: (1)正数的正分数指数幂的意义是m n a = ()0,,,1a m n N n *>∈>; (2)正数的负分数指数幂的意义m n a -= ()0,,,1a m n N n *>∈>. 2.分数指数幂的运算性质: 即()1r s a a = ()0,,a r s Q >∈, ()()2s r a = ()0,,a r s Q >∈, ()()3r ab = ()0,0,a b r Q >>∈. 3.有理数指数幂的运算性质对无理数指数幂 指数幂同样适用. 4. 0的正分数指数幂等于 . 【例题讲解】 例1.求值(1) 12100, (2)23 8, (3)()32 9-, (4) 34 181- ?? ??? . 例2.用分数指数幂表示下列各式(0)a >: (1)a ;(2 ;(3.

第4讲 生活中的变量关系及函数的概念

生活中的变量关系及函数的概念 【学习目标】 (1)了解函数是描述变量之间的依赖关系的重要数学模型。 (2)理解函数的概念,会用集合与对应的语言刻画函数,了解构成函数的要素,在学会运用区间表示数集的基础上,会求一些简单函数的定义域和值域,初步掌握换元法的简单运用. 【要点梳理】 要点一:函数关系与依赖关系的联系 (1)具有依赖关系的两个变量,不一定具有函数关系; (2)当且仅当对于其中一个变量的每一个值,另一个变量都有唯一确定的值时,才称这两个变量之间有函数关系; (3)运用图形语言说明变量x,y间的关系: 结合依赖关系及函数(初中)的定义可知,图2-1中变量x,y间具有依赖关系,但不具有函数关系;而图2-2中变量x,y间具有函数关系和依赖关系. 要点二:函数的定义 设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数. 记作:y=f(x),x∈A. 其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域. 要点诠释: (1)A、B集合的非空性;(2)对应关系的存在性、唯一性、确定性;(3)A中元素的无剩余性;(4)B中元素的可剩余性。 要点三:构成函数的三要素:定义域、对应关系和值域 (1)构成函数的三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全—致,即称这两个函数相等(或为同一函数); (2)两个函数相等当且仅当它们的定义域和对应关系完全—致,而与表示自变量和函数值的字母无关. 要点四:区间的概念 (1)区间的分类:开区间、闭区间、半开半闭区间; (2)无穷区间; (3)区间的数轴表示. 区间表示: x a x b a b <<= {x|a≤x≤b}=[a,b]; {|}(,); (] x a x b a b ≤<=; {|}, {|}, x a x b a b <≤=;[) (][) ≤=∞≤=+∞. x x b b x a x a {|}-,; {|},

变量与函数教案

变量与函数 教学目的: 1.了解常量与变量的意义,能分清实例中的常量与变量; 2.了解自变量与函数的意义,能列举函数的实例,并能写出简单的函数关系式; 3.通过函数概念,初步形成学生利用函数的观点认识现实世界的意识和能力。经历函数概念的抽象概括过程,体会函数的模型思想。让学生主动地从事观察、操作、交流、归纳等探索活动,形成自己对数学知识的理解和有效的学习模式。 教学重点:函数概念的形成过程。 教学难点:理解函数概念。 教学过程: 一、创设情境 问题1:图1是某地一天内的气温变化图.这张图告诉我们哪些信息? 看出回答: (1)这天的6时,10时和14时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温. (2)这一天中,最高气温是多少?最低气温是多少? (3)这一天中,什么时候的气温在逐渐升高?什么时候的气温在逐渐降低? 思考:这张图是怎样来展示这天各时刻的温度和刻画这天的气温变化规律的?

