接触网当量跨距公式模板
接触网常用计算公式1

THJ-70 0.647 CTHA-120 1.082 型号
线材自重 额定张力T(kg) 最短吊弦长度 跨距(m) (mm) M(Kg/m) 1500 1500 500 60
运营速度(km/h) 波动传播 反射系数 适应的行 极限速度 速度 γ 车速度 多普勒因数α Va(km/h) CF(km/h) VA(km/h) 160 420 0.44 164.86 可行 0.448109994
TJ-95 0.883 CTHA-120 1.082 型号
线材自重 额定张力T(kg) 最短吊弦长度 跨距(m) (mm) M(Kg/m) 1000 1500 500 60
运营速度(km/h) 波动传播 反射系数 适应的行 极限速度 速度 γ 车速度 多普勒因数α Va(km/h) CF(km/h) VA(km/h) 160 420 0.39 185.54 可行 0.448109994
THJ-50 0.446 CTHA-120 1.082
加强因数Υ 0.981058215
计算结构高度(m) 1.057552083
加强因数Υ 1.059152193
计算结构高度(m) 1.1045
加强因数Υ 0.86367892
计算结构高度(m) 1.30055
加强因数Υ 0.973141086
计算结构高度(m) 1.0337
THJ-70 0.647 CTHA-120 1.082 型号
线材自重 额定张力T(kg) 最短吊弦长度 跨距(m) (mm) M(Kg/m) 1000 1500 500 60
运营速度(km/h) 波动传播 反射系数 适应的行 极限速度 速度 γ 车速度 多普勒因数α Va(km/h) CF(km/h) VA(km/h) 160 420 0.34 204.95 可行20 3.482 2*Ris120 2.67 型号
高速电气化铁路接触网- 接触网的设计计算

▪ 自由悬挂导线的张力与弛度计算 ▪ 简单悬挂的状态方程 ▪ 半补偿链形悬挂的张力与弛度 ▪ 全补偿链形悬挂的安装曲线 ▪ 接触线受风偏移和跨距许可长度的计算 ▪ 链形悬挂接触线的受风偏移和跨距长度 ▪ 链形悬挂锚段长度的计算
2.1 自由悬挂导线的张力与弛度计算
等高悬挂的弛度计算 不等高悬挂的弛度和张力计算 悬挂线索实际长度的计算
1. 半补偿链形悬挂锚段长度的计算 Nhomakorabea锚段:将接触网分成若干一定长度且相互独立的分段。 划分锚段的目的:加补偿器;缩小机械事故范围;使吊弦的 偏移不致超过许可值以及改善接触线的受力情况等。 划分锚段的依据:在气象条件发生变化时,使接触线内所产 生的张力增量不超过规定值。
1. 半补偿链形悬挂锚段长度的计算
2.不等高悬挂的弛度和张力的计算
斜弛度 重要结论:一个不 等高悬挂的弛度可 转换为等高悬挂进 行计算。
2.不等高悬挂的弛度和张力的计算
不等高悬挂的张力
2.不等高悬挂的弛度和张力的计算
上拔力计算图
3.悬挂线索实际长度的计算
悬挂线索长度微分段
3.悬挂线索实际长度的计算
2.2 简单悬挂的状态方程
风偏移值的当量理论计算法
国外风偏移值的计算方法
1.风偏移值的平均值计算法
2.风偏移值的当量理论计算
2.风偏移值的当量理论计算
2.风偏移值的当量理论计算
3.国外风偏移值的计算方法
1)俄罗斯的计算方法; 2)德国的计算方法; 3)日本的计算方法。
2.7 链形悬挂锚段长度的计算
半补偿链形悬挂锚段长度的计算 全补偿链形悬挂锚段长度的计算 隧道内锚段长度的计算
曲线区段
2.简单接触悬挂的受风偏移和最大跨距
高速电气化铁路接触网第2章 接触网的设计计算

