铝合金铸件气孔

铝合金铸件气孔
铝合金铸件气孔

铝合金铸件气孔与预防

湖南江雁机械厂增压器公司邓益中

摘要:本文从铝合金铸件气孔类别分析入手,指出铝合金铸件气孔可分为点状针孔、网状针孔、综合性针孔三类;氢是造成铝合金铸件针孔的主要原因,而氢的主要来源则是由于水蒸气分解所产生的。因此,铝合金在熔炼过程中造成水蒸气产生的原因,也就是直接影响针孔形成的主要因素。由于铝合金铸件气孔对铸件的品质尤其是对其力学性能产生不良的影响,作者在文中论述了铝合金铸件气孔形成的主要因素,并针对铝合金铸件气孔形成的主要因素提出了相应的预防措施,文章最后扼要总结了预防铝合金铸件针孔必须遵守的“防”、“排”、“溶”工艺原则。

关键词:铝合金;铸件;气孔;针孔;氢;力学性能;金属型铸造;预防措施。

引言:在纯铝中加入一些金属或非金属元素所熔制的铝合金是一种新型的合金材料,由于其比重小,比强度高,具有良好的综合性能,因此被广泛用于航空工业、汽车制造业、动力仪表、工具及民用器具制造等方面。随着国民经济的发展以及经济一体化进程的推进,其生产量和耗用量大有超过钢铁之势。加强对铝合金材料性能的研究,保证铝合金铸件具有优良品质,既是我们每一个科技工作者义不容辞的责任,也是同我们的日常生活息息相关的头等大事。本文结合作者铝合金铸件生产实践经验谈谈铝合金铸件气孔与预防问题。

1.气孔类别

由于铝合金具有严重的氧化和吸气倾向,熔炼过程中又直接与炉气或外界大气相接触,因此,如熔炼过程中控制稍许不当,铝合金就很容易吸收气体而形成气孔,最常见的是针孔。针孔(gas porosity/pin-hole),通常是指铸件中小于1mm的析出性气孔,多呈圆形,不均匀分布在铸件整个断面上,特别是在铸件的厚大断面和冷却速度较小的部位。根据铝合金析出性气孔的分布和形状特征,针孔又可以分为三类①,即:

(1) 点状针孔:在低倍组织中针孔呈圆点状,针孔轮廓清晰且互不连续,能数出每平方厘米面积上针孔的数目,并能测得出其直径。这种针孔容易与缩孔、缩松等予以区别开来。(2) 网状针孔:在低倍组织中针孔密集相连成网状,有少数较大的孔洞,不便清查单位面积上针孔的数目,也难以测出针孔的直径大小。

(3) 综合性气孔:它是点状针孔和网状针孔的中间型,从低倍组织上看,大针孔较多,但不是圆点状,而呈多角形。

铝合金生产实践证明,铝合金因吸气而形成气孔的主要气体成分是氢气,并且其出现无一定的规律可循,往往是一个炉次的全部或多数铸件均存在有针孔现象;材料也不例外,各种成分的铝合金都容易产生针孔。

2.针孔的形成

铝合金在熔炼和浇注时,能吸收大量的氢气,冷却时则因溶解度的下降而不断析出。有的资

料介绍②,铝合金中溶解的较多的氢,其溶解度随合金液温度的升高而增大,随温度的下降而减少,由液态转变成固态时,氢在铝合金中的溶解度下降19倍。(氢在纯铝中的溶解度与温度的关系见图1③)。因此铝合金液在冷却的凝固过程中,氢的某一时刻,氢的含量超过了其溶解度即以气泡的形式析出。因过饱和的氢析出而形成的氢气泡,来不及上浮排出的,就在凝固过程中形成细小、分散的气孔,即平常我们所说的针孔(gas porosity)。在氢气泡形成前达到的过饱和度是氢气泡形核的数目的函数,而氧化物和其他夹杂物则在起气泡核心的作用

在一般生产条件下,特别是在厚大的砂型铸件中很难避免针孔的产生。在相对湿度大的气氛中溶炼和浇注铝合金,铸件中的针孔尤其严重。这就是我们在生产中常常有人纳闷干燥的季节总比多雨潮湿的时节铝合金铸件针孔缺陷少些的原因。

一般说来,对铝合金而言,如果结晶温度范围较大,则产生网状针孔的机率也就大得多③。这是因为在一般铸造生产条件下,铸件具有宽的凝固温度范围,使铝合金容易形成发达的树枝状结晶。在凝固后期,树枝状结晶间隙部分的残留铝液可能相互隔绝,分别存在于近似封闭的小小空间之中,由于它们受到外界大气压力和合金液体的静压作用较小,当残留铝液进一步冷却收缩时能形成一定程度的真空(即补缩通道被阻塞),从而使合金中过饱和的氢气析出而形成针孔。

3.形成气孔的氢气的来源与析出

铝合金中气孔的产生,是由于铝合金吸气而形成的,但气体分子状态的气体一般不能溶解于合金液中,只有当气体分子分解为活性原子时,才有可能溶解。合金液中气体能溶解的数量多少,不仅与分子是否容易分解为活性原子有关,还直接与气体原子类别有关。在铝合金熔炼过程中,通常接触的炉气有:氢气、氧气、水蒸气、二氧化碳、二氧化硫等,这些气体主要是由燃料燃烧后产生的,而耐火材料、金属炉料及熔剂、与气体接触的工具等也可以带入一定量的气体,如新砌的炉衬、炉子的耐火材料、坩埚等,通常需要使用几天或几周的时间,其化学结合的氢才能充分从粘结剂中释放出来。一般而言,炉气成分是由燃料种类以及空气量来决定的。普通焦炭坩埚炉,炉气成分主要为二氧化碳、二氧化硫和氮气;煤气、重油坩埚炉主要为水蒸气、氮气;而对目前大多数熔炼厂家使用的电炉熔炼来说,炉气成分主要是氢气。因此,采用不同的熔炼炉熔炼时,铝合金的吸气量和产生气孔的程度是不同的。

铝合金生产实践证明,氢是唯一能大量溶解于铝或铝合金中的气体,是导致铝合金形成气孔的主要原因,是铝合金中最有害的气体,也是铝合金中溶解度最大的气体。在铸件凝固过程中由于氢的析出而产生的孔隙,不仅减少了铸件的实际截面积而且是裂纹源。惰性气体不能溶于铝或铝合金,其他气体一般与铝或铝合金反应形成铝的化合物,如Al2O3、AlCl3、AlN、Al4C3等等。由图1可知,氢在液态铝或铝合金中的溶液解度很大,而几乎不溶解于固态铝(在室温条件下,其溶解度约在0.003﹪以下)。

在铝合金熔炼时,周围空气中的氢气含量并不多,氢的最通常的来源是铝和水蒸气的反应,而水蒸气主要来源于炉气中的水分、设备及工具吸附的水分、一些材料的结晶水与铝锈

Al(OH)2分解出来的水分等,其反应式如下:

3H2O(水蒸气)+2Al=Al2O3+6[H](1)

含镁铝合金由于还发生下列反应,更容易吸收氢:

H2O(水蒸气)+ Mg=MgO+2[H](2)

另外,金属炉料或回炉料带入的油污、有机物、盐类熔剂等与铝液反应也能生成氢:

4mAl+3CmHn=mAl4C3+3n[H] (3)

镁、钠、锂可以改变铝的表面的氧化膜,使活性氢原子容易进入;金属氟和铍则能在铝的表面形成更致密的氧化膜,降低氢向铝液或铝合金中扩散的速度,对铝合金起到保护作用。形成氢化物的元素,如钙、钛、锂、铯等金属均能强烈地扩大氢在铝液中的溶解度。不同温度下活性氢原子在铝液或铝合金中的溶解度见表1。

4.气孔对铝合金铸件性能的影响

针孔对铝合金性能的影响主要表现在能使铸件组织致密度降低,力学性能下降。为此,在铝合金铸件生产实践中,加强对气孔等级对力学性能的影响研究,通过控制针孔等级来保证铝合金铸件品质是非常重要的。针孔等级评定,低倍检验按GB10851-89进行,当有争议时

按表2规定执行;X射线照相按GB11346-89铝合金铸件针孔分级标准执行,该标准选用目前工业生产中常用的两种合金ZL101(Al-Si-Mg系)和ZL201(Al-Cu-Mn系), 并在T4状态测定бb和σ5的试验结果表明(ZL101T4、ZL201ST4各种针孔试样的力学性能分别见表3、表4):铸件力学性能与针孔等级之间是线性相关关系,随着针孔等级级别增加,力学性能逐步下降;针孔等级每增加一级,力学性бb下降3%左右,σ5下降5%左右。对铝合金铸件切取性能试样要求,铸件允许存在的针孔级别详见GB9438-8

