直流调速系统的MATLAB仿真参考程序汇总
基于MATLAB的直流调压调速控制系统的仿真

三、MATLAB仿真环境搭建
MATLAB提供了Simulink仿真工具,可以方便地进行控制系统的建模和仿真。在搭建直流调压调速控制系统的仿真环境时,首先需要对电机的特性进行建模,包括电机的电动力学方程、电机的转矩-转速特性曲线等。然后,设计控制器的结构和参数,通过Simulink建立相应的控制模型,最后进行仿真验证。MATLAB还提供了丰富的工具箱和函数库,如控制系统工具箱、电机控制工具箱等,能够方便地进行控制系统设计和分析。
2. 控制系统模型
在直流调压调速控制系统中,控制器起着至关重要的作用。常见的控制器包括PID控制器和模糊控制器。这些控制器可以根据电动机的工作状态和需求信号进行控制,实现对电动机速度和输出电压的精准控制。在进行仿真时,需要将控制器的数学模型结合到整个系统中,以实现对电动机的系统级控制。
在MATLAB中进行直流调压调速控制系统的仿真时,可以利用Simulink工具箱进行建模和仿真。Simulink是MATLAB的一个附加工具箱,提供了丰富的模块和功能,可以方便地对控制系统进行仿真和分析。以下是基于MATLAB的直流调压调速控制系统的仿真步骤:
五、实验结果与分析
通过MATLAB的仿真实验,我们可以得到直流调压调速控制系统的性能指标,如电机的转速曲线、电机的输出功率曲线等。根据仿真结果,我们可以对控制系统进行性能分析和优化,调整控制器的参数,改进控制策略,提高系统的稳定性和响应性能。通过仿真实验可以验证控制系统的设计是否满足实际要求,指导工程实践中的系统调试和优化。
实验三开环直流调速系统Matlab仿真

实验三开环直流调速系统Matlab仿真实训三晶闸管开环直流调速系统的 MATLAB 仿真实训一、实验实训目的1.学习并掌握晶闸管开环直流调速系统模型建立及模型参数设置的方法和步骤。
2.熟悉并掌握系统仿真参数设置的方法和步骤。
3.学会利用 MA TLAB 软件对系统进行稳态与动态计算与仿真。
4.巩固并加深对晶闸管开环直流调速系统理论知识的理解。
二、实验实训原理及知识准备1.晶闸管开环直流调速系统的原理图如图3-3-1 所示。
图 3-1 晶闸管开环直流调速系统原理图2.晶闸管开环直流调速系统的直流电动机电枢电流、电磁转矩与转速之间的关系。
3.复习实验实训指导书中MA TLAB 基本操作和MA TLAB/Simulink/Power System工具箱内容。
4.预习实验实训指导书中实验实训二,并写好预习报告。
5.画出晶闸管开环直流调速系统的动态结构图。
三、实验实训内容及步骤直流调速系统的仿真有两种方法,一是根据系统的动态结构图进行仿真,二是用Power System的相关模块仿真,下面分别对两种方法进行介绍。
方法一:使用 Simulink 中的 Power System模块对直流调速系统进行仿真1.建立系统的仿真模型和模型参数的设置(1)建立一个仿真模型的新文件。
在 MA TLAB 的菜单栏上点击工具栏上的simulink工具,选择File→New→Model,新建一个simulink文件,绘制电路的仿真模型如图 3-3-1。
3-3-1(2)按图 3-3-1 要求提取电路元器件模块。
在仿真模型窗口的菜单上点击图标调出模型库浏览器,在模型库中提取所需的模块放到仿真窗口,设置各模块参数。
晶闸管开环直流调速系统由主电路(交流电源、晶闸管整流桥、平波电抗器、直流电动机、触发电路)和控制电路(给定环节)组成,具体设置如下:1)三相交流电源的模型建立和参数设置①三相交流电源的模型建立首先从Simpowersystes 中的Electrical sources 电源模块组中选取一个交流电压源模块 AC Voltage Source,再用复制的方法得到三相电源的另两个电压源模块,用 Format(格式设定)菜单中 Rotate block(Ctrl +R)将模块水平放置,并点击模块标题名称,将模块标签分别改为“Uu ” 、“Uv ” 、“Uw ” ,然后从连接器模块 Connectors 中选取“Ground (output )”元件,按图 3-3-2 进行连接。