1. 等高悬挂的弛度计算
自由悬挂导线受力图
1. 等高悬挂的弛度计算
1. 等高悬挂的弛度计算
2.不等高悬挂的弛度和张力的计算
不等高悬挂的弛度
上式表明了在悬挂点不等高时,从高、低两个悬挂点计算的 弛度(在跨距相同条件下)与悬挂点等高弛度之间的关系。
2.不等高悬挂的弛度和张力的计算
斜弛度 重要结论:一个不 等高悬挂的弛度可 转换为等高悬挂进 行计算。
曲线区段上接触 线的受风偏移图
2.6 链形悬挂接触线的 受风偏移和跨距长度
风偏移值的平均值计算法
风偏移值的当量理论计算法 国外风偏移值的计算方法
1.风偏移值的平均值计算法
2.风偏移值的当量理论计算
2.风偏移值的当量理论计算
2.风偏移值的当量理论计算
3.国外风偏移值的计算方法
1)俄罗斯的计算方法;
第二章 接触网的设计计算
自由悬挂导线的张力与弛度计算 简单悬挂的状态方程 半补偿链形悬挂的张力与弛度 全补偿链形悬挂的安装曲线 接触线受风偏移和跨距许可长度的计算 链形悬挂接触线的受风偏移和跨距长度 链形悬挂锚段长度的计算
2.1 自由悬挂导线的张力与弛度计算
等高悬挂的弛度计算
2)德国的计算方法;
3)日本的计算方法。
2.7 链形悬挂锚段长度的计算
半补偿链形悬挂锚段长度的计算
全补偿链形悬挂锚段长度的计算 隧道内锚段长度的计算
1. 半补偿链形悬挂锚段长度的计算
锚段:将接触网分成若干一定长度且相互独立的分段。 划分锚段的目的:加补偿器;缩小机械事故范围;使吊弦的 偏移不致超过许可值以及改善接触线的受力情况等。
接触网计算

中定位环 定位管长 位置1 度1 定位坡度
当拉出值为 直线反定位 值,根据拉 出值不同, 输入-0.2或 -0.3。其余 均为正值。
锚柱 非支 近开 口
2.67 2.716 2.673 2.745 2.786 2.796 2.957 2.844
0.028 0.033 0.043 0.071 0.094 0.107 0.103 0.101
0.029 0.012 0.019 0.022 0.023 0.02 0.025 0.022
0.21 0.087 0.137 0.159 0.166 0.145 0.181 0.159
0.014 0.101 0.077 0.022 0.159 0.122 0.014 0.101 0.077 -0.01 -0.07 -0.06
1.63 2.735475556 1.63 2.944785 1.63 2.462211667 1.63 2.6547
锚柱 非支 远开 口
99 H60 非支 近开 口 锚柱
2.93 0.088 2.89 0.083 2.8 0.08 2.93 0.082 2.94 0.083
0.08 0.061
1.63 2.706941111 1.63 1.63 1.63 1.63 2.680303889 2.564035556 2.676524444 2.780073889
锚柱 非支 近开 口
0.116 0.231 0.166 0.181 0.181 0.21 0.108 0.159 0.174 0.166 0.108 0.239 0.224
0.088 0.177 0.127 0.138 0.138 0.16 0.083 0.122 0.133 0.127 0.083 0.182 0.171
接触网计算公式