这里应当指出的是,由于铸件壁厚效应的影响,即使针孔严重程度相同,壁厚大的部位力学性能下降,壁厚小的则较高。由于铸件的力学性能取决于多种因素,不仅与针孔等级有关,还与合金的化学成分的波动、铸件的凝固速度、热处理效果、其他缺陷的存在因素有关,所以同一级别的针孔试样,力学性能将在一个相当大的范围内波动。

5.铝合金铸件针孔形成的主要因素

综上所述,针孔是铝合金铸件中容易出现的且对铸件品质造成一定影响的一种铸造缺陷,氢是造成针孔的主要原因(有的资料介绍,铝液中所溶解的气体中80%-90%是氢),而氢的主要来源是水蒸气分解所产生的。因此,铝合金在熔炼过程中造成水蒸气产生的原因,也就是直接影响针孔形成的主要因素。影响针孔形成的主要因素有:

5.1 原材料、辅助材料的影响

在铝合金熔炼浇注过程中,所使用的原材料、辅助材料、一些材料中的结晶水和铝锈AL(OH)2分解会产生水分,造型材料中有多种有机和无机辅料带有的水分,铸型材料中的辅料、涂料等因为预热不良含有的水分等等,在铝合金熔炼浇注时,会因水蒸气的分解而产生大量的气体,这些气体都有可能导致铸件产生气孔。涂料中粘结剂,虽然可以增加涂层厚度,但也相应增大了发气量。

5.2 熔炼设备及工具的影响

不同熔炼设备熔化铝合金时,铝合金的吸气量和形成气孔的程度是不同的。新坩埚及有锈蚀、污物的旧坩埚,使用前应吹砂或用其他方法清除干净,并加热至700℃-800℃,保温2h-4 h,以去除坩埚所吸附的水分和其它化学物质,否则会因含有水分而在熔炼浇注时产生水蒸气而导致形成气孔。新砌的炉子,通常也需要使用几天或几周的时间进行烘炉干燥处理,否则耐火材料中含有的水分及化学结合的氢就无法释放而导致熔炼时形成气孔。

熔炼用的工具如浇包、除气用的钟罩等,使用前应将表面残余的金属、氧化皮等污物清除干净;铝镁合金使用的工具,使用前则要求放在光卤石等熔剂中洗涤干净。然后涂上防护涂料并进行预热烘干。如果预热不良,表面吸咐的水分,会在熔炼浇注过程因加热形成水蒸气而产生大量的气体,导致铸件针孔的形成。

5.3 气候的影响

一般情况下,周围空气中的氢气含量并不多,但空气中如果相对湿度大,则会增加合金液中气体的溶解度,形成季节性气孔,如在雨季,由于空气湿度大,铝合金熔炼时针孔产生的现象就严重些。当然,空气湿度大时,铝合金锭、熔炼设备、工具等也会因空气潮湿而增加表面水分的吸附量,因此更应注意采取有力预热烘干防护措施,以减少气孔的产生。

5.4 熔化操作的影响

铝合金熔炼时,由于氢气溶解到铝液中需要一个过程,因此加强熔炼过程的控制,对控制铝合金吸气量是大有文章可做的。生产实践表明,铝液吸氢是在表面进行的,它不仅与铝液表面的分压有关,还与合金熔炼温度、熔炼时间等有较大的关系。合金熔化温度越高,熔化时间和熔化后铝液保持时间越长,氢在铝液中扩散就越充分,铝液吸氢量就越大,出现针孔的几率就越大。有人曾做试验,铝液存放时间越长,铝合金内含气量近似成比例增加。因此,我们在大量生产条件下,为了减少铝合金熔炼时吸收氢气,一定要严格执行铝合金熔炼工艺规程,一般铝合金熔化后保持时间不能超过3h-5h,铝合金熔化温度也不能过高,一般控制在760℃以下,最高初始熔炼温度不应超过920℃。

5.5 砂型铸造铸型的影响

铸型含水量高,铝合金中含氢量就越高。有人用同炉合金浇入不同含水量的铸型,经测定合金中氢气含量有很大区别③:铸型含水量为5%时,铸型中含氢量为1.5ml/100g;铸型含水量为6%时,铸型中含氢量为2.5ml/100g;铸型含水量为8%时,铸型中含氢量为3.0ml/100g。因此砂型铸造铝合金时,最好采用干燥或表面干燥型,如用湿型,含水量应控制在6%以下。这是因为湿型铸造时,由于水分的汽化温度低,当加热到铝液熔化温度时,砂型中会产生大量的气体,随着压力增大,体积发生膨胀,压力大的气体就会进入型腔或型腔中的铝液,导致侵入性气孔的形成。

5.6 金属型铸造型腔的影响

由于金属型铸造没有退让性和无透气性等特点,金属型在充填和浇注过程中,型腔内的气体一方面随着铝液金属的充填被压缩;另一方面又被迅速强烈加热,引起压力升高,结果造成充型反压力,阻碍铝液金属充填型腔,当压力超过一定极限时,气体就可能冲破金属液流束的表层,通过内浇口向外逸出,破坏金属液连续流动,并造成强烈氧化,在气体穿越金属液时,如果受到初晶或凝固层的阻挡,便会留在金属液中形成气孔。当带有砂型的金属型铸造时,液体金属在充填过程中,砂型受到粘结剂分解以及涂料未烘干或金属型预热不充分的影响,都会增加型腔内的气体量,当型腔内的气体不能充分排出时,气体便滞留于铸件形成

气孔,而部分残留气体则富集于铸型壁与金属液之间形成“气阻”,这些气阻则使铸件出现浇不足或冷隔缺陷。

6.预防铝合金铸件针孔形成的主要措施

由以上分析可知,铝合金铸件容易产生针孔缺陷。它与铝合金本身特性有关系,也与一系列的外界因素有关。为了避免或减少铝合金在熔炼时产生针孔,保证铝合金铸件具有优良品质,可针对性地采取适当的预防措施予以预防。

6.1 认真做好熔炼浇注时的准备工作

6.1.1 严格按工艺规程要求,正确处理好炉料。炉料使用前应用吹砂或其它方法去除炉料表面的锈迹、泥沙等污物,并进行炉料预热,预热温度:350℃-450℃,保持3h以上,严防带入水分和油污等。按QJ169-75要求的I类铸件,只允许使用一级回炉料,Ⅱ、Ⅲ类铸件允许使用二级回炉料,但Ⅱ类铸件回炉料的总量不允许超过70%,三级回炉料不允许用于基本产品的生产。

6.1.2 坩埚、锭模、熔炼工具,使用前应将表面油污、脏物等清除干净。并预热至120℃-250℃,涂以防护涂料。

6.1.3 新坩埚、新砌炉子、有锈蚀的旧坩埚,使用前应用吹砂其他方法将表面清除干净,并进行烘炉处理。一般应加热至700℃-800℃,保温2h-4h,以去除坩埚所吸附的水分及其它化学物质。

6.1.4 已经涂料的坩埚、锭模、熔炼工具使用前,均须预热,坩埚应预热至暗红色(500℃-600℃);熔炼工具应预热至200℃-400℃,保持2h以上(除使用感应炉熔炼合金时,坩埚可不预热外。)

6.2 严格执行工艺规程,力求做到快速熔炼

铝合金在熔炼时,要力求做到快速熔炼,缩短高温下停留的时间。Al-Mg合金和其它铝合金熔化后保持时间过长时,需要用熔剂覆盖铝合金液面,以防止铝合金吸气,一旦在生产过程中出现异常,要及时与现场技术人员取得联系,采取果断措施予以处理。根据QJ1182-87标准,每一炉合金从开始熔化到浇注完毕的时间,砂型铸造不得超过4h;金属型铸造不得超过6h;压铸不得超过8h;合金最高温度一般不超过760℃,坩埚底部涂料厚度不得小于60mm。

6.3 加强潮湿季节预防措施

在雨季或空气潮湿时节铸造铝合金,我们更应加注意采取预防去气防护措施,对熔炼用具、锭模、坩埚、炉料等都要严格按规范进行预热处理,以防带入过多的水分和油污等,引起各类针孔的产生。

6.4 精炼去气,去除铝合金中的气体

一般情况下,所谓“去气”(又叫“除气”)就是去除合金中的气体,“精炼”就是指去除合金中的夹杂物。因铝合金熔炼时,除气和精炼两个工序多合并在一起进行,故在生产实践中习惯将