基于MATLAB的直流调压调速控制系统的仿真

基于MATLAB的直流调压调速控制系统的仿真直流调压调速控制系统是一种常见的电力系统的调节器,在电力系统和机械驱动系统中广泛应用。
本文将介绍一种基于MATLAB的直流调压调速控制系统的仿真方法。
直流调压调速控制系统由电源、可调速直流电动机、电动机控制器及传感器组成。
调压调速控制系统的目标是实现恒定的速度和恒定的输出电压。
我们需要建立直流电动机的数学模型。
直流电动机的数学模型可以使用电机的等值电路模型来表示。
在这个模型中,各个元件由其等值电阻、电感和电压源表示。
通过建立电动机的等效电路模型,可以通过MATLAB对电动机的工作进行仿真。
然后,我们需要建立电动机控制器的数学模型。
电动机控制器的数学模型通常可以采用传统的PID控制器来表示。
PID控制器包括比例项、积分项和微分项。
通过设置适当的PID参数值,可以调节电动机的输出电压和速度。
接下来,我们需要建立电动机的传感器模型。
传感器用于检测电动机的实际输出电压和速度,并将其与设定值进行比较。
根据比较结果,控制器将调整输出电压和速度。
在MATLAB环境中进行仿真。
在仿真中,我们可以设置电动机的初始条件和设定值,并将其传递给控制器。
通过仿真可以观察和分析电动机的输出电压和速度的变化情况,以及控制器的响应时间和稳定性。
通过以上步骤,我们可以使用MATLAB对直流调压调速控制系统进行仿真研究。
在仿真中,可以通过调整控制器参数和传感器模型,以及改变设定值和初始条件,来观察系统的响应和性能。
仿真结果可以帮助我们设计和优化直流调压调速控制系统,提高系统的稳定性和性能。
基于MATLAB的直流调压调速控制系统的仿真方法可以帮助我们研究和优化电力系统和机械驱动系统的性能,提高系统的稳定性和可靠性。
这种仿真方法在电气工程和自动化领域有着广泛的应用前景。
直流电机调速matlab仿真报告

直流电机调速matlab仿真报告以直流电机调速Matlab仿真报告为标题引言:直流电机是一种常见的电动机,广泛应用于工业、交通、家电等领域。
在实际应用中,电机的调速控制是一项关键技术,可以使电机在不同工况下实现恒定转速或变速运行。
本文将利用Matlab软件进行直流电机调速的仿真实验,旨在通过仿真结果分析不同调速控制策略的优劣,并提供一种基于Matlab的直流电机调速方法。
一、直流电机调速原理直流电机的调速原理基于电压与转速之间的关系。
电机的转速与输入电压成正比,即在给定电压下,电机转速可以通过调整电压大小来实现调速。
常用的直流电机调速方法有电压调速、电流调速和PWM调速等。
二、Matlab仿真实验设置本次仿真实验将以直流电机调速为目标,基于Matlab软件进行实验设置。
首先,需要建立电机的数学模型,包括电机的转速、电流和电压等参数。
其次,选择合适的调速控制策略,如PID控制、模糊控制或神经网络控制等。
最后,通过调节电压输入,观察电机的转速响应和稳定性。
三、PID控制调速实验1. 实验目的本实验旨在通过PID控制器对直流电机进行调速控制,并分析不同PID参数对控制效果的影响。
2. 实验步骤(1) 建立直流电机的数学模型;(2) 设计PID控制器,包括比例系数Kp、积分系数Ki和微分系数Kd;(3) 利用Matlab软件进行仿真,设定电机的目标转速和初始转速;(4) 通过调节PID参数,观察电机的转速响应和稳定性。
3. 实验结果与分析根据实验设置,我们分别对比了不同PID参数值下的电机转速响应曲线。
结果显示,在合适的PID参数设置下,电机能够实现快速响应和稳定控制。
但是,过大或过小的PID参数值都会导致转速超调或调速不稳定的问题。
四、模糊控制调速实验1. 实验目的本实验旨在通过模糊控制器对直流电机进行调速控制,并分析不同模糊规则和输入输出的影响。
2. 实验步骤(1) 建立直流电机的数学模型;(2) 设计模糊控制器,包括模糊规则、输入变量和输出变量;(3) 利用Matlab软件进行仿真,设定电机的目标转速和初始转速;(4) 通过调节模糊规则和输入输出变量,观察电机的转速响应和稳定性。
直流调速系统的MATLAB仿真(参考程序)

