光耦选型与使用

合集下载

光耦常用参数及光耦使用技巧

光耦常用参数及光耦使用技巧

光耦常用参数及光耦使用技巧正向压降VF:二极管通过的正向电流为规定值时,正负极之间所产生的电压降。

正向电流IF:在被测管两端加一定的正向电压时二极管中流过的电流。

反向电流IR:在被测管两端加规定反向工作电压VR时,二极管中流过的电流。

反向击穿电压VBR::被测管通过的反向电流IR为规定值时,在两极间所产生的电压降。

结电容CJ:在规定偏压下,被测管两端的电容值。

反向击穿电压V(BR)CEO:发光二极管开路,集电极电流IC为规定值,集电极与发射集间的电压降。

输出饱和压降VCE(sat):发光二极管工作电流IF和集电极电流IC 为规定值时,并保持IC/IF≤CTRmin时(CTRmin在被测管技术条件中规定)集电极与发射极之间的电压降。

反向截止电流ICEO:发光二极管开路,集电极至发射极间的电压为规定值时,流过集电极的电流为反向截止电流。

电流传输比CTR:输出管的工作电压为规定值时,输出电流和发光二极管正向电流之比为电流传输比CTR。

脉冲上升时间tr、下降时间tf:光耦合器在规定工作条件下,发光二极管输入规定电流IFP的脉冲波,输出端管则输出相应的脉冲波,从输出脉冲前沿幅度的10%到90%,所需时间为脉冲上升时间tr。

从输出脉冲后沿幅度的90%到10%,所需时间为脉冲下降时间tf。

传输延迟时间tPHL、tPLH:光耦合器在规定工作条件下,发光二极管输入规定电流IFP的脉冲波,输出端管则输出相应的脉冲波,从输入脉冲前沿幅度的50%到输出脉冲电平下降到1.5V时所需时间为传输延迟时间tPHL。

从输入脉冲后沿幅度的50%到输出脉冲电平上升到1.5V时所需时间为传输延迟时间tPLH。

入出间隔离电容CIO:光耦合器件输入端和输出端之间的电容值。

入出间隔离电阻RIO:半导体光耦合器输入端和输出端之间的绝缘电阻值。

入出间隔离电压VIO:光耦合器输入端和输出端之间绝缘耐压值。

----------------------------------------------------------------------------------------常用的器件。