这两个工序称为精炼。由于铝合金中的气体主要是氢气,去气也就是主要去除氢气。目前去气的主要办法是在铝合金中通过精炼除气剂制造大量的气体(气泡中的气体可能是铝液内部经化学反应产生的,也可能性是经由部分精炼除气剂加入直接带入的),利用分压原理,让溶解于铝液中的氢原子向气泡扩散(此时气泡的分压为零),由于气泡比重轻,当气泡上浮到铝液表面时,气泡破裂,氢气逸入大气之中,最终达到去除氢气的目的(氯气及氯盐去气原理示意图见图2)。

图 2. 氯气及氯盐去氢原理示意图

目前,为了消除铝合金铸件针孔,最常用的办法是在熔化过程中用氯盐和氯化物除气,用氯气、氮气除气,用真空除气,用超声波除气,过滤除气等方法。,常用精炼除气剂的用途见表5。采用氯盐和氯化物除气剂除气时,要用钟罩将除气剂压入坩埚底部100mm,沿坩埚直径1/3处(距坩埚内壁)的圆周匀速移动。为了不使铝液大量喷溅,除气剂可分批加入,除气结束除渣,并按表6规定的时间进行静置。

6.5 增加气体在合金中的溶解度

采用快速或高压下凝固的方法,提高气体在铝合金中的溶解度,促进气体来不及或不能析出,从而达到消除针孔的目的。具体方法限于篇幅,在此不做过多阐述。

6.6 采用工艺方法进行除气

通常情况下,砂型铸造也可以采用静置、多扎出气孔和加大冒口等方法进行去气。这里仅以金属型铸造去气预防措施为例做一简易介绍。由于金属型铸造具有无透气性特点,在设计金属型时就必须有排气预防措施,其生产中常用的排气方式有:

(1)利用分型面或型腔零件的组合面的间隙进行排气:因为金属型零件在组合时,总会有间隙,一般分型间隙在0.08mm-0.15mm之间,活动零件间隙在0.1mm-0.2mm之间,利用这些间隙可用来排气,但不允许为了排气而过分扩大间隙,造成金属液阻塞,从而使铸件上毛刺增加,降低铸件尺寸精度。

(2)开排气槽:即在分型面或型腔零件的组合面上,芯座与顶杆表面上做排气槽,这样既能排气,又能蓄气,阻止液体金属流入,故在金属型铸造和金属型低压铸造时被广泛采用。(3)设排气孔:排气孔一般开设在金属型的最高处,或金属型内可能产生“气阻”的地方。(4)设计排气塞:排气塞是金属型常用的排气设施。在一平面上需要设制数个排气塞时,可用一个排气环来代替,将它设计在型腔的“气阻”处,或型腔的大平面上,以便排气畅通。如在铸件肥厚部分设计排气塞,排气塞可用导热性好的铜制作,同时还可以起到加强铸件冷却的作用。排气塞安装的位置和数量,常在金属型修正时确定。在金属型小批量生产时,为简化排气塞的制作,常在需要设置排气塞的地方,钻ф5-10毫米的小孔,孔内塞以水玻璃砂,也可以起到排气塞的作用。

7.预防铝合金铸件气孔形成应遵循的工艺原则

以上分析了铝合金铸件气孔形成的主要因素,并针对性地论述了一系列相应的预防措施,目的就是要在铸件中防止生成气孔和夹杂,获得优良品质的铸件。从铸造工艺角度综合分析,预防气孔的生成,消除气孔和氧化夹杂,我们可以用“防”、“排”、“溶”三字工艺原则来概括。“防”:就是要防止水分及各种污物进入坩埚或熔炉中。

“排”:就是要排除铝液中的氧化夹杂和氢气,因为只有有效去除悬浮在铝液中的弥散状的夹杂物(主要是Al2O3),才能防止铝液增氢,消除去氢障碍,从而获得纯净的铝液,浇出合格的铸件。“渣既尽,气必除”说的就是这个意思。

“溶”:就是要使铝液中的氢在凝固时能部分地或者全部地固溶在合金组织中,不致在铸件中形成气孔。

因此,在铝合金熔炼安排和选择“防”、“排”、“溶”三套工艺措施时,我们必须遵循“以防为主,以排为辅”的工艺原则,但最佳的熔炼或重熔方法,着眼点应仍放在“防”字上。

当然,铝合金熔炼或重熔时,贯彻“以防为主,以排队为辅”的原则,正确实施“防”、“排”、“溶”三套工艺措施,还必须具有过硬的熔炼操作基本功,熔炼操作基本功包括:精炼设备、熔炉炼工具的准备和处理,溶剂、变质剂的预制,精炼、变质除渣的技巧,搅拌操作的技巧和合理浇注等等,我们只有具备了过硬的操作基本功,才能真正有效地预防铝合金铸件气孔的形成。

参考文献

[1] 机电部沈阳铸造研究所全国铸造信息网。铸件缺陷分析。沈阳:机电部沈阳铸造研究所,1989。

[2] 杭州学林科技开发服务部铸造研究室。铝合金标准及新工艺。杭州:杭州学林科技开发服务部铸造研究室,2002。

钣金检验标准

wiriL 钣金产品检验标准 1. 目的 确保零部件的加工质量,防止未经检验和不合格的加工零部件转序或误用。

2. 适用范围 本指导书明确规定了钣金制造工序检验的方法和要求。本指导书适用于公司内对钣金加工零部件的质量控制,当产品有 特殊要求涵盖本指导书,请遵照产品特殊要求执行。 3. 职责 3.1 生产部操作工负责对所加工零部件进行自检和互检。 3.2 质量部负责所加工零部件的检验和不良品处理。 3.3 工程部负责产品技术支持。 4. 工序检验规范 操作工在操作前,要对上道工序加工零件或原材料进行外观和形状检验,如果发现不良品,操作工可以拒收并通知检验员或工程师处理该不良品。 4.1 拉丝检验: 4.1.1 检验方法 a. 操作工及检验员对于每班每批次拉丝加工零件都必须进行首件检验,只有当首件检验 合格后,方能进行批量生产. 检验员要求一次首件,一次过程检验和一次最终检验。操作工在领原材料时必须依据生产程序单的要求检查规格尺寸。 b. 操作工应对拉丝零件的表面质量进行全数检验。 4.1.2 检验要求: 4.1.2.1 按照工程文件,确认拉丝前原材料符合要求。 剪切零件的检验要求: 4.1.2.1.1 对第一块剪下来的材料,应仔细测量各尺寸。对所剪切的零件进行对角线测量: 小于2mm为合格。单边测量:小于0.5mm为合格。检验员检验合格后才可以继续剪料。 4.1.2.1.2 对于剪下来的材料,检查材料剪切边缘是否有蜷曲和变形,如有高于表面 0.5mm的为不合格。 4.1.3剪切下来的板材表面优先按照TS文件或者Routing上有规定的要求检验,没要求的 一般按照以下4点要求检验: 4.1.3.1 不得有长度超过4毫米深划痕(有手感的),特别是正中很明显的位置,或划痕虽 浅但很多很密很长,均不允许。单面刮痕不能超过2条。 4.1.3.2 不允许表面有任何凹痕。 4.1.3.3 不允许有任何变形。 4.1.3.4 不允许锈斑,正中很明显的位置不得有擦伤、花斑、麻点、撞伤。

JIS铝合金压铸件中文

J I S铝合金压铸件中文 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

前言 本标准是参照工业标准化法第14条,以批准的第12条第1项的规定为基准,由社团法人日本压铸件协会(JDCA)/财团法人日本标准协会(JSA)提出申请,备齐工业标准草案,与应修订的日本工业标准的提议一起,经过日本工业标准调查会的审议,由经济产业大臣批准的日本工业标准。因此,JIS H 5302∶2000被修订,并被置换为本标准。 按照修订,对比日本工业标准和国际标准,为了易于制定与国际标准一致的日本工业标准,以及以日本工业标准为基础的国际标准草案提案,将ISO/FDIS 3522∶2006,铝及铝合金压铸件—化学合成物及机械性能作为基础使用。 作为本标准的一部分,提请读者注意有可能出现与具备了技术特性的专利权,申请公开后的专利请求,实用新型权力,以及申请公开后的实用新型呈请注册等相抵触的情况。经济产业大臣和日本工业标准调查会对于与有这样技术特性的专利权,申请公开后的专利请求,实用新型权力,以及申请公开后的实用新型呈请注册有关的确认,没有责任。 JIS H 5302有如下所示的附件。 附件1(参考)使用部件例 附件2(参考)与JIS对应的国际标准的对照表