直流调速系统的MATLAB 仿真一、开环直流速系统的仿真开环直流调速系统的电气原理如图1所示。
直流电动机的电枢由三相晶闸管整流电路经平波电抗器L 供电,通过改变触发器移相控制信号c U 调节晶闸管的控制角α,从而改变整流器的输出电压,实现直流电动机的调速。
该系统的仿真模型如图2所示。
MU d+I dGTU cE +--UCR图1 开环直流调速系统电气原理图图2 直流开环调速系统的仿真模型为了减小整流器谐波对同步信号的影响,宜设三相交流电源电感s 0L =,直流电动机励磁由直流电源直接供电。
触发器(6-Pulse )的控制角(alpha_deg )由移相控制信号c U 决定,移相特性的数学表达式为minc cmax9090U U αα︒-=︒-在本模型中取min 30α=︒,cmax 10V U =,所以c 906U α=-。
在直流电动机的负载转矩输入端L T 用Step 模块设定加载时刻和加载转矩。
仿真算例1 已知一台四极直流电动机额定参数为N 220V U =,N 136A I =,N 1460r /min n =,a 0.2R =Ω,2222.5N m GD =⋅。
励磁电压f 220V U =,励磁电流f 1.5A I =。
采用三相桥式整流电路,设整流器内阻rec 0.3R =Ω。
平波电抗器d 20mH L =。
仿真该晶闸管-直流电动机开环调速系统,观察电动机在全压起动和起动后加额定负载时的电机转速n 、电磁转矩e T 、电枢电流d i 及电枢电压d u 的变化情况。
N 220V U =仿真步骤:1)绘制系统的仿真模型(图2)。
2)设置模块参数(表1) ① 供电电源电压N rec N 2min 2200.3136130(V)2.34cos 2.34cos30U R I U α++⨯==≈⨯︒② 电动机参数 励磁电阻:f f f 220146.7()1.5U R I ===Ω 励磁电感在恒定磁场控制时可取“0”。
直流PWM调速系统MATLAB仿真

《单片机原理及接口技术》课程设计报告课题名称直流PWM调速系统的MATLAB仿真学院自动控制与机械工程学院专业机械设计制造及自动化班级姓名(学号)时间2016-1-9摘要直流电机具有良好的启动性能和调速特性,它的特点是启动转矩大,能在宽广的范围内平滑、经济地调速,转速控制容易,调速后效率很高。
本文设计的直流电机调速系统,主要由51单片机、电源、H桥驱动电路、LED液晶显示器、霍尔测速电路以及独立按键组成的电子产品。
电源采用78系列芯片实现+5V、+15V对电机的调速采用PWM波方式,PWM是脉冲宽度调制,通过51单片机改变占空比实现。
通过独立按键实现对电机的启停、调速、转向的人工控制,LED实现对测量数据(速度)的显示。
电机转速利用霍尔传感器检测输出方波,通过51单片机对1秒内的方波脉冲个数进行计数,计算出电机的速度,实现了直流电机的反馈控制。
关键词:直流电机调速;H桥驱动电路;LED显示器;51单片机ABSTRACTDC motor has a good startup performance and speed characteristics, it is characterized by starting torque, maximum torque, in a wide range of smooth, economical speed, speed, easy control, speed control after the high efficiency. This design of DC motor speed control system, mainly by the microcontroller 51, power supply, H-bridge driver circuits, LED liquid crystal display, the Hall velocity and independent key component circuits of electronic products. Power supply with 78 series chip +5 V, +15 V for motor speed control