接触网计算公式3 2接触网上部悬挂的载荷3 2 1负载分析接触网上部悬挂结构受到的主要外载荷包括:接触线和承力索在风作用下的风负载F风、以及接触线和承力索在覆冰作用下的冰负载Ft、接触线作用下的之字力P、地面对支柱的支持力F冰、受电弓作用下的抬升力N和其自身的重力Q。
由于接触网外部悬挂结构多种多样,但每一种结构的分析方法都大同小异。
本文选择一种典型的接触网上部悬挂结构作为研究对象,进行分析计算,即直线段中间支柱反定位悬挂形式。
其示意图如下其中F风=Pc+Pj,F冰.合成在Qo中以兰新线武威南至嘉峪关段直线段中间柱反安装为例,取侧面界限Cx=3.1m,安装角a=45°。
标准典型气象区选Ⅳ区,最大风度Vb=lOm/s,覆冰厚度b=5mm,吊弦单位长度自重取g。
=0.5×l03 KN/m,跨距取l =65m,拉出值a=200 mm。
承力索和接舷线的相关参数如表3.1。
表3.1 承力索和接触线的参数接触线长度65m,考虑弛度的影响,承力索实际长度为L=l+8F/3l计算得到承力索实际长度l=65. 02m。
(1)单位长度风负载P =0.615akv2d×106(kN/m)式中p——绳索所受的实际风负载:a——风速不均匀系数;k——风负载体型系数;d——绳索的直径。
代入数据计算得到:单位长度承力索风负载:P cb=1.494×10-3(KN/m)单位长发接触线风负载:P jb=1.494×10-3 (KN/m)(2)单位长度冰负载g b=πr b b(b+ d)g H l0-9 (KN/m)式中g b——绳索的覆冰重力负载b——覆冰厚度;d——绳索直径;r b——覆冰密度:g H——重力加速度。
代入数据计算得到:承力索单位长度冰负载9hr =2. 003×l0-3 (KN/m) 接触线单位长度冰负载g。
=1. 082×10-3(KN/m)。
接触网常用计算公式

接触网常用计算公式h —定位点外轨超高(mm ); 4. 接触线拉出值a 地的计算公式h dHa a -=地 式中 a 地—拉出值标准时,导线垂直投影与线路中心线的距离(mm )。
a 地为正时导线的垂直投影应在线路的超高侧,a 地为负时导线的垂直投影应在线路的低轨侧。
H —定位点接触线的高度(mm ); a —导线设计拉出值(mm ); h —外轨超高(mm ); d —轨距(mm );5. 接触线定位拉出值变化量m ax a ∆的计算公式2max 2max E I I a z z --=∆式中 Δa max —定位点拉出值的最大变化量(mm );Z L —定位装置(受温度影响)偏转的有效长度(mm );max E —极限温度时定位器的最大偏移值(mm );由上式可知 E=0时 Δa=06. 定位器无偏移时拉出值a 15的确定:(取平均温度t p =15℃)max 2115a a a ∆±=式中 a —导线设计拉出值(mm ); Δa max —定位点拉出值的最大变化量(mm );15a —定位器无偏移时(即平均温度时)的拉出值(mm )。
a 15与a 的变化关系,主要取决于定位器在极限温度时Δa max 的变化量的大小,当Δa max 变化量较大时,则a 15相对a 值的变化较大,当Δa max 变化量较小 时,则a 15相对a 值变化量较小。
但Δa max 的变化量又取决于定位器在极限温度时E max 值的大小,当定位器在极限温度时偏移值较大时,则Δa max 变化也较大,则a 15≠a ,反之偏移值较小时,则Δa max 变化也较小,则a 15≈a 。
所以确定平均温度时定位点拉出值a 15的目的是为了满足在极限温度时,拉出值不超过允许误差。
除直线反定位以外,当温度高于或低于平均温度时,拉出值都将是增大。
因此,调整a 15时应满足下列关系为好:即:270≤15a <300。
曲线区段由于Δa max 较小,15a ≈a 。
接触网设计文档(已做好)