目录 1.适用范围………………………………………………………………………………… 2 2.引用标准………………………………………………………………………………… 2 3.种类及记号……………………………………………………………………………… 3 4.材料……………………………………………………………………………………… 3 5.质量……………………………………………………………………………………… 4 6.形状、尺寸……………………………………………………………………………… 4 7.试验……………………………………………………………………………………… 4 7.1 分析试验 (4) 7.2 机械试验 (4) 8.检查 (4) 9.表示 (4) 10.报告 (4) 附件1(参考)使用部件例 (6) 附件2(参考)与JIS对应的国际标准的对照表 (8)

铝合金铸件气孔标准

铝合金铸件气孔标准 This model paper was revised by the Standardization Office on December 10, 2020

铝合金铸件气孔、针孔检验标准 一.适用范围 本标准规定了铸件气孔、针孔允许存在的范围、大小、数量等技术要求。本标准规定了铸造铝合金低倍针孔度的分级原则和评级方法。本标准适用于铝合金的砂型铸造。适用于评定铸件外表面及需要加工面经加工后的表面气孔、针孔。 二.引用标准 GB1173-86铸造铝合金技术条件 GB9438-88铝合金铸件技术条件 GB10851-89铸造铝合金针孔 三.气孔、针孔等孔洞类特征 1.位于铸件内部而不延伸到铸件外部的气眼。 (1)气孔、针孔内壁光滑,大小不等的圆形孔眼,单个或成组无规则的分布在铸件的各个部位。 (2)气渣孔其特征同气孔、针孔相似,但伴随有渣子。 2.表面或近表面的孔眼,大部分暴露或与外表面相连。 (1)表面或皮下气孔大小不等的单个或成组的孔眼,位于铸件表面或近表面的部位,其内壁光滑。 (2)表面针孔铸件表面上细小的孔洞,呈现在较大的区域上。

四.具体条件 1.砂型、金属型铸件的非加工表面和加工表面,在清整干净后允许存在下列孔洞: (1)单个孔洞的最大直径不大于3mm,深度不超过壁厚1/3,在安装边上不超过壁厚的1/4,且不大于1.5mm,在上述缺陷的同一截面的反面对称部位不得有类似的缺陷。(2)成组孔洞最大直径不大于2mm,深度不超过壁厚的1/3,且不大于1.5mm。 (3)上述缺陷的数量及边距应符合表一规定 表一 非加工表面或加工表面总面积小于1000cm2 单个孔洞成组孔洞 在 10cm×10cm 单位面积上 孔洞数不多 于4个 孔洞边 距不小 于10mm 一个铸件的非加工 表面或加工面上孔 洞总数不多于6 个,孔洞边缘距铸 件或距内孔边缘的 距离不小于孔洞最 大直径的2倍 以 3cm×3cm 单位面积 为一组, 其孔洞数 不多于3 个 在一个铸 件上组的 数量不多 于2组 孔洞边缘 距铸件边 缘或距内 孔边缘的 距离不小 于孔洞最 大直径的2 倍 2.液压、气压件的加工表面上,铸件以3级针孔作为验收基础,要求2级针孔占受检面积的25%以上,局部允许4级针孔,但一般不得超过受检面积的25%,当满足用户对致密性的技术要求时或对其它砂型、金属型铸件允许按低一级的针孔度验收。

《铜合金铸件铸造技术》教学日历

课程教学日历表 一、本课程的性质及任务 本课程是材料成型和控制技术专业综合学习领域5门专业核心课程之一。是在工学结合人才培养模式下,以培养学生综合职业能力为目标,并基于工作过程教学模式开发的理论实践一体化课程。通过该课程的学习,使学生熟悉区域内行业企业铜合金铸造生产的现状,熟悉专业职业领域国家及行业相关标准,认知专业领域及工作范围和工作职责;掌握石膏型铸造、离心铸造、熔模铸造、铜合金熔炼的基本知识及操作技能,具备从事企业相对应生产岗位的工作能力。同时,为学生对后续专业课的学习以及将来的就业奠定良好的基础。 二、教材 主要参考教材 杨兵兵、李光照、李红莉编著.铜合金铸件铸造技术.北京:机械工业出版社, 2010 林柏年编著.特种铸造.杭州:浙江大学出版社, 2008 杨兵兵.特种铸造.长沙:中南大学出版社,2010三、本课程教学内容的基本要求 本课程培养学生达到如下基本要求: 1.掌握典型铜合金铸件石膏型铸造、离心铸造、熔模铸造工艺特点及方法选择的能力。 2.通过小组协作完成典型铜合金铸件石膏型铸造、离心铸造、熔模铸造的生产准备、设备选择、铸型制备、熔炼、浇注、清理等工艺过程。 3.通过小组协作完成铜合金铸件离心铸造铸型的设计及离心铸造工艺的编制。 4.通过小组协作完成铜合金铸件熔模铸造压型的的设计及熔模铸造工艺的编制。 5.具有解决实际问题、独立学习新技术、评估总结工作结果等方面的能力。 6.逐步具有职业素质、团队协作、语言表达等方面的社会能力。 四、教学方法 1.教学方法 项目驱动法;引导文法;对比法;头脑风暴法;分数激励法,课外创新法等。 2.教学手段 视频教学;电子课件;教学动画;仿真模拟;网络课程;参观。 五、课时安排说明 本课程为理实一体化教学,共200学时,安排在本学期第1~10周周一到周五进行,每天4节(上午8点~12点或下午14点~18点),逢节假日另行调整。教学场所安排在特种铸造实训车间进行。考

常规产品外观质量检查标准

沈阳世润重工有限公司 产品外观检查标准 铸铁铸钢件: 1、表面粗糙度(铸铁铸钢)RZVm600样块。 2、铸钢尺寸偏差 3、铸铁铸钢壁厚、筋厚尺寸偏差 铸铁、铸钢件表面应平整洁净,对粘沙、氧化皮、多肉等清砂时修平打光。

铸钢件表面缺陷,符合下列条件可以修补: 1、铸件存在缺陷大小部位在图纸技术条件或订货合同协议中规定允许范围之内; 2、机械加工面上铸造缺陷确认机加后能除去; 3、铸件毛坯表面存在缺陷可按表3验收。 表3 冒口切割痕迹验收标准,冒口切割余量如表4。 铸铁件加工余量标准如表5。

铸钢件加工余量如表6。 注:1、孔的高度大于直径时取上面; 2、孔的高度小于直径取下面; 3、测量尺寸是指零件尺寸或加工工艺补正量拔摸斜度加上加工余量。 铸铁表面外观检查标准 1、铸件铸造表面粗糙度应合Ra25要求。 2、除另有规定外,铸件均以不加工状态交货,但应清理干净,修整多肉,去除浇冒口残余芯骨、粘砂及内腔残砂等。 3、铸件加工面上允许存在加余量内表面缺陷,非加工面允许有不超过壁厚(缺陷所在处的壁厚)1/3的孔存在,但须经修补,但同一个件上此缺陷不许有3处。 4、在地脚等不重要处允许有缺肉,浇铸不足存在,须经焊补修理、打光检查,不允许有裂纹,同一件上只允许有一处缺陷。 铸铁硬度检查标准 无特殊要求常规灰铸铁按GB231-84(布氏硬度检验标准)

HT200 171-241HB 铸钢产品硬度检查标准 一、正火 注:以上标准为常规正火硬度标准,有图纸工艺和用户要求按图纸工艺、用户要求执行。 二、调质 注:以上产品如有图纸工艺和用户要求硬度,按图纸工艺和用户要求执行。

铝合金铸件气孔标准

精心整理铝合金铸件气孔、针孔检验标准 一.?适用范围 本标准规定了铸件气孔、针孔允许存在的范围、大小、数量等技术要求。本标准规定了铸造铝合金低倍针孔度的分级原则和评级方法。本标准适用于铝合金的砂型铸造。适用于评定铸件外表面及需要加工面经加工后的表面气孔、针孔。 二.?引用标准 三.? 1.? (1)? 位。 (2)? 2.? (1)? 光滑。 (2)? 四.? 1.?砂型、金属型铸件的非加工表面和加工表面,在清整干净后允许存在下列孔洞: (1)?单个孔洞的最大直径不大于3mm,深度不超过壁厚1/3,在安装边上不超过壁厚的1/4,且不大于1.5mm,在上述缺陷的同一截面的反面对称部位不得有类似的缺陷。 (2)?成组孔洞??最大直径不大于2mm,深度不超过壁厚的1/3,且不大于1.5mm。 (3)?上述缺陷的数量及边距应符合表一规定