using PWM wave mode, PWM is a pulse width modulation, duty cycle by changing the MCU 51. Achieved through independent buttons start and stop the motor, speed control, turning the manual control, LED realize the measurement data (speed) of the display. Motor speed using Hall sensor output square wave, by 51 seconds to 1 microcontroller square wave pulses are counted to calculate the speed of the motor to achieve a DC motor feedback control.Keywords: DC motor speed control;H bridge driver circuit;LED display目录第1章引言1.1 概况现代工业的电力拖动一般都要求局部或全部的自动化,因此必然要与各种控制元件组成的自动控制系统联系起来,而电力拖动则可视为自动化电力拖动系统的简称。
比例积分控制的直流调速系统matlab仿真文件

比例积分控制的直流调速系统matlab仿真文件比例积分控制的直流调速系统是一种控制直流电机转速的方法,这种方法可以通过调整比例和积分控制器的参数来实现对电机转速的精确控制。
在实际应用中,比例积分控制的直流调速系统被广泛应用于工业生产、交通运输等领域。
为了实现比例积分控制的直流调速系统的仿真,我们可以使用MATLAB软件进行仿真模拟。
下面是一个比例积分控制的直流调速系统MATLAB仿真文件的实现过程。
首先,我们需要定义一个直流电机模型。
在MATLAB中,可以使用如下代码来定义一个电机模型:```MATLABJ = 0.01;b = 0.1;K = 0.01;R = 1;L = 0.5;s = tf('s');P_motor = K/((J*s+b)*(L*s+R)+K^2);```其中,J、b、K、R、L分别表示电机的转动惯量、阻尼系数、电动势系数、电阻和电感,P_motor表示电机传递函数。
接下来,我们需要定义一个比例积分控制器模型。
在MATLAB中,可以使用如下代码来定义一个控制器模型:```MATLABKp = 0.5; % 比例系数Ki = 0.2; % 积分系数C = pid(Kp, Ki);```其中,Kp和Ki分别表示比例系数和积分系数,C表示控制器传递函数。
然后,我们需要将电机模型和控制器模型进行连接。
在MATLAB中,可以使用如下代码将其进行连接:```MATLABsys_cl = feedback(C*P_motor,1);```其中,sys_cl表示闭环系统的传递函数。
接下来,我们需要设置仿真参数,并运行仿真程序。
在MATLAB中,可以使用如下代码来设置仿真参数:```MATLABt = 0:0.01:10;r = 0.2*ones(size(t));```其中,t表示仿真时间,r表示输入信号。
然后,我们可以运行仿真程序并绘制输出结果。
在MATLAB中,可以使用如下代码来运行仿真程序并绘制输出结果:```MATLAB[y,t,x] = lsim(sys_cl,r,t);plot(t,r,'b',t,y,'r');xlabel('Time (sec)');ylabel('Speed (rad/sec)');title('DC Motor Speed Response');legend('Input','Output');```以上代码将输出仿真结果图像,其中蓝色曲线表示输入信号,红色曲线表示输出信号。
基于MATLAB的直流调压调速控制系统的仿真

基于MATLAB的直流调压调速控制系统的仿真直流调压调速控制系统是工业自动化领域中常见的一种控制系统,它可以实现对直流电机的电压和速度进行精确的控制。