光耦选型经典指南

光耦选型经典指南

光耦选型经典指南光电耦合器是一种将电信号和光信号相互转换的器件,广泛应用于各种电子设备中。

在进行光耦选型时,需要考虑多个因素,包括光电耦合器的类型、特性参数以及应用环境等。

下面是一份光耦选型经典指南,帮助您进行正确的选型。

1.光耦类型选择:根据应用需求和场景,选择合适的光耦类型。

常见的光耦类型包括光电二极管、光电三极管、光敏场效应管以及光电双向晶闸管等。

根据需要选择合适的类型,例如光电二极管适用于高速传输和低电流驱动的场景,而光电三极管适用于高功率驱动和低频传输的场景。

2.光电参数选择:光电耦合器的特性参数对其性能和应用具有重要影响。

在选型时,需要关注以下特性参数:-光电转换系数:光电转换系数表示光信号转换为电信号的效率,一般以A/W为单位。

较高的光电转换系数意味着更好的灵敏度和响应速度。

-电流传输比:电流传输比表示光信号与电信号之间的等效电流关系。

选用合适的电流传输比可以确保电信号在传输过程中不受损失。

-切换速度:切换速度表示光电耦合器在从关断到导通状态的响应时间。

对于高速传输的应用,需要选用较高切换速度的光电耦合器。

3.耐压与耐磁参数选择:在一些特殊环境下,需要考虑光电耦合器的耐压和耐磁性能。

耐压参数表示光电耦合器所能承受的最大电压。

当应用场景中存在高电压时,选择具有足够耐压能力的光电耦合器。

耐磁参数表示光电耦合器在磁场中的工作性能。

在靠近强磁场或高频磁场的应用中,选择具有良好耐磁性能的光电耦合器。

4.封装类型选择:根据实际使用环境和布局要求,选择合适的封装类型。

光电耦合器的封装类型分为DIP、SOP、SMD等多种形式。

DIP封装适用于手工焊接和低密度布线的应用,而SMD封装适用于自动化焊接和小型化设计的应用。

5.其他因素:在选型过程中,还需要考虑其他因素,例如价格、供应商信誉度、长期供货能力等。

选择信誉度较高的供应商,能够获得质量稳定、售后服务完善的光电耦合器。

总结:在进行光耦选型时,需要综合考虑光耦类型、特性参数、耐压耐磁性能、封装类型以及价格等多个因素。

开关电源用光耦817选型和TL431配合设计建议

开关电源用光耦817选型和TL431配合设计建议

开关电源用光耦817选型和TL431配合设计建议开关电源是一种常用的电源设计,在实际使用中,可以使用光耦817和TL431作为配合设计,以提高电源的性能和可靠性。

下面将详细介绍光耦817和TL431的选型和设计建议。

光耦817是一种常用的光耦器件,其内部包含一个红外发射二极管和一个光敏三极管。

光耦817在开关电源中主要用于隔离输入和输出信号,以提高系统的安全性和稳定性。

选型光耦817时,需要考虑以下几个因素:1.峰值反向电压:开关电源中,输入和输出信号需要隔离,因此光耦817的峰值反向电压需要能够满足系统的工作要求。

2.传输速率:光耦817的传输速率决定了信号传输的快慢,选型时需要根据实际需求选择合适的传输速率。

3.耐热性:开关电源在工作过程中可能会产生较高的温度,因此光耦817需要具有良好的耐热性,能够在高温环境下长时间工作。

4.封装类型:光耦817有多种封装类型,如DIP封装、SOP封装等,选型时需要根据实际应用情况选择合适的封装类型。

TL431是一种常用的可编程精密稳压器,其内部包含一个比较器和一个电流源。

TL431在开关电源中主要用于稳压和参考电压源,以提供稳定的工作电压和精确的参考电压。

选型TL431时,需要考虑以下几个因素:1.工作电压范围:开关电源的工作电压要求可能会有所不同,因此选型TL431时需要根据具体的工作电压范围选择合适的器件。

2.稳定性:TL431的稳定性决定了其输出电压的准确性和稳定性,选型时需要根据实际要求选择具有良好稳定性的器件。

3.温度系数:TL431在不同温度下其输出电压可能会发生变化,选型时需要考虑温度系数,并根据实际需求选择合适的器件。

4.封装类型:TL431有多种封装类型,如TO-92封装、SOT-23封装等,选型时需要根据实际应用情况选择合适的封装类型。

在使用光耦817和TL431进行配合设计时,需要注意以下几个问题:1.输入和输出信号的隔离:使用光耦817将输入和输出信号进行隔离,以确保系统的安全性和稳定性。

光电耦合器的作用与选型

光电耦合器的作用与选型

光电耦合器的作用与选型技巧经验总结光电耦合器(简称光耦),是一种把发光元件和光敏元件封装在同一壳体内,中间通过电→光→电的转换来传输电信号的半导体光电子器件。

光电耦合器可根据不同要求,由不同种类的发光元件和光敏元件组合成许多系列的光电耦合器。

本篇文章主要以线性与非线性两个方面分别介绍光电耦合器的作用,以及华强北IC代购网工程师的一些光电耦合器选型技巧经验总结,望对大家的电路设计有所帮助。

光电耦合器的作用介绍1、线性光电耦合器线性光耦器件又分为两种:无反馈型和反馈型;无反馈型线性光耦器件实际上是在器件的材料和生产工艺上采取一定措施(使得光耦器件的输入输出特性的非线性得到改善。