表一 非加工表面或加工表面总面积小于1000cm2 单个孔洞成组孔洞 在 10cm×10cm 单位面积上 孔洞数不多 于4个 孔洞边 距不小 于10mm 一个铸件的非加工 表面或加工面上孔 洞总数不多于6 个,孔洞边缘距铸 件或距内孔边缘的 距离不小于孔洞最 大直径的2倍 以 3cm×3cm 单位面积 为一组, 其孔洞数 不多于3 个 在一个铸 件上组的 数量不多 于2组 孔洞边缘 距铸件边 缘或距内 孔边缘的 距离不小 于孔洞最 大直径的2 2.?25% 3.? 4.? 表二 4 <20 <0.5 70 <1.0 30 5 <25 <0.5 60 <1.0 30 >1.0 10

5.?铸件内部气泡当无特殊规定时,按下列要求验收 (1)?单个气泡或夹杂的最大尺寸不大于3mm,深度不超过壁厚的1/3,在安装边上不超过壁厚的1/4,在10cm×cm面积上的数量不多于3个,边距不小于30mm。 (2)?成组气泡和夹杂最大尺寸不大于1.5mm,深度不超过壁厚的1/3,在3cm×3cm的面积上的数量不多于3个,组与组间的距离不小于50mm。 (3)?尺寸小于0.5mm的单个气泡或夹杂不计。 (4)?气泡与夹杂距铸件边缘和内孔边缘的距离不小于夹杂或气泡最大尺寸的2倍。???????????(5)?上述缺陷所对应的(同一截面)表面,不允许有类似缺陷。

锻造铸造铜及铜合金状态表示方法B

锻造和铸造铜及铜合金 状态表示方法 ASTMB601-01 16日1. 1.1 2. 3. 3.1 有关铜及铜合金的术语参见标准B 846。 4. 意义和用法 4.1 意义--铜及铜合金产品状态采用字母和数字混合的表示方法。 4.2 用法--字母和数字混合来表示产品的状态用于技术标准和数据发布中。 4.2.1 字母表示生产产品的一种加工过程。如“H”表示采用冷加工。

注1-这些字母经常与其它产品的状态表示方法相同。 5. 状态分类 5.1 退火态,O-通过退火方法生产的以满足机械性能要求的状态。 5.2 退火态,OS-通过退火方法生产的以满足标准或特殊晶粒度要求的状态。 5.3 加工态,M-通过铸件的初加工和热加工以及其它控制方法生产的产品的状态。 5.6.5 拐点热处理状态,TX-通过拐点硬化合金的拐点热处理而生产的状态。 5.6.6 冷加工和沉淀热处理状态,TH-用已经进行固溶热处理,冷加工和沉淀热处理的合金生产的状态。 5.6.7 冷加工和拐点热处理状态,TS-用已经进行固溶热处理,冷加工和拐点热处理的合金生产的状态。

5.6.8 加工硬化状态,TM-通过冷加工结合沉淀热处理或拐点热处理而供货的材料状态。 5.6.9 沉淀热处理或拐点热处理和冷加工状态,TL-通过对沉淀热处理或拐点热处理合金进行冷加工而生产的状态。 沉淀热处理或拐点热处理,冷加工,和消除热应力状态,TR-通过对沉淀热处理和拐点热处理消除热应力合金进行冷加工而生产的状态。 6. 6.1.1 退火以满足机械性能,O:

6.2 冷加工状态,H: 6.2.1 冷加工状态用于满足基于冷轧或冷拉的标准要求,H: 6.2.2 冷加工状态用以满足基于特殊产品状态名称的标准要求。H:

钣金加工检验标准

钣金加工检验标准文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

钣金结构件的加工及检验标准 1.目的 规范钣金结构件的检验标准,以使各过程的产品质量得以控制。 2.适用范围 本标准适用于各种钣金结构件的检验,图纸和技术文件并同使用。当有冲突时,以技术规范和客户要求为准。 3.引用标准 本标准的尺寸未注单位皆为mm,未注公差按以下国标IT13级执行 GB/ 极限与配合标准公差和基本偏差数值表 GB/ -1998 极限与配合标准公差等级和孔、轴的极限偏差表 GB/1804-2000 一般公差未注公差的线性和角度尺寸的公差 未注形位公差按GB/T1184 –1996 形状和位置公差未注公差值执行。 4.原材料检验标准 金属材料 尺寸:按图纸或技术要求执行,本司未有的按现行国标执行。 塑粉 通用五金件、紧固件 5.工序质量检验标准 冲裁检验标准 对有可能造成伤害的尖角、棱边、粗糙要做去除毛刺处理。 图纸中未明确标明之尖角(除特别注明外)均为。

冲压加工所产生的毛刺,对于门板、面板等外露可见面应无明显凸起、 凹陷、粗糙不平、划伤、锈蚀等缺陷。 毛刺:冲裁后毛刺高L≤5%t(t为板厚)。 划伤、刀痕:以用手触摸不刮手为合格,应≤。 平面公差度要求见表一。 附表一、平面度公差要求 表面尺寸(mm)变形尺寸(mm) 3以下±以下 大于3小于30 ±以下 大于30小于315 ±以下 大于315小于1000 ±以下 大于1000小于2000 ±以下 大于2000小于3150 ±以下 折弯检验标准 毛刺:折弯后挤出毛刺高L≤10%t(t为板厚)。除特别注明外,折弯内圆角为R1。 压印:看得到有折痕,但用手触摸感觉不到(可与限度样板相比较)。 折弯变形标准按照照《表二》及《表三》。 【附表二:对角线公差要求】 对角线尺寸(mm)对角线的尺寸差(mm) 300以下±以下 大于300小于600 ±以下 大于600小于900 ±以下 大于900小于1200 ±以下 大于1200小于1500 ±以下 大于1500小于1800 ±以下 大于1800小于2100 ±以下 大于2100小于2400 ±以下 大于2400小于2700 ±以下 钣金加工件检验标准

铝合金压铸件的标准

铝合金压铸件的标准 2010-01-25 10:08 铝合金压铸件 GB/T 15114-94 1.主题内容与适用范围 本标准规定了铝合金压铸件的技术要求,质量保证,试验方法及检验规则和交货条件等. 本标准适用于铝合金压铸件. 2.引用标准 GB1182 形状和位置公差代号及其标准 GB2828 逐批检查计数抽样程序及抽样表(适用于连续的检查) GB2829 周期检查计数抽样程序及抽样表(适用于生产过程稳定性的检查) GB6060.1 表面粗糙度比较样块铸造表面 GB6060.4 表面粗糙度比较样块抛光加工表面 GB6060.5 表面粗糙度比较样块抛(喷)丸,喷砂加工表面 GB6414 铸件尺寸公差 GB/T11350 铸件机械加工余量 GB/T15115 压铸铝合金 3.技术要求 3.1化学成分 合金的化学成分应符合GB/T15115的规定. 3.2力学性能 3.2.1当采用压铸试样检验时,其力学性能应符合GB/T15115的规定 3.2.2当采用压铸件本体试验时,其指定部位切取度样的力学性能不得低于单铸试样的75%,若有特殊要求,可由供需双方商定. 3.3压铸件尺寸

3.3.1压铸件的几何形状和尺寸应符合铸件图样的规定 3.3.2压铸件尺寸公差应按GB6414的规定执行,有特殊规定和要求时,须在图样上注明. 3.3.3压铸件有形位公差要求时,其标注方法按GB1182的规定. 3.3.4压铸件的尺寸公差不包括铸造斜度,其不加工表面:包容面以小端为基准,有特殊规定和要求时,须在图样上注明. 3.4压铸件需要机械加工时,其加工余量按GB/T11350的规定执行.若有特殊规定和要求时,其加工作量须在图样上注明. 3.5表面质量 3.5.1铸件表面粗糙度应符合GB6060.1的规定 3.5.2铸件不允许有裂纹,欠铸,疏松,气泡和任何穿透性缺陷. 3.5.3铸件不允许有擦伤,凹陷,缺肉和网状毛刺等腰三角形缺陷,但其缺陷的程度和数量应该与供需双方同意的标准相一致. 3.5.4铸件的浇口,飞边,溢流口,隔皮,顶杆痕迹等腰三角形应清理干净,但允许留有痕迹. 3.5.5若图样无特别规定,有关压铸工艺部分的设置,如顶杆位置,分型线的位置,浇口和溢流口的位置等由生产厂自行规定;否则图样上应注明或由供需双方商定. 3.5.6压铸件需要特殊加工的表面,如抛光,喷丸,镀铬,涂覆,阳极氧化,化学氧化等须在图样上注明或由供需双方商定. 3.6内部质量 3.6.1压铸件若能满足其使用要求,则压铸件本质缺陷不作为报废的依据. 3.6.2对压铸件的气压密封性,液压密封性,热处理,高温涂覆,内部缺陷(气孔,疏孔,冷隔,夹杂)及本标准未列项目有要求时,可由供需双方商定. 3.6.3在不影响压铸件使用的条件下,当征得需方同意,供方可以对压铸件进行浸渗和修补(如焊补,变形校整等)处理. 4质量保证 4.1当供需双方合同或协议中有规定时,供方对合同中规定的所有试验或检验负责.合同或协议中无规定时,经需方同意,供方可以用自已适宜的手段执