本文基于MATLAB软件对直流调压调速控制系统进行了仿真,主要包括建立电路模型、设计控制器、进行系统仿真等步骤。
通过仿真分析,可以验证控制系统的性能和稳定性,为实际工程应用提供参考。
一、直流电机数学模型直流电机是直流调压调速控制系统的执行元件,其数学模型可以基于电路和机械原理进行建模。
直流电机的数学模型主要包括电动势方程和机械方程,可以用下面的公式表示:1)电动势方程:\[E_a = K_e \omega\]\(E_a\)是电机的电动势,\(K_e\)是电机的电机常数,\(\omega\)是电机的角速度。
综合考虑电动势方程和机械方程,可以得到直流电机的传递函数:\[G(s) = \frac{k}{(s+a)(s+b)}\]\(k\)是传递函数的增益,\(a\)和\(b\)是传递函数的两个极点。
二、控制器设计在直流调压调速控制系统中,通常采用PID控制器来实现对电压和速度的精确控制。
PID控制器的传递函数可以表示为:\[C(s) = K_p + K_i \frac{1}{s} + K_d s\]\(K_p\)、\(K_i\)和\(K_d\)分别是比例环节、积分环节和微分环节的增益。
为了实现对电压和速度的精确控制,可以设计两个PID控制器,分别用于电压环和速度环。
电压环的PID控制器可以根据电机的电动势方程进行设计,速度环的PID控制器可以根据电机的机械方程进行设计。
三、系统仿真基于MATLAB软件,可以建立直流调压调速控制系统的仿真模型,对系统进行模拟和分析。
需要建立直流电机的数学模型,包括电动势方程和机械方程,并将其转化为传递函数形式。
然后,设计电压环和速度环的PID控制器,确定各个环节的增益参数。
将电机模型和控制器模型进行组合,得到整个系统的开环传递函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直流调速系统的MA TLAB仿真一、开环直流速系统的仿真开环直流调速系统的电气原理如图1所示。
直流电动机的电枢由三相晶闸管整流电路经平波电抗器供电,通过改变触发器移相控制信号调节晶闸管的U L c ,从而改变整流器的输出电压,实现直流电动机的调速。
该系统的仿真控制角模型如图2所示。
L++GTUCRE d--开环直流调速系统电气原理图图1图2 直流开环调速系统的仿真模型L?0,直为了减小整流器谐波对同步信号的影响,宜设三相交流电源电感s流电动机励磁由直流电源直接供电。
触发器(6-Pulse)的控制角(alpha_deg)由U 决定,移相特性的数学表达式为移相控制信号c???90?min U?90??c U cmax 1??。
在直流电动机的负载,所以,在本模型中取U?10V6??30?90U?ccmaxmin转矩输入端用Step模块设定加载时刻和加载转矩。
T L仿真算例1已知一台四极直流电动机额定参数为,,136AIU?220V?NN22。
励磁电压,励磁电,,220VminUR?0.2??1460rn?/m?22.5NGD?fNa流。
采用三相桥式整流电路,设整流器内阻。
平波电抗器??1.5A0.3RI?recf。
仿真该晶闸管-直流电动机开环调速系统,观察电动机在全压起动20mHL?d n、电磁转矩、电枢电流和起动后加额定负载时的电机转速及电枢电压的uTi ded变化情况。
220V?U N仿真步骤:1)绘制系统的仿真模型(图2)。
2)设置模块参数(表1)①供电电源电压U?RI220?0.3?136NNrec130(V)U???2?2.34?cos302.34cos?min②电动机参数励磁电阻:U220f)146.7(?R???f I1.5f励磁电感在恒定磁场控制时可取“0”。
电枢电阻:?0.2R?a电枢电感由下式估算:CU0.4?220N?19.1?L?19.1?0.0021(H)a2pnI2?2?1460?136NN L:电枢绕组和励磁绕组间的互感af U?RI220?0.2?136NNa?K?0.132(V?min/r)?e n1460N 2 6060K??0.132?K?1.26eTπ2π2K1.26T0.84(H)??L?af1.5I f电机转动惯量222.5GD2 )??0.57(kg?mJ?9.814?4g 额定负载转矩③模块参数名参数,直流电动机空载起动,5.0s3)设置仿真参数:仿真算法odel5s,仿真时间m171.4N??T 。