但由于固有特性,改善能力十分有限。

这种光耦器件主要用于对线性区的范围要求不大的情况,例如开关电源的电压隔离反馈电路中经常使用的PC816A和NEC2501H等线性光耦。

不过这种光耦器件只是在有限的范围内线性度较高,所以不适合使用在对测试精度以及范围要求较高的场合。

另一种线性光耦是反馈型器件。

其作用原理是将普通光耦的单发单收模式稍加改变,增加一个用于反馈的光接受电路用于反馈,通过这样的方式来抵消直通通路的非线性,从而达到实现线性隔离的目的。

这种器件例如德州仪器公司曾经出品现已停产的TIL300A,CLARE公司生产的LOC 系列线性光耦,惠普公司生产的HCNR200/201线性光耦等。

2、非线性光电耦合器非线性光耦的电流传输特性曲线是非线性的,这类光耦适合于开关信号的传输,不适合于传输模拟量。

常用的4N系列光耦属于非线性光耦。

如4N25、4N26、4N35、4N36。

选型技巧经验总结在设计光耦光电隔离电路时必须正确选择光耦合器的型号及参数,选型经验总结如下:1、由于光电耦合器为信号单向传输器件,而电路中数据的传输是双向的,电路板的尺寸要求一定,结合电路设计的实际要求,就要选择单芯片集成多路光耦的器件;2、光耦合器的电流传输比(CTR)的允许范围是不小于500%。

光耦参数选型重要指标

光耦参数选型重要指标

光耦参数选型重要指标光耦,听起来挺高大上的,实际上它就像电路里的“桥梁”,连接着两个电路,让它们彼此交流,但又不互相干扰。

想象一下,两条河流,光耦就像那座小桥,让水流自由地流动,却又不让它们混在一起。

选购光耦的时候,可别小看了这小家伙,里面可是有不少讲究哦。

工作电压,这个指标得仔细瞧瞧。

电压高了可就没法用了,电压低了也会导致信号不稳定。

就好比你出门时,带的雨伞和衣服要和天气相符,不然可就糗大了。

你要了解自己的电路需求,选择一个合适的电压范围,这样才能让光耦发挥出最佳性能,真是事半功倍!传输速率也是个关键因素。

传输速率决定了信息传递的速度,这就像你发微信消息一样,有时候快得像闪电,有时候慢得像乌龟。

想象一下,要是你家里的设备需要实时反馈,但光耦传输太慢,那真是叫天天不应,叫地地不灵。

选择光耦的时候,得看清楚它的传输速率是否符合你的需求,别到时候急得像热锅上的蚂蚁。

再说说隔离电压,这个可得注意了。

隔离电压就像是保护膜,能让你的电路远离干扰和意外,给你一份安全感。

想想要是隔离电压不够,那可是隐患满满,电路出故障可就麻烦了。

选择光耦时,挑个隔离电压高的,心里也能踏实,仿佛给自己装了一个安全锁。

别忘了光耦的封装形式,咱们总是希望东西好用还要方便。

封装就像是衣服的样式,合适的样式才能穿出门。

如果你要在狭小的空间里使用光耦,选择一个小巧的封装形式可就显得尤为重要。

就像咱们挑衣服一样,得根据场合来选。

温度范围也不能忽略。

温度过高或过低都可能影响光耦的性能,选择适合的温度范围,确保光耦在工作时不受环境的干扰。

就好比我们每个人都需要一个舒适的环境,才能发挥出最佳的状态。

光耦也是,得让它在一个适合它的“温床”里工作。

还有一个不得不提的就是失效率,俗话说“千里之行,始于足下”,光耦的可靠性可关系到整个电路的稳定。

失效率低的光耦能让你高枕无忧,减少故障的发生。

想想要是频频出问题,得多让人抓狂,所以选择时,得关注这项指标。

光耦常用参数及光耦使用技巧

光耦常用参数及光耦使用技巧

正向压降VF:二极管通过的正向电流为规定值时,正负极之间所产生的电压降。

正向电流IF:在被测管两端加一定的正向电压时二极管中流过的电流。

反向电流IR:在被测管两端加规定反向工作电压VR时,二极管中流过的电流。

反向击穿电压VBR::被测管通过的反向电流IR为规定值时,在两极间所产生的电压降。

结电容CJ:在规定偏压下,被测管两端的电容值。

反向击穿电压V(BR)CEO:发光二极管开路,集电极电流IC为规定值,集电极与发射集间的电压降。

输出饱和压降VCE(sat):发光二极管工作电流IF和集电极电流IC为规定值时,并保持IC/IF≤CTRmin时(CTRmin在被测管技术条件中规定)集电极与发射极之间的电压降。