铝合金铸件气孔标准修订稿

铝合金铸件气孔标准 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

铝合金铸件气孔、针孔检验标准 一. 适用范围 本标准规定了铸件气孔、针孔允许存在的范围、大小、数量等技术要求。本标准规定了铸造铝合金低倍针孔度的分级原则和评级方法。本标准适用于铝合金的砂型铸造。适用于评定铸件外表面及需要加工面经加工后的表面气孔、针孔。 二. 引用标准 GB1173-86铸造铝合金技术条件 GB9438-88铝合金铸件技术条件 GB10851-89铸造铝合金针孔 三. 气孔、针孔等孔洞类特征 1. 位于铸件内部而不延伸到铸件外部的气眼。 (1)气孔、针孔内壁光滑,大小不等的圆形孔眼,单个或成组无规则的分布在铸件的各个部位。 (2)气渣孔其特征同气孔、针孔相似,但伴随有渣子。 2. 表面或近表面的孔眼,大部分暴露或与外表面相连。 (1)表面或皮下气孔大小不等的单个或成组的孔眼,位于铸件表面或近表面的部位,其内壁光滑。

(2)表面针孔铸件表面上细小的孔洞,呈现在较大的区域上。 四. 具体条件 1. 砂型、金属型铸件的非加工表面和加工表面,在清整干净后允许存在下列孔洞: (1) 单个孔洞的最大直径不大于3mm,深度不超过壁厚1/3,在安装边上不超过壁厚的1/4,且不大于1.5mm,在上述缺陷的同一截面的反面对称部位不得有类似的缺陷。 (2)成组孔洞最大直径不大于2mm,深度不超过壁厚的1/3,且不大于 1.5mm。 (3) 上述缺陷的数量及边距应符合表一规定 表一 非加工表面或加工表面总面积小于1000cm2 单个孔洞成组孔洞 在 10cm×10cm 单位面积上 孔洞数不多 于4个 孔洞边 距不小 于10mm 一个铸件的非加 工表面或加工面 上孔洞总数不多 于6个,孔洞边 缘距铸件或距内 孔边缘的距离不 小于孔洞最大直 径的2倍 以 3cm×3cm 单位面积 为一组, 其孔洞数 不多于3 个 在一个铸 件上组的 数量不多 于2组 孔洞边缘 距铸件边 缘或距内 孔边缘的 距离不小 于孔洞最 大直径的 2倍 2.液压、气压件的加工表面上,铸件以3级针孔作为验收基础,要求2级针孔占受检面积的25%以上,局部允许4级针孔,但一般不得超过受检面积的

铜合金材料对照-成分-性能

铜合金牌号以及对照列表 ALLOY TYPE BS STANDARD EN STANDARD SYMBOL ASTM/UNS (NEAREST EQUIVALENT) OTHER COMPATABLE ALLOYS Aluminium Bronze CA104 CW307G CuAl10Ni C63200 / C63000 NES833, BSB23(DTD197A) Aluminium Bronze CA105 - CuAl10Fe3Ni7Mn2 C63000 - Aluminium Bronze AB1-C CC331G CuAl10Fe2-C C95400 SAE68 Aluminium Bronze AB2-C CC333G CuAl10Fe5Ni5-C C95500 SAE68B Leaded Bronze LB1-C CC496K CuSn7Pb15-C C93800 SAE67 Leaded Bronze LB2-C CC495K CuSn10Pb10-C C93700 SAE64 / SAE797 / SAE792 Leaded Bronze LB4-C CC494K CuSn5Pb9-C C93500 SAE66 Leaded Bronze LB5-C CC497K CuSn5Pb20-C C94100 SAE94, SAE794 & SAE799. Leaded Bronze - - CuSn7ZnPb C93200 SAE660 Leaded Gunmetal LG2-C CC491K CuSn5Zn5Pb5-C C83600 SAE40 Leaded Gunmetal LG4-C CC492K CuSn7Zn2Pb3-C C93400 - Leaded phosphor bronze LPB1 - CuSn8Pb4Zn1 C93100 - Leaded Phosphor Bronze PB4-C CC480K CuSn10-C C92700 - Nickel Gunmetal G3 - CuSn7Ni5Zn3 B292-56 - Phosphor Bronze PB101 CW450K CuSn4 C50900 C51100 - Phosphor Bronze PB102 CW451K CuSn5 C51000 NES838 Phosphor Bronze PB103 CW452K CuSn6 C51900 - Phosphor Bronze PB104 CW459K CuSn8 C52100 BSB24 DTD265A Phosphor Bronze DTD265A - - - BSB24, PB104 Tin Phosphor Bronze PB1-C CC481K CuSn11P-C B143 SAE65 Tin Phosphor Bronze PB2-C CC483K CuSn12-C CC483K SAE65 材料化学成分

零件表面气孔验收标准

零件气孔及铸件完工验收标准 1.目的 本标准描述了气孔的允许程度和铸件完工交付验收标准。 2.铸件的制成 2.1 本标准应用于铸造成型的零件。 2.1.1 铸件造型包括砂型、消失模、硬模和压铸。 2.1.2 铸件材料应符合图纸规定。 2.1.3 铸件供应商提供给雅士佳公司的铸件,同样保证按本标准执行。3.气孔的允许程度 3.1 本标准应用于零件铸造表面,同样应用于铸件机加工表面。验收应在零件清洗后进行。 3.1.1 独立气孔的允许程度定义 独立气孔定义表 零件总表面积(cm2)每10 cm2气孔数任意两孔间距离允许的独立气孔 总数 ≤1000 ≤3 ≥10mm ≤6 1000-3000 ≤3 ≥10mm ≤8 3.1.1.1 非装配面的独立气孔,允许的最大直径为1.0mm,最大深度不超过壁厚的1/4。同时,存在气孔面的背面不允许有同样的气孔存在。 3.1.1.2 装配面的独立气孔,允许的最大直径为0.5mm,最大深度不超过1mm,并且不超过壁厚的1/5。存在气孔面的背面不允许有同样的气孔存在。3.1.1.3 水封孔和其他影响装配后气密性的表面,不允许有气孔和其他缺陷。3.1.1.4 允许存在不是穿透性的、铸造表面直径小于0.25mm、加工表面直径小于0.1mm的独立气孔。 3.1.2 群落气孔的允许程度定义 群落气孔定义表 零件总表面积(cm2)每3 cm2气孔数任意两孔间距离允许的群落气孔 总数 ≤1000 ≤3 没有≤2 1000-3000 ≤3 没有≤3 3.1.2.1 不论任何位置,群落气孔中任一孔最大直径不得超过0.5mm,最大 深度不得超过1mm,并且不超过壁厚的1/4。存在气孔面的背面不允许有同样的气孔存在。 3.1.3 不承认与本标准定义表有异的其他定义。 4.铸件完工验收条件 4.1 铸件表面必须清洁、色泽统一,无冷隔、毛刺、划痕、杂质和粘沙。4.1.1 除非图纸注明或经工程部门批准,表面不得有油漆、镀层、涂层等涂覆物。 4.1.2 铸件不得存在有害功能的缺陷,如明显的冷隔、塌陷、气泡、变色区、

产品及零部件外观检验规范

编制/日期: 审核/日期: 会签/日期: 批准/日期: 2015-9-16改版发布 2015-9-17实施上开汽车电器(上海)有限公司发布

1范围 本标准规定了本厂所有的塑料件、冷冲件、橡胶件、外协外购件(包括喷漆、移印、镭雕)等产品的外观判定依据,并确立允收/拒收之准则,使检验工作规范化。 2定义 2.1 A面:产品正面或组合后正面,上面(或指定面),或是从正面或上面一眼就能看到的面; 2.2 B面:不移动的情况下,客户偶尔能看到的面;如后面、侧面(或指定面); 2.3 C面:产品在移动或被打开时才能看到的面,如后面,底面(或指定面)。 3检验条件 4 检验方法: 目视 5 检验抽样方式: 5.1 塑料件、橡胶件、冷冲件按3模/批;标准件、弹簧及其他外协外购件按5件/批;喷漆、移印、镭雕件全检。 5.2 特殊情形由工程部主管调整检验标准。 6.检验规范: 6.1塑料件外观检验规范 6.1.1 缺陷定义 1)异色点:与本身颜色不同的杂点或混入树脂中的杂点暴露在表面上。 2)气丝:由于种种原因,气体在产品表面留下的痕迹与底面颜色不同并发亮,带有流动样。 3)塌坑:由于材料收缩,使产品局部整体表面下陷。