2.5s起动后加额定负载L 3)进行仿真并观察、分析结果(图)。
455 4553 开环直流调速系统的仿真结果图二、转速闭环直流调速系统的仿真系统由转速给所示,带转速负反馈的有静差(放大器转速调节器、直流调速系统的电气原理如图4*KUCR晶闸管整流器GT、定环节ASR)移相触发器、U pn 5和直流电动机M和测速发电机TG等组成。
L++I d*U U U + ncn M UGT UCR ASRE TGd-U-n-图4 转速闭环直流调速系统电气原理图图5 转速闭环直流调速系统的仿真模型转速负反馈有静差直流调速系统的仿真模型如图5所示,模型在图2开环调*速系统的基础上,增加了转速给定,转速反馈n-feed、放大器Gain和反映放U n大器输出限幅的饱和特性模块Saturation,饱和限幅模块的输出是移相触发器的控制电压,转速反馈直接取自电动机的转速输出,没有另加测速发电机,取U c*U nm 转速反馈系数。
?K n n N仿真算例2在算例1的基础上观察转速负反馈系统在不同放大器放大倍数时对转速变化的影响。
仿真步骤:1)绘制系统的仿真模型(图5)。
62)设置模块参数(表2)。
3)设置仿真参数:仿真算法odel5s,仿真时间1.5s,直流电动机空载起动,起动0.5s后加额定负载。
m?T?171.4N L4)进行仿真并观察、分析结果(图6):(用语句plot(tout1,yout1,tout2,yout2,tout3,yout3)进行示波器的曲线处理。
)表2 转速闭环直流调速系统主要模型参数16014012051000800)nim/r(600n4002000-20000.511.5)t(s7转速闭环直流调速系统的仿真结果图6三、转速电流双闭环直流调速系统的仿真由于晶闸管整流器不所示,转速电流双闭环直流调速系统的电气原理如图7 能通过反向电流,因此不能产生反向制7 转速电流双闭环直流调速系统的电气原理图图)进行,也8a双闭环直流调速系统的仿真可以依据系统的动态结构图(图模块来组建。
两种仿真的不同在于主电路,Power System可以用SIMULINK的Power System前者晶闸管和电动机用传递函数来表示,后者晶闸管和电动机使用模块,而控制部分则是相同的。
下面对这两种方法分别进行介绍。
基于动态结构图的双闭环直流调速系统仿真1.的不同之处8a所示,双闭环直流调速系统的实际动态结构图如图8b它与图8在于增加了滤波环节,包括电流滤波、转速滤波和两个给定信号的滤波环节。
这是因为电流检测信号中常含有交流分量,为了不使它影响到调节器的输入,需加低通滤波。
这样的滤波环节的传递函数可用一阶惯性环节来表示,其滤波时间常数可按需要选定,以滤平电流检测信号为准。
然而,在抑制交流分量的同时,T oi滤波环节也延迟了反馈信号的作用,为了平衡这个延迟作用,在给定信号通道上加入一个同等时间常数的惯性环节,称作给定滤波环节。
其意义是,让给定信号和反馈信号经过相同的延时,使二者在时间上得到恰当的配合,从而带来设计上的方便。
同样,由测速发电机得到的转速反馈电压信号含有换向纹波,因此也需要滤波,滤波时间常数用表示。
根据和电流环一样的道理,在转速给定通道a)b)图8 转速电流双闭环直流调速系统的动态结构图依据系统动态结构图的仿真模型如图9所示,仿真模型与系统动态结构图的各个环节基本上是对应的。
需要指出的是,双闭环系统的转速和电流两个调节器都是有饱和特性和带输出限幅的PI调节器,为了充分反映在饱和和限幅非线性影响下调速系统的工作情况,需要构建考虑饱和和输出限幅的PI调节器,过程如下:9线性PI调节器的传递函数为?ks?1i??ksW()?k ppip?ss?。
为积分系数,时间常数式中,为比例系数,k k/k?k i ipp上述PI调节器的传递函数可以直接调用SIMULINK中的传递函数或零极点模块,而考虑饱和和输出限幅的PI调节器模型如图10所示。
模型中比例和积分环节分为两个通道,其中积分模块Integrate的限幅表示调节器的饱和限幅值,而调节器的输出限幅值由饱和模块Saturation设定。