问题2:银行对各种不同的存款方式都规定了相应的利率,下表是20XX年7月中国工商银行为”整存整取”的存款方式规定的年利率. 观察上表,说一说随着存期x的增长,相应的年利率y是如何变化的? 问题3:收音机的刻度盘的波长和频率分别是用米(m)和千赫兹(kHz)为单位标刻的.下面是一些对对应的数值: 仔细的观察你能发现什么? 问题4:圆的面积是随着半径增大而增大的.如果用r表示圆的半径,S表示圆面积,则S与r之间满足什么关系?利用这个关系式,试求出半径为 1cm,1.5cm,2cm,2.6cm,3.2cm时圆的面积,并将结果填入下表: 由此你可以得到什么结论? 二、形成概念 (一)变量与常量概念的形成过程 1.举例、归纳 问题1:某地一天内的气温变化图(示图)学生观察气温随时间变化的情况,引出“变量”。 问题2:学生观察随着存期x的增长,相应的年利率y是如何变化的过程,加深对变量的认识,引出“常量”。 设问:一个量变化,具体地说是它的什么在变?什么不变呢? 引导学生观察发现:是量的数值变与不变。 归纳变量与常量的定义并板书。 在其他二个问题中有哪些是变量?哪些是常量?

第二讲 函数的概念及表示

第二讲 函数的概念 ◎知识点再现: 1.函数的定义: ,记为A x x f y ∈=),( 2.函数的定义域与值域: 3.函数的三要素: 、 、 4. 函数的三种表示法: 、 、 ,注意:分段函数 ◎例题精讲: 例1、下列函数中与函数x y =相同的是( ) A .y = (x )2 B. y = C. y =2x D. y=x x 2 变式:与函数) 12lg(1.0-=x y 的图象相同的函数是( ) A.)21(12> -=x x y B.121-=x y C.)21(121>-=x x y D.|121 |-=x y 例2、函数=)(x f )4323ln(1 22+--++-x x x x x 的定义域为( ) A.),2[)4,(+∞--∞ B.)1,0()0,4( - C. ]1,0()0,4[, - D. )1,0()0,4[, - 变式:设()x x x f -+=22lg ,则?? ? ??+??? ??x f x f 22的定义域为( ) A. ()()4,00,4 - B. ()()4,11,4 -- C. ()()2,11,2 -- D. ()()4,22,4 -- 例3、函数)(6242 R a a ax x y ∈++-=,若0≥y 恒成立,求32)(+-=a a a f 的值域 变式:若函数()y f x =的值域是]3,3 2 [,则函数()()1 ()F x f x f x =+的值域是 例4、函数|1|| |ln --=x e y x 的图象大致是( ) 例5、设1()1x f x x +=-,又记11()(),()(()),1,2,,k k f x f x f x f f x k +===???则2010()f x =( ) A .11x x +- B .11x x -+ C .x D .1x -;

第5讲 函数的概念学生

第5讲函数的概念 [玩前必备] 1.函数 (1)函数的定义:设集合A是一个非空的数集,对A中的任意数x,按照确定的法则f,都有唯一确定的数y与它对应,则这种对应关系叫做集合A上的一个函数.记作y=f(x),x∈A. (2)函数的定义域:在函数y=f(x),x∈A中,x叫做自变量,自变量取值的范围(数集A)叫做这个函数的定义域. (3)函数的值域:所有函数值构成的集合{y|y=f(x),x∈A}叫做这个函数的值域. 2.区间 设a,b∈R,且a<b. 3. 在函数的定义域内,对于自变量x的不同取值区间,有着不同的对应法则,这样的函数通常叫做分段函数. 1

2 [玩转典例] 题型一 函数的概念和判断 例1 下列对应或关系式中是A 到B 的函数的是( ) A.A ∈R ,B ∈R ,x 2+y 2=1 B.A ={1,2,3,4},B ={0,1},对应关系如图: C.A =R ,B =R ,f :x →y = 1x -2 D.A =Z ,B =Z ,f :x →y =2x -1 [玩转跟踪] 1.下列图形中,不可能是函数y =f (x )的图象的是( ) 2.在图(1)(2)(3)(4)中用箭头所标明的A 中元素与B 中元素的对应法则,是不是函数关系? 题型二 同一函数的判断 例2 下列各组函数中,表示同一个函数的是( ) A.y =x -1和y =x 2-1 x +1 B.y =x 0和y =1 C.f (x )=x 2和g (x )=(x +1)2 D.f (x )=(x )2x 和g (x )=x (x )2 [玩转跟踪] 1.下列函数完全相同的是( ) A.f (x )=|x |,g (x )=(x )2 B.f (x )=|x |,g (x ) =x 2