4)熔接缝:产品在成型过程中,二股以上的融熔料相汇合的接线,目视及手感都有感觉。 5)缺料:产品某个部位不饱满。 6)白印:由于内应力,在产品表面产生与本色不同的白色痕迹。 7)滋边:(毛刺)由于种种原因,产品非结构部分产生多余的料 8)封堵:应该通透的地方由于滋边造成不通。 9)断裂:塑料理局部断开后的缺陷。 10)拉毛:因摩擦而产生的细皮,附在塑料表面的现象。 11)油丝:油痕,因种种原因,油污(包括脱模剂)在产品表面留下的痕迹,使该部位发光并带有流动样。 12)漆点:涂层厚度比周围涂层厚的部分。 13)垂流:涂层后由于局部喷漆量过大,产生下垂形成条状物。 14)皱皮:由于涂膜的流平性不良,涂层处产生的皱褶。 15)分界线不清:一种或两种不同颜色的涂料边界线互相交错。GF 16)针孔: 由于喷涂产生的气泡破裂,产生的小孔。 17)露底: 该喷没喷的部位称露底。 18)虚喷: 涂膜厚度过薄,可看见基材底色的部位。 19)喷花: 涂膜厚度不均匀的部位。 20)杂物: 涂膜表面因杂点,毛尘引起凹凸点。 21)泛白: 涂膜表面呈气雾状。 22)污垢:光滑面上的污迹,通常在不干净的环境中造成。 6.1 .2 塑料件分类 A. 不需要加工或加工前的毛坯件 一类: 高精度高要求的外观塑料件及透明制品; 二类: 需喷涂的塑料件

铝合金铸件气孔

铝合金铸件气孔与预防 湖南江雁机械厂增压器公司邓益中 摘要:本文从铝合金铸件气孔类别分析入手,指出铝合金铸件气孔可分为点状针孔、网状针孔、综合性针孔三类;氢是造成铝合金铸件针孔的主要原因,而氢的主要来源则是由于水蒸气分解所产生的。因此,铝合金在熔炼过程中造成水蒸气产生的原因,也就是直接影响针孔形成的主要因素。由于铝合金铸件气孔对铸件的品质尤其是对其力学性能产生不良的影响,作者在文中论述了铝合金铸件气孔形成的主要因素,并针对铝合金铸件气孔形成的主要因素提出了相应的预防措施,文章最后扼要总结了预防铝合金铸件针孔必须遵守的“防”、“排”、“溶”工艺原则。 关键词:铝合金;铸件;气孔;针孔;氢;力学性能;金属型铸造;预防措施。 引言:在纯铝中加入一些金属或非金属元素所熔制的铝合金是一种新型的合金材料,由于其比重小,比强度高,具有良好的综合性能,因此被广泛用于航空工业、汽车制造业、动力仪表、工具及民用器具制造等方面。随着国民经济的发展以及经济一体化进程的推进,其生产量和耗用量大有超过钢铁之势。加强对铝合金材料性能的研究,保证铝合金铸件具有优良品质,既是我们每一个科技工作者义不容辞的责任,也是同我们的日常生活息息相关的头等大事。本文结合作者铝合金铸件生产实践经验谈谈铝合金铸件气孔与预防问题。 1.气孔类别 由于铝合金具有严重的氧化和吸气倾向,熔炼过程中又直接与炉气或外界大气相接触,因此,如熔炼过程中控制稍许不当,铝合金就很容易吸收气体而形成气孔,最常见的是针孔。针孔(gas porosity/pin-hole),通常是指铸件中小于1mm的析出性气孔,多呈圆形,不均匀分布在铸件整个断面上,特别是在铸件的厚大断面和冷却速度较小的部位。根据铝合金析出性气孔的分布和形状特征,针孔又可以分为三类①,即: (1) 点状针孔:在低倍组织中针孔呈圆点状,针孔轮廓清晰且互不连续,能数出每平方厘米面积上针孔的数目,并能测得出其直径。这种针孔容易与缩孔、缩松等予以区别开来。(2) 网状针孔:在低倍组织中针孔密集相连成网状,有少数较大的孔洞,不便清查单位面积上针孔的数目,也难以测出针孔的直径大小。 (3) 综合性气孔:它是点状针孔和网状针孔的中间型,从低倍组织上看,大针孔较多,但不是圆点状,而呈多角形。 铝合金生产实践证明,铝合金因吸气而形成气孔的主要气体成分是氢气,并且其出现无一定的规律可循,往往是一个炉次的全部或多数铸件均存在有针孔现象;材料也不例外,各种成分的铝合金都容易产生针孔。 2.针孔的形成 铝合金在熔炼和浇注时,能吸收大量的氢气,冷却时则因溶解度的下降而不断析出。有的资

表面喷塑检验标准

一、表面喷塑检验标准 1、检验条件 1.1照明光线 要求在天然散射光线或光的照度不应低于2×40w光源环境下。 1.2检查距离 被测品与眼睛的距离为500mm,a面检验时在±15°范围内旋转。 2、表面等级的分类、区域划分 2.1表面等级 根据产品可视区域以及使用要求的不同,划分为不同的表面等级:“a”、“b”、“c”、“d”。 2.2区域划分 “a”:正常使用时可直接看到的主要表面,一般指终端产品的正面。 “b”:正常使用时观察不到的表面,一般指终端产品的测面、后面。 “c”:正常使用时观察不到的表面,一般指终端产品的底面。 “d”:正常使用时观察不到的次要面,一般是指终端产品内部面。 3、代码对照表 称数目长度直径深度宽度面积距离 代号nldhwsds 单位个cmmmmmmmmm2mm 说明:下文所提到的不良缺陷数目均指单面上的不良缺陷数目。 4、验收要求 4.1验收总则 4.1.1喷涂件表面应清洁、无污。 4.1.2喷涂层均匀、完整,同批产品的光泽、纹理一致,颜色符合图号要求,且与双方封样色样比较无明显差异。 4.2外观要求 4.2.1“a”面外观检验要求: 序号不良项目验收要求 1点缺陷(含颗粒) 当d≤0.5mm(或s≤0.2mm2)且不连续时(ds≥5mm),不视为缺陷。 当0.5mm(或s≤0.2mm2)

二、喷涂喷漆检验标准 1、目的 发现、控制不合格品,采取相应措施处置,以防不合格品误用。 2、范围 适用于进料、外协制品回厂、成品及顾客退货各过程中产生及发现的不合格品。 3、定义(无) 4、职责 4.1 品质部负责不合格的发现,记录标识及隔离,组织处理不合格品。 4.2 制造部参与不合格品的处理。 4.3 供应部负责进料中不合格品与供应商的联络。 4.4 管理者代表负责不合格品处理的批准。 5、工作程序: 1.喷涂种类、颜色与图纸要求及客户、我司、供应商三方确认的色板是否一致。 2.一般情况下,产品喷涂表面外观检查100%进行检验,检验方式依据本标准,特殊产品根据产品规格的具体要求检验。 3.外观检验项目是否有缺陷:如缩孔、针孔、杂质点、漏底、涂层厚度明显不均、流泪、预处理不良有锈、表面有污斑、不光滑、不平整、轻微桔皮、凹坑等。 4.外观和颜色检验环境: 色板采用客户样件或经客户认可的签样。 应在标准光源对色灯箱CAC-600箱内,以目视方法进行。光照度通常在D65(特殊情况下用F/A,其次高标准要求时用CWF/TL84),背景颜色为中灰色。 对于微量杂质点及其它轻微缺陷通常在300MM处目视肉眼不明显为通过,特殊情况时视客户要求而定。 5.1 涂膜附着力检验(基体金属为铁、钢、铝及铝合金): 采用胶带粘贴法测定漆膜附着力,批次以一件或两件检验则可。不合格时可用加严检验. 检验方法:使用锋利刃口的刀片(刃口宽要求0.05MM,刃口达到0.1MM时必须重新磨刃口),沿能确保得到直线切口的导向器,刃口在相对涂面35-45度角,等速划线。划线位置距产品边缘最近距离不应小于5MM,切口要保证切到基体,在涂膜上,切出每个方向是6至11条切口的格子图形,切口以1MM间隔隔开,长度约20MM。对于涂膜厚度大于50μm,小于125μm,切口以2MM的间隔隔开。在将格子区切屑用软刷或软纸清除后,撕下一段,粘附力在2.9N/10MM (300GF/10MM) 以上的胶带,将格子区全部覆盖,用手磨擦胶带,确保已完全粘牢后,拿住胶带的一端,沿着与其原位置尽可能接近180o的方向迅速(不要猛烈)将胶带撕下,然后用放大镜或肉眼观查.如果沿切口的边和方格部分有涂层脱落,损伤的区域为格子的15%~35%,再重复上述方法检验.如果两次结果不同,换不同的检验人员在同样的条件下获得的涂膜上,进行该检验,若仍出现上述结果或更差的情况,有权怀疑该批涂层质量,做出拒收决定。损伤的区域小于格子的区域15%为合格。 5.2 涂膜附着力检验(基体金属为锌合金): 检验涂层厚度μm 切格区的近似面积MM*MM 切痕间的距离MM ≤200 15*15 3 >200 25*25 5 6. 酸雾试验检验: 6.1 装置:A)恒温箱试验温度在40±1℃;B)烧杯:化学分析用的玻璃器具,容量为500ML。