图9 转速电流双闭环直流调速系统仿真模型图10 带饱和和输出限幅的PI调节器仿真算例3以算例1的晶闸管-直流电动机系统为基础,设计一个转速电流?,电流超调量双闭环控制的调速系统,设计指标为:转速超调量10%%?n??,取电流反馈滤波时间常数,过载倍数,转速反馈0.002sT??%10%1.5?oii滤波时间常数,取转速调节器和电流调节器的饱和值为12V,输出限0.01sT?on*幅值为10V。
额定转速时转速给定电压。
通过仿真观察系统的转速、10VU?nm电流响应,以及参数变化(主要是调节器参数)对系统响应的影响。
仿真步骤:1)构建系统的仿真模型(图9)。
2)设置模块参数(调节器参数计算和设定)T?0.161s ①机电时间常数:m 10电磁时间常数:0.076s?T l三相晶闸管整流电路平均失控时间:0.0017s?T s②电流调节器ACR参数的计算**U10im电流反馈系数:0.05(V/A)???K i?I1.5?136N电流环时间常数之和0.0037(s)??0.002?T?0.0017T?T ois?i?s1?1i,其中ACR的传递函数为?K?KW(s)?K piACRiipi?ss i?时间常数0.076s??T li?R0.076?0.5i比例系数2.57??k?pi2?0.0037?40?T2KK0.05iiSΣk2.57pi积分系数33.8?k??ii?0.076i③转速调节器ASR参数的计算**U10nm转速反馈系数:min/r)??0.00667(VK??n n1500N电流环等效时间常数0.0074(s)??0.00372T?2i?转速环时间常数之和。
0.0174(s)??0.0037?0.01TT?2?T?2oni?n?1??s1n,其中ASR的传递函数为?k?k?kW(s)pnpnASRpi s?s n时间常数0.087(s)??0.0174hT???5n?n(h?1)KKT6?0.05?0.132?0.161mei???10.99K比例系数pn2hKRT2?5?0.00667?0.5?0.0174n?n k10.99pn积分系数126.3??k?in0.087?n h?5)(选择中频段宽度模型各环节参数如图9所示,其中调节器参数见表3,调节器积分环节限幅11 值为,调节器输出限幅值为。
10V12V??表3 转速电流双闭环直流调速系统主要模型参数后突加额定负载()。
136A?I?I NdL4)进行仿真并观察、分析结果(图11):18001600140012001000)nim/r(800n600400200000.20.40.60.811.21.41.61.82t(s)a)122b)11 基于动态结构图的双闭环直流调速系统仿真结果图Power System模块的双闭环直流调速系统仿真2. 基于模块组成的转速电流双闭环直流调速系统Power SystemSIMULINK采用的直流电动机组成的主电路和转速、电流-的仿真模型如图12所示,模型由晶闸管晶闸管整流调节器组成的控制电路两部分构成。
其中的主电路部分,交流电源、模型库中的模块。
控System 器、触发器、移相控制和电动机等环节使用Power这部分与前述基于以及反馈滤波环节,制电路的主体是转速和电流两个调节器,电动机动态结构图的双闭环系统仿真相同。
将这两部分拼接起来即组成晶闸管-转速电流双闭环控制的直流调速系统的仿真模型。
模型中转速反馈和电流反馈均直接取自电机测量单元的转速和电流输出端,ACR这样减少了测速和电流检测环节,但并不影响仿真的真实性。
电流调节器的输出限幅值就决定了ACR的输出端接移相特性模块(Shifter)的输入端,而oo 15030(控制角的()和。
)maxmin13的双闭环直流调速系统仿真模型12 基于Power System图仿真模型的不同在于以晶闸管整流器和电动机模型9应该注意,图12与图由于动态结构图中的晶取代了动态结构图中的晶闸管整流器和电动机传递函数,,因此转)如图11b闸管整流器和电动机传动函数是线性的,其电流可以反向(所以仿真的结速调节过程要快一些,而实际的晶闸管整流器不能通过反向电流,采用晶闸管整流器和电动机模型的仿真可以更好地反映系统的工作果略有不同,。