17.1.1变量与函数

17.1.1变量与函数 知识技能目标 1.掌握常量和变量、自变量和因变量(函数)基本概念; 2.了解表示函数关系的三种方法:解析法、列表法、图象法,并会用解析法表示数量关系. 过程性目标 1.通过实际问题,引导学生直观感知,领悟函数基本概念的意义; 2.引导学生联系代数式和方程的相关知识,继续探索数量关系,增强数学建模意识,列出函数关系式. 教学过程 一、创设情境 在学习与生活中,经常要研究一些数量关系,先看下面的问题. 问题1如图是某地一天内的气温变化图. 看图回答: (1)这天的6时、10时和14时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温. (2)这一天中,最高气温是多少?最低气温是多少? (3)这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低? 解(1)这天的6时、10时和14时的气温分别为-1℃、2℃、5℃; (2)这一天中,最高气温是5℃.最低气温是-4℃; (3)这一天中,3时~14时的气温在逐渐升高.0时~3时和14时~24时的气温在逐渐降低. 从图中我们可以看到,随着时间t(时)的变化,相应地气温T(℃)也随之变化.那么在生活中是否还有其它类似的数量关系呢? 二、探究归纳 问题2 小蕾在过14岁生日的时候,看到了爸爸为她记录的各周岁时的体重,如下表:

观察上表,说说随着年龄的增长,小蕾的体重是如何变化的?在哪一段时间内体重增加较快? 解随着年龄的增长,小蕾的体重也随着增长,且在1-2岁增加较快. 问题3 收音机刻度盘的波长和频率分别是用米(m)和千赫兹(kHz)为单位标刻的.下面是一些对应的数值: 观察上表回答: (1)波长l和频率f数值之间有什么关系? (2)波长l越大,频率f就________. 解(1) l 与f的乘积是一个定值,即 lf= 或者说 (2)波长 问题4 S与r之间满 时圆的面积,并将结果填入下表: 解S= 圆的半径越大,它的面积就越大. 在上面的问题中,我们研究了一些数量关系,它们都刻画了某些变化规律.这里出现了各种各样的量,特别值得注意的是出现了一些数值会发生变化的量.例如问题1中,刻画气温变化规律的量是时间t和气温T,气温T随着时间t的变化而变化,它们都会取不同的数值.像这样在某一变化过程中,可以取不同数值的量,叫做变量(variable). 上面各个问题中,都出现了两个变量,它们互相依赖,密切相关.一般地,如果在一个变化过程中,有两个变量,例如x和y,对于x的每一个值,y都有惟一的值与之对应,我们就说x是自变量

高考数学复习第二单元第4讲函数的概念及其表示练习文(含解析)新人教A版

高考数学复习第二单元第4讲函数的概念及其表示练习文(含解 析)新人教A版 第4讲函数的概念及其表示 1.已知集合P={x|0≤x≤4},Q={y|0≤y≤2},下列从P到Q的对应关系f不是函数的是 () A.f:x→y=x B.f:x→y=x C.f:x→y=x D.f:x→y= 2.[2018·哈尔滨模拟]已知函数f(x)=则f f=() A.4 B. C.-4 D.- 3.[2018·安徽六安舒城中学月考]下列各组函数是同一函数的是() ①f(x)=与g(x)=x; ②f(x)=x与g(x)=; ③f(x)=x0与g(x)=; ④f(x)=x2-2x-1与g(t)=t2-2t-1. A.①② B.①③ C.③④ D.①④ 4.[2018·黑龙江安达模拟]函数f(x)=的定义域为. 5.已知f(+1)=x+2,则f(x)= . 6.[2018·河南商丘二模]设函数f(x)=若f(m)=3,则实数m的值为 () A.-2 B.8 C.1 D.2 7.定义在R上的函数f(x)满足f(x)=则f(3)的值为() A.1 B.2 C.-2 D.-3 8.设f(x)=则(a≠b)的值为()