曲线半径 R ( m) 拉出值 a ( mm)
1、当量系数 m
180 ≤ R ≤ 1200
400
1200 < R < 1800
250
1800 ≤ R
150
直线 ± 300
1 ⎛ PT c j m = ⎜1 + 2⎜ T c Pj ⎝
式中:
⎞ = 0.8107 ⎟ ⎟ ⎠
T j ——接触线额定张力 ( KN / m) ; p j ——接触线受风负载 ( KN / m) ;
qlj = −q0
式中:
ϕT j Tc 0
+
24α c • Z max (tv − tmin ) + W 2t min lD 2
Z max = Tc max + ϕT j
Wt min = q0 + q0
ϕT j Tc 0
在利用上式计算临界负载时,涉及到接触线无弛度时承力索张力,在计算阶段它还是 个未知数,故用下式近似算出 接触线无弛度时的承力索张力: TC 0 = η ⋅ Tc max = 12 KN 通过计算可得: qlj = 0.0243KN / m > qv = 0.0174KN / m 。所以取最低温度时的条 件为计算的起始条件。 由于本设计的最大负载只可能出现在最大风速或则最低温度时,故无须校验。 所以,起始条件为: t1 = tmin = −5o C ;
通过代入不同的 Tc x 获得相应的 t x ,再绘出相应的曲线,如下图所示:
5、承力索的弛度计算 在计算温度范围内,求得换算负载曲线之后,又可以求得该锚段内各实际跨距承力索 的弛度 Fx 值,其值由下式决定,
Wxli 2 Fx = 8Z x
接触网课程设计跨距计算

接触网技术课程设计报告班级:学号:姓名:指导教师:评语:2012 年 2 月24 日1.基本题目1.1 题目某地区跨距长度的计算1.2 题目分析跨距就是两相邻支柱间的距离,其长度的决定涉及到一系列经济、技术问题,是接触网设计中重要的问题之一。
跨距有经济跨距和技术跨距两个概念。
单从经济观点考虑问题所决定的跨距为经济跨距;而按技术要求决定的跨距称为技术跨距。
在一般情况下,经济跨距总是要大于技术跨距的。
技术跨距是根据接触线在受横向水平力(如风力)作用时,对受电弓中心线所产生的许克偏移而决定的,对于简单接触悬挂,弛度也是决定跨距的重要因素。
某地区的接触悬挂类型决定了这地区跨距长度的计算结果。
为了能够达到经济和技术的最优化,就需要对两种接触悬挂类型下的跨距长度进行比较。
要使接触线良好地工作,就要保证在受风作用下,接触线对受电弓中心线的受风偏移值不要超过其规定的最大许可值。
根据受电弓滑板的最大工作宽度,铁路工程技术规范规定,在最大计算风速条件下,接触线对受电弓中心的最大水平偏移值不应超过500mm 。
在接触网设计中,仍按此规定处理。
2.跨距长度的计算为了简化计算,假设跨距两端是死固定,即不考虑补偿器的补偿作用,同时认为在受风以后,导线内张力变大,而不考虑张力变大后的导线的弹性伸长。
此时,接触线的水平偏移值b j 如图1所示。
图中表示的是接触线在跨距内任意点的横断面,接触线在水平负载p j 的作用下位于斜面内。
由图中可知图 1接触线的水平受风偏移yj bj p j gv q由图可知vj j q p yb =即 vj j q p yb = (1)接触线在跨距内任意点的弛度y 值可由式 Tx l gx y 2)(-= 得 (2)jv T x l x q y 2)(-⋅=将y 值代入式(2)中得jj j T x l x p b 2)(max -⋅=(3)当x 为l 的中点时,具有最大水平风偏移,即jj j T l p b 82max ⋅=(4)在直线区段上,当接触线布置成之字形时,对其线路中心(也即是受电弓中心)线的偏移巨鼎与y1及y2,如图2所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设
锚段号 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
实际跨距 60 60 55 60 60 60 60 60 60 55 60 60 60 60 60 60 55 60 60 60 60 60 60 55 60 60 60 60 60 60 55 60 60 60 60 60 60 55 60 55 60 60 60 60 60 60 60 60 60 60 60 55 60
7 7 7 7 7 7 7 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
60 60 60 60 60 55 60 60 60 60 60 60 60 55 60 60 60 60 60 60 55 60 60 60 60 60 60 55 60 60 60 60 60 60 55 60 60
站 /区 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设 海坨子至建设