反向截止电流ICEO:发光二极管开路,集电极至发射极间的电压为规定值时,流过集电极的电流为反向截止电流。

电流传输比CTR:输出管的工作电压为规定值时,输出电流和发光二极管正向电流之比为电流传输比CTR。

脉冲上升时间tr、下降时间tf:光耦合器在规定工作条件下,发光二极管输入规定电流IFP的脉冲波,输出端管则输出相应的脉冲波,从输出脉冲前沿幅度的10%到90%,所需时间为脉冲上升时间tr。

从输出脉冲后沿幅度的90%到10%,所需时间为脉冲下降时间tf。

传输延迟时间tPHL、tPLH:光耦合器在规定工作条件下,发光二极管输入规定电流IFP的脉冲波,输出端管则输出相应的脉冲波,从输入脉冲前沿幅度的50%到输出脉冲电平下降到1.5V时所需时间为传输延迟时间tPHL。

从输入脉冲后沿幅度的50%到输出脉冲电平上升到1.5V时所需时间为传输延迟时间tPLH。

入出间隔离电容CIO:光耦合器件输入端和输出端之间的电容值。

入出间隔离电阻RIO:半导体光耦合器输入端和输出端之间的绝缘电阻值。

入出间隔离电压VIO:光耦合器输入端和输出端之间绝缘耐压值。

----------------------------------------------------------------------------------------常用的器件。

光耦的选型与应用

光耦的选型与应用

光耦的选型与应用[ 2008-2-3 8:54:00 | By: SystemARM ]4推荐光耦全称是光耦合器,英文名字是:optical coupler,英文缩写为OC,亦称光电隔离器,简称光耦。

光耦的结构是什么样的?光耦隔离就是采用光耦合器进行隔离,光耦合器的结构相当于把发光二极管和光敏(三极)管封装在一起。

为什么要使用光耦?发光二极管把输入的电信号转换为光信号传给光敏管转换为电信号输出,由于没有直接的电气连接,这样既耦合传输了信号,又有隔离干扰的作用。

光耦爱坏吗?只要光耦合器质量好,电路参数设计合理,一般故障少见。

如果系统中出现异常,使输入、输出两侧的电位差超过光耦合器所能承受的电压,就会使之被击穿损坏。

光耦的参数都有哪些?是什么含义?1、CTR:电流传输比2、Isolation Voltage:隔离电压3、Collector-Emitter Voltage:集电极-发射极电压CTR:发光管的电流和光敏三极管的电流比的最小值隔离电压:发光管和光敏三极管的隔离电压的最小值集电极-发射极电压:集电极-发射极之间的耐压值的最小值光耦什么时候导通?什么时候截至?关于TLP521-1的光耦的导通的试验报告要求:3.5v~24v 认为是高电平,0v~1.5v认为是低电平思路:1、0v~1.5v认为是低电平,利用串接一个二极管1N4001的压降0.7V+光耦的LED的压降,吃掉1.4V左右;2、24V是最高电压,不能在最高电压的时候,光耦通过的电流太大;所以选用2K的电阻;光耦工作在大概10mA的电流,可以保证稳定可靠工作n年以上;3、3.5V以上是高电平,为了尽快进入光敏三极管的饱和区,要把光耦的光敏三极管的上拉电阻加大;因此选用10K;同时要考虑到ctr最小为50%;电路:1、发光管端:实验室电源(0~24V)->2K->1N4001->TLP521-1(1)->TLP521-1(2)-gnd12、光敏三极管:实验室电源(DC5V)->10K->TLP521-1(4)->TLP521-1(3)-gnd23、万用表直流电压挡20V万用表+ -> TLP521-1(4)万用表- -> TLP521-1(3)试验结果输入电源万用表电压(V)1.3V 51.5V 4.81.7V 4.411.9V 3.582.1V 2.942.3V 1.82.5V 0.582.7V 0.22.9V 0.193.1V 0.173.3V 0.163.5V 0.165V 0.1324V 0.06思考题:光耦的CTR(电流传输比)是什么含义?思考题:1、光耦的CTR(电流传输比)是什么含义?2、CTR与上拉电阻和光耦的光敏三极管之间与饱和导通或者截至之间的关系;参考资料:TLP521-1的CTR为50%(最小值);TLP521-1的长相TLP521-1的长相线性光耦原理与电路设计【转】线性光耦原理与电路设计来源:21IC中国电子网作者:佚名1. 线形光耦介绍光隔离是一种很常用的信号隔离形式。