A.a B.b C.a,b中较小的数 D.a,b中较大的数 9.设函数f(x)=若f(-4)=f(0),f(-2)=-2,则关于x的方程f(x)=x的 解的个数为() A.1 B.2 C.3 D.4 10.若函数f(x)=的值域是(-∞,0]∪[4,+∞),则f(x)的定义域是() A. B.∪(1,3] C.∪(3,+∞) D.[3,+∞) 11.若一些函数的解析式相同、值域相同,但定义域不同,则称这些函数为“孪生函数”,那么函数解析式为y=3x2+4,值域为{7,16}的“孪生函数”共有() A.4个 B.8个 C.9个 D.12个 12.设f(x)是一次函数,且f[f(x)]=4x+3,则f(x)= . 13.若函数f(x)=的定义域为R,则实数a的取值范围是. 14.[2018·四川内江一模]设函数f(x)=则满足f(x)>2的x的取值范围是. 15.[2018·河南八市联考]设函数f(x)=(λ∈R),若对任意的a∈R都有 f[f(a)]=2f(a)成立,则λ的取值范围是() A.(0,2] B.[0,2] C.[2,+∞) D.(-∞,2) 16.[2018·衡水模拟]已知函数f(x)=当t∈(0,1]时,f[f(t)]∈[0,1],则实数t的取值范围是.

变量与函数 知识讲解

变量与函数 【学习目标】 1.知道现实生活中存在变量和常量,变量在变化的过程中有其固有的范围(即变量的取值范围); 2.能初步理解函数的概念;能初步掌握确定常见简单函数的自变量取值范围的基本方法;给出自变量的一个值,会求出相应的函数值. 3. 理解函数图象上的点的坐标与其解析式之间的关系,会判断一个点是否在函数的图象上,明确交点坐标反映到函数上的含义. 4. 初步理解函数的图象的概念,掌握用“描点法”画一个函数的图象的一般步骤,对已知图象能读图、识图,从图象解释函数变化的关系. 【要点梳理】 要点一、变量、常量的概念 在一个变化过程中,我们称数值发生变化的量为变量.数值保持不变的量叫做常量. 要点诠释:一般地,常量是不发生变化的量,变量是发生变化的量,这些都是针对某个变化过程而言的.例如,60s t =,速度60千米/时是常量,时间t 和里程s 为变量. 要点二、函数的定义 一般地,在一个变化过程中. 如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说 x 是自变量,y 是x 的函数. 要点诠释:对于函数的定义,应从以下几个方面去理解: (1)函数的实质,揭示了两个变量之间的对应关系; (2)对于自变量x 的取值,必须要使代数式有实际意义; (3)判断两个变量之间是否有函数关系,要看对于x 允许取的每一个值,y 是否 都有唯一确定的值与它相对应. (4)两个函数是同一函数至少具备两个条件: ①函数关系式相同(或变形后相同); ②自变量x 的取值范围相同. 否则,就不是相同的函数.而其中函数关系式相同与否比较容易注意到,自变 量x 的取值范围有时容易忽视,这点应注意. 要点三、函数的定义域与函数值 函数的自变量允许取值的范围,叫做这个函数的定义域. 要点诠释:考虑自变量的取值必须使解析式有意义。 (1)当解析式是整式时,自变量的取值范围是全体实数; (2)当解析式是分式时,自变量的取值范围是使分母不为零的实数; (3)当解析式是二次根式时,自变量的取值范围是使被开方数不小于零的实数; (4)当解析式中含有零指数幂或负整数指数幂时,自变量的取值应使相应的底数 不为零; (5)当解析式表示实际问题时,自变量的取值必须使实际问题有意义. y 是x 的函数,如果当x =a 时y =b ,那么b 叫做当自变量为a 时的函数值.在函数用记号()y f x =表示时,()f a 表示当x a =时的函数值. 要点诠释: 对于每个确定的自变量值,函数值是唯一的,但反过来,可以不唯一,即一个函数值对