防爆壳体检验规范

隔爆壳体制造及出厂检验标准 编制: 审核: 批准:

隔爆壳体制造及出厂检验标准 一、一般规定 1.本标准适用于本公司隔爆壳体制造。 如图样或技术文件有特殊要求时应按图样或技术文件的规定执行。 2.本标准中各项规定,凡低于国家标准的,均按国家标准执行。 二、准备 3.原材料牌号应符合图纸规定。 4.各种钢材在下料前应核实尺寸,其公差不符合本标准第5条规定者,均需矫正以达到要求公差。 5.钢板、扁钢的直线度及局部波状平面度的偏差不应超过表1的规定,否则必须矫正后方可使用。 表1 单位mm

6.钢材的初步矫正,一般在冷态下在辊式矫正机或压力机进行。用于次要焊接结构的钢板可放在平台上用平锤矫正。 7.钢材的矫正一般变形程度不大时,可用冷矫方法,弯曲较大的钢材应加热至900℃~1100℃时矫正。矫正后的钢材表面不得有裂纹及明显痕迹,锤击痕深度对钢板为0.5mm,扁钢1mm(立面上)。 三、号料前的准备 8.严格按照图样、技术文件、工艺要求及计算展开进行;下料偏差应符合《GB/T1804-1992 一般公差线性尺寸的未注公差》《GB/T1804-m》的要求。 9.样板的制造要考虑到结构在焊接时所产生的收缩量及零件的加工余量。 10.样板的外形尺寸偏差,当外形尺寸小于1米时为±0.4mm;大于1米时为±0.8mm。 11.样板上号料孔眼应用钻床钻孔,或用冲眼冲子冲成,但眼孔直径不能大于2毫米。 12.在样板上划线的偏差应符合下列规定: (1)相邻两孔的中心线的距离偏差为±0.15mm; (2)板边与边孔的中心线的距离偏差为±0.20mm; (3)相间(间隔一孔)钉孔中心线间的距离偏差为±0.30mm; (4)最大两端钉孔中心线的距离偏差为±0.40mm。 13.每个样板必须有标记(工号、图号、材料断面尺寸),样板经

铝合金铸造出现气孔的原因分析与解决办法

铝合金铸造出现气孔的原因分析与解决办法 核心提示:简单来说,气孔分两类,一类是析出性气孔,即铝液在凝固过程中因气体溶解度的变化而析出,老大在这方面说的很详细;另一类就是卷入性气孔,与铝液无关,主要是铝液填充过程中因紊流包卷在产品中的空气及涂料或型腔内未干的水分。卷入性气孔主要与浇排系统的合理性密切相关,只有涂料和水,纯属操作不当。至于说在喷丸后出现,应该主要与高速转换点的位置关联密切。 问题1:材料ACD12铝合金压铸件在机加工或喷砂后出现较多气孔的问题,这一技术上问题困扰着我们 回复:1 设备抽真空设备是什么设备啊? 压铸件的气孔问题好像还没有办法解决只能通过调节压铸参数,模温和修改相关的模具温度使气孔在一个合理的等级范围 2 一.人的因素: 1.脱模剂是否噴得太多? 因脱模济发气量大,用量过多时,浇注前未燃尽,使挥发气体被包在铸件表层。所以在同一条件下,某些工人操作时会产生较多的气孔的原因之一。选用发气量小的脱模济,用量薄而均匀,燃净后合模。 2未经常清理溢流槽和排气道? 3开模是否过早? 是否对模具进行了预热?各部位是否慢慢均匀升温,使型腔、型芯表面温度为150℃~200℃。 4刚开始模温低时生产的产品有无隔离? 5如果无预热装置时是否使用铝合金料慢速推入型腔预热或用其它方法加热? 6是否取干净的铝液,有无将氧化层注入压室? 7倒料时,是否将勺子靠近压室注入口,避免飞溅、氧化或卷入空气降温等。 8金属液一倒入压室,是否即进行压射,温度有无降低了?。

9冷却与开模,是否根据不同的产品选择开模时间? 10有无因怕铝液飞出(飞水),不敢采用正常压铸压力?更不敢偿试适当增加比压。?11操作员有无严格遵守压铸工艺? 12有无采用定量浇注?如何确定浇注量? 二.机(设备、模具、工装)的因素: 主要是指模具质量、设备性能。 1压铸模具设计是否合理,会否导致有气孔?压铸模具方面的原因: 1.浇口位置的选择和导流形状是否不当,导致金属液进入型腔产生正面撞击和产生旋涡。(降低压射速度,避免涡流包气) 2.浇道形状有无设计不良? 3.内浇口速度有无太高,产生湍流? 4.排气是否不畅? 5.模具型腔位置是否太深? 6.机械加工余量是否太大?穿透了表面致密层,露出皮下气孔?压铸件的机械切削加工余量应取得小一些,一般在0.5mm左右,既可减轻铸件重量、减少切削加工量以降低成本,又可避免皮下气孔露出。余量最好不要大于0.5mm,这样加工出来的面基本看不到气孔的,因为有硬质层的保护。 2排气孔是否被堵死,气排不出来? 3冲头润滑剂是否太多,或被烧焦?这也是产生气体的来源之一。 4浇口位置和导流形状,有无金属液先封闭分型面上的排溢系统? 5内浇口位置是否不合理,通过内浇口后的金属立即撞击型壁、产生涡流,气体被卷入金属流中 ? 6排气道位置不对,造成排气条件不良? 5溢气道面积是否够大,是否被阻塞,位置是否位於最后充填的地方? 模具排气部位是否经常清理?避免因脱模剂堵塞而失去排气作用。 6模温是否太低? 7流道转弯是否圆滑?适当加大内浇口? 8有无在深腔处开设排气塞,或采用镶拼形式增加排气? 9有无因压铸设计不合理,形成有难以排气的部位?

铝合金压铸件砂孔标准

1. SCOPE 适用范围: This specification applies for aluminum-alloy die casting porosity definition. It based on original spec of ASTM E505, but not for substitute of original spec, it only provide more comprehensive interpretion, so as to use with original spec. The requirement would override the original spec when conflict. 本规范涵盖了所有铝合金压铸砂孔的要求。本规范参照美国材料实验协会标准ASTM E505的原始规范,但不取代原规范,仅提供更全面的说明,所以原规范必须使用。当本规范和原规范的内容矛盾时,本规范要求取代原规范内容。 2. SPECIFICA TION 规范: Reference radiographs for aluminum-alloy die casting

3. POROSITY LEVEL 0.50~0.70mm 3个/10cm2 0.7~1. 0mm 1个/10cm20.50~1.0mm 5个/10cm2 1.0~1.5mm 1个/10cm2 0.50~1.5mm 10个/10cm2 1.5~4.0mm 1个/10cm2 0.50~4.0mm 15个/10cm2 4.0~10mm 1个/10cm2 4. REMARK 备注: Unless special explanation, void with size of ≦0.5mm will not be considered as porosity, and this apply to inside and on the surface porosity of aluminum-alloy die casting! 如果没有特别说明,0.50mm及以下的气孔不作为砂孔的评估控制范围内,此要求适用于铝合金压铸件的内部和加工表面! 5. REFERENCE 参考文献: ASTM E505 Reference radiographs for Inspection of Aluminum and Magnesium Die Castings 铝合金及镁合金压铸件X射线检查规范 ASTM B85 Standard Specification for aluminum-alloy die castings 压铸铝合金的标准规范 GB/T 13822-92 T est specimens for non ferrous die casting alloys 压铸有色合金的检测试样

相关文档
最新文档