光耦常用参数及光耦使用技巧

光耦常用参数及光耦使用技巧

正向压降VF:二极管通过的正向电流为规定值时,正负极之间所产生的电压降。

正向电流IF:在被测管两端加一定的正向电压时二极管中流过的电流。

反向电流IR:在被测管两端加规定反向工作电压VR时,二极管中流过的电流。

反向击穿电压VBR::被测管通过的反向电流IR为规定值时,在两极间所产生的电压降。

结电容CJ:在规定偏压下,被测管两端的电容值。

反向击穿电压V(BR)CEO:发光二极管开路,集电极电流IC为规定值,集电极与发射集间的电压降。

输出饱和压降VCE(sat):发光二极管工作电流IF和集电极电流IC为规定值时,并保持IC/IF≤CTRmin时(CTRmin在被测管技术条件中规定)集电极与发射极之间的电压降。

反向截止电流ICEO:发光二极管开路,集电极至发射极间的电压为规定值时,流过集电极的电流为反向截止电流。

电流传输比CTR:输出管的工作电压为规定值时,输出电流和发光二极管正向电流之比为电流传输比CTR。

脉冲上升时间tr、下降时间tf:光耦合器在规定工作条件下,发光二极管输入规定电流IFP的脉冲波,输出端管则输出相应的脉冲波,从输出脉冲前沿幅度的10%到90%,所需时间为脉冲上升时间tr。

从输出脉冲后沿幅度的90%到10%,所需时间为脉冲下降时间tf。

传输延迟时间tPHL、tPLH:光耦合器在规定工作条件下,发光二极管输入规定电流IFP的脉冲波,输出端管则输出相应的脉冲波,从输入脉冲前沿幅度的50%到输出脉冲电平下降到1.5V时所需时间为传输延迟时间tPHL。

从输入脉冲后沿幅度的50%到输出脉冲电平上升到1.5V时所需时间为传输延迟时间tPLH。

入出间隔离电容CIO:光耦合器件输入端和输出端之间的电容值。

入出间隔离电阻RIO:半导体光耦合器输入端和输出端之间的绝缘电阻值。

入出间隔离电压VIO:光耦合器输入端和输出端之间绝缘耐压值。

----------------------------------------------------------------------------------------常用的器件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三门峡职业技术学院范江波2
2011年3月24日星期四
三门峡职业技术学院范江波3
2011年3月24日星期四
三门峡职业技术学院范江波4
2011年3月24日星期四
2011年3月24日星期四三门峡职业技术学院范江波
5
三门峡职业技术学院范江波6
2011年3月24日星期四
三门峡职业技术学院范江波7
2011年3月24日星期四
三门峡职业技术学院范江波8
2011年3月24日星期四
三门峡职业技术学院范江波9
2011年3月24日星期四
三门峡职业技术学院范江波10
2011年3月24日星期四
三门峡职业技术学院范江波11
2011年3月24日星期四
三门峡职业技术学院范江波12
2011年3月24日星期四
三门峡职业技术学院范江波13
2011年3月24日星期四
三门峡职业技术学院范江波14
2011年3月24日星期四
三门峡职业技术学院范江波15
2011年3月24日星期四
三门峡职业技术学院范江波16
三门峡职业技术学院范江波17
2011年3月24日星期四
三门峡职业技术学院范江波18
2011年3月24日星期四
三门峡职业技术学院范江波19
2011年3月24日星期四
三门峡职业技术学院范江波20
2011年3月24日星期四
三门峡职业技术学院范江波21
2011年3月24日星期四
三门峡职业技术学院范江波22
2011年3月24日星期四
三门峡职业技术学院范江波23
2011年3月24日星期四
三门峡职业技术学院范江波24
2011年3月24日星期四
三门峡职业技术学院范江波25
2011年3月24日星期四
三门峡职业技术学院范江波26
2011年3月24日星期四
三门峡职业技术学院范江波27
2011年3月24日星期四
三门峡职业技术学院范江波28
2011年3月24日星期四。

相关文档
最新文档