第四讲函数

第四讲 函数 一、函数的发展 运动、变量与曲线的数学描述,催生了函数思想,并把函数概念和方法置于整个数学的中心地位。微积分研究对象是函数,几何图形则成为函数的图像。世界万物之间的联系与变化都有可能以各种不同的函数作为它们的数学模型。 函数概念是在欧洲文艺复兴之后,在资本主义文明萌芽时期的16-17世纪才逐渐产生。 伽利略研究抛物线的运动及自由落体运动,产生了函数22 1gt S =。 法国数学家笛卡儿最先提出了“变量”的概念,他在《几何学》中不仅引入了坐标,而且实际上也引入了变量,他在指出y x ,是变量的同时,还注意到y 依赖于x 而变化,这正是函数思想的萌芽。 牛顿深刻地认识到:“曲线是由于点的连续运动”,即曲线是动点的轨迹。动点的位置是时间的函数()()t y y t x x ==,。牛顿创立微积分的时候,用“流数”(Fluent )一词表示变量间的关系。莱布尼茨在1673年的手稿中则用“Function ”一词。李善兰在《代微积拾级》一书中将Function 一词翻译为“函数”,并一直沿用至今。 函数作为微积分的研究对象,牢牢地占据着近代数学的中心地位。 1755年,欧拉提出了一个明确的函数定义:“如果某些变量以如下方式依赖于另一些变量,即当后者变化时,前者本身也发生变化,则称前一个变量是后一个变量的函数”。 1851年,黎曼定义:“我们假定Z 是一个变量。如果对它的每一个值,都有未知量W 的一个值与之对应,则称W 是Z 的函数”。 1939年,布尔巴基学派的著作认为,若F E ,是两个集合,二者的笛卡儿积是指 (){}Y y X x y x ∈∈,|,。XY 中的任何子集S 称为y x ,之间的一种关系。如果关系F 满足:对于每一个X x ∈,都存在唯一的一个y ,使得()F y x ∈,,则称关系F 是一个函数。 这三种函数的定义,分别是变量说、对应说(映射说)、关系说。这是函数概念的三个里程碑。 总之,函数概念的灵魂是运动,是变量,是变量关系。 在20世纪以前,中学数学的中心是方程。1908年,数学家F ·克莱因担任国际数学教育委员会主席。他首次提出,中学数学应当以函数为中心;或者说“以函数为纲”。实际上直到第二次世界大战之后,函数思想才全面进入中学数学课程。 中国也是这样。1949年以前,中国中学里的数学课程仍然少见函数的踪迹。到了20世纪50年代,中国数学教育全面学习前苏联,函数终于取得了中学数学课程中的核心地位。 《普通高中数学课程标准(实验)》必修课程:数学1函数概念与基本初等函数Ⅰ(指数函数、对数函数、幂函数);数学4基本初等函数Ⅱ(三角函数)。 二、函数概念的三种定义 ⒈函数概念的定义

第四讲 对数函数与指数函数经典难题复习巩固.

精典专题系列第4讲 指数函数与对数函数 一、导入:名叫抛弃的水池 一个人得了难治之症,终日为疾病所苦。为了能早日痊愈,他看过了不少医生,都不见效果。他又听人说远处有一个小镇,镇上有一种包治百病的水,于是就急急忙忙赶过去,跳到水里去洗澡。但洗过澡后,他的病不但没好,反而加重了。这使他更加困苦不堪。 有一天晚上,他在梦里梦见一个精灵向他走来,很关切地询问他:“所有的方法你都试过了吗?” 他答道:“试过了。” “不,”精灵摇头说,“过来,我带你去洗一种你从来没有洗过的澡。” 精灵将这个人带到一个清澈的水池边对他说:“进水里泡一泡,你很快就会康复。”说完,就不见了。 这病人跳进了水池,泡在水中。等他从水中出来时,所有的病痛竟然真地消失了。他欣喜若狂,猛地一抬头,发现水池旁的墙上写着“抛弃”两个字。 这时他也醒了,梦中的情景让他猛然醒悟:原来自己一直以来任意放纵,受害已深。于是他就此发誓,要戒除一切恶习。他履行自己的誓言,先是苦恼从他的心中消失,没过多久,他的身体也康复了。 大道理:抛弃是治疗百病的万灵之药,人之所以有很多难缠的情感,就是因为在大多数情况下,舍不得放弃。把消极扔掉,让积极代替,就没有什么可抱怨的了。 二、知识点回顾: 1.根式 (1)根式的概念 根式的概念 符号表示 备注 如果 ,那么x 叫做a 的n 次方根 n >1且n ∈N * 当n 是奇数时,正数的n 次方根是一个 ,负数的n 次方根是一个 n a 零的n 次方根是零 当n 是偶数时,正数的n 次方根有 ,这两个数互为 ±n a(a>0) 负数没有偶次方根 (2)两个重要公式.①n a n = ②(n a)n = (注意a 必须使n a 有意义). 2. 幂的有关概念 ①正分数指数幂: = (a >0,m 、n ∈N*,且n >1); ②负分数指数幂: = = (a >0,m 、n ∈N*,且n >1). ③0的正分数指数幂等于 ,0的负分数指数幂 . y =ax a >1 0<a <1 图象 DSE 金牌化学专题系列

第四讲导数与函数的零点讲义(非常好,有解析)

第四讲导数与函数的零点讲义(非常好,有 解析) -CAL-FENGHAI.-(YICAI)-Company One1

函数的零点 【题型一】函数的零点个数 【解题技巧】用导数来判断函数的零点个数,常通过研究函数的单调性、极值后,描绘出函数的图象,再借助图象加以判断。 【例1】已知函数3()31,0f x x ax a =--≠ ()I 求()f x 的单调区间; ()II 若()f x 在1x =-处取得极值,直线y=m 与()y f x = 的图象有三个不同的交 点,求m 的取值范围。 变式:已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,若方程 ()(0)f x m m =>在区间[8,8]-上有四个不同的根 1234,,,x x x x ,则1234_________. x x x x +++= 【答案】 -8 【解析】因为定义在R 上的奇函数,满足(4)()f x f x -=-,所以 (4)()f x f x -=-,所以, 由)(x f 为奇函数,所以函数图象关于直线2x =对称且(0)0f =,由(4)()f x f x -=-知(8)()f x f x -=,所以函数是以8为周期的周期 函数,又因为)(x f 在区间[0,2]上 是增函数,所以)(x f 在区间[-2,0]上也是增函数.如图所示,那么方程f(x)=m(m>0) 在区间[]8,8-上有四个不同的根 1234,,,x x x x ,不妨设1234 x x x x <<<,由对称性知 1212 x x +=-, 344 x x +=.所以 12341248 x x x x +++=-+=-.

第四讲对数函数及指数函数经典难题复习巩固

一、导入:名叫抛弃的水池 一个人得了难治之症,终日为疾病所苦。为了能早日痊愈,他看过了不少医生,都不见效果。他又听人说远处有一个小镇,镇上有一种包治百病的水,于是就急急忙忙赶过去,跳到水里去洗澡。但洗过澡后,他的病不但没好,反而加重了。这使他更加困苦不堪。 有一天晚上,他在梦里梦见一个精灵向他走来,很关切地询问他:“所有的方法你都试过了吗” 他答道:“试过了。” “不,”精灵摇头说,“过来,我带你去洗一种你从来没有洗过的澡。” 精灵将这个人带到一个清澈的水池边对他说:“进水里泡一泡,你很快就会康复。”说完,就不见了。 — 这病人跳进了水池,泡在水中。等他从水中出来时,所有的病痛竟然真地消失了。他欣喜若狂,猛地一抬头,发现水池旁的墙上写着“抛弃”两个字。 这时他也醒了,梦中的情景让他猛然醒悟:原来自己一直以来任意放纵,受害已深。于是他就此发誓,要戒除一切恶习。他履行自己的誓言,先是苦恼从他的心中消失,没过多久,他的身体也康复了。 大道理:抛弃是治疗百病的万灵之药,人之所以有很多难缠的情感,就是因为在大多数情况下,舍不得放弃。把消极扔掉,让积极代替,就没有什么可抱怨的了。 二、知识点回顾: 1.根式 (1)根式的概念 (2)两个重要公式.①n a n = ②(n a)n = (注意a 必须使n a 有意义). 2. 幂的有关概念 ①正分数指数幂: = (a >0,m 、n ∈N*,且n >1); ②负分数指数幂: = = (a >0,m 、n ∈N*,且n >1). ③0的正分数指数幂等于 ,0的负分数指数幂 .

图象与性质 , Array 4.对数的概念 《 (1)对数的定义 如果,那么数x叫做以a为底N的对数, 记作,其中叫做对数的底数,叫做真数. (2)两种常见对数 5.对数的性质、换底公式与运算法则

相关文档
最新文档