七年级数学上册第三章《整式的加减》第三节整式现场教案3课时
北师大版数学七年级上册3.4《整式的加减》(第3课时)教学设计

北师大版数学七年级上册3.4《整式的加减》(第3课时)教学设计一. 教材分析《整式的加减》是北师大版数学七年级上册第3.4节的内容,本节课主要介绍整式的加减运算。
学生在之前的学习中已经掌握了整式的概念和基本运算,本节课将进一步深入学习整式的加减运算,为后续学习更复杂的代数式打下基础。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于整式的概念和基本运算已经有了一定的了解。
但学生在进行整式的加减运算时,可能会遇到一些困难,如合并同类项的方法不够熟练,对于复杂的式子缺乏运算技巧等。
因此,在教学过程中,需要引导学生回顾和巩固已学的知识,提供适当的例子和练习,帮助学生掌握整式的加减运算方法。
三. 教学目标1.理解整式加减的概念和意义。
2.掌握整式加减的运算方法,能够正确进行整式的加减运算。
3.能够运用整式加减解决实际问题,提高解决问题的能力。
四. 教学重难点1.重点:整式加减的概念和意义,整式加减的运算方法。
2.难点:整式加减的运算方法,特别是合并同类项的方法和技巧。
五. 教学方法采用问题驱动法、引导发现法、合作交流法等教学方法。
通过提出问题,引导学生思考和探索,激发学生的学习兴趣和积极性。
同时,通过合作交流,让学生互相学习和帮助,提高学生的合作能力和沟通能力。
六. 教学准备1.教学课件:制作教学课件,包括整式的加减运算的定义、方法和例子等。
2.练习题:准备一些整式的加减运算的练习题,包括不同难度的题目。
3.黑板:准备黑板,用于板书和展示解题过程。
七. 教学过程1.导入(5分钟)通过提问方式回顾整式的概念和基本运算,引导学生思考整式的加减运算的意义和必要性。
2.呈现(15分钟)展示一些实际的例子,让学生观察和分析整式的加减运算的过程和结果。
引导学生总结整式加减的运算方法。
3.操练(15分钟)让学生分组合作,进行一些整式的加减运算的练习题。
教师巡回指导,解答学生的问题,并及时给予反馈和评价。
4.巩固(10分钟)让学生独立完成一些整式的加减运算的练习题,巩固所学的知识。
北师大版数学七年级上册3.4.3 整式的加减教案

第3课时整式的加减●情景导入活动内容:带领学生做个游戏.按照下面的步骤做:(1)任意写一个两位数;(2)交换这个两位数的十位数字和个位数字,又得到一个数;(3)写出这两个数的和.重复几次看看,谁能先发现这些和有什么规律?这个规律对于任意一个两位数都成立吗?为什么?如果将第3步改为相减呢?【教学与建议】教学:使学生经历用字母表示数量关系的过程,体会整式的加减运算的必要性,理解整式的化简实质上就是进行整式的加减运算.建议:小组内同伴相互启发、讨论交流,最终达成共识.●复习导入 1.下列整式哪些是单项式?哪些是多项式?它们的次数分别是多少?单项式的系数分别是多少?多项式的项数分别是多少?-5,a,2x-2,x2+2xy-y2,x2+y5,8h,4πr,xyz+10,2ab+16,0.2.去括号后合并同类项:(1)a-[a-b-(a+b)];(2)x+3y+[2x-2y-3(x-y)].【教学与建议】教学:复习了前面所学的主要内容,让学生顺利观察归纳出整式加减的实质是去括号与合并同类项.建议:第1题由学生口答完成.第2题先计算,再集体核对答案.*命题角度整式的化简求值先去括号、合并同类项,再把字母取值代入求值.【例1】如果a,b互为相反数,那么6(a2-2a)-3(2a2+4b-1)的值为__3__.【例2】化简求值:-5(xy-2x2)+(5xy-x2)-2(3x2-5xy),其中x=2,y=-1.解:原式=3x2+10xy.把x=2,y=-1代入上式,得原式=-8.高效课堂教学设计1.掌握整式加减的一般步骤,并会说明其中的道理.2.熟练进行整式的加减运算.整式的加减.含括号的整式加减运算.活动一:创设情境导入新课这年头,爱美的可真不少.这不,整式也要去瘦身,那我们就到整式王国的“减肥中心”去转转吧!活动二:实践探究交流新知【探究1】按照下面的步骤做一做:(1)任意写一个两位数____;(2)交换这个两位数的十位数字和个位数字,又得到一个数____;(3)求这两个数的和____;(4)再写几个两位数重复上面的过程.这些和有什么规律?这个规律对任意一个两位数都成立吗?解:如果用a,b表示这个两位数的十位数和个位数字,那么这个两位数可以表示为10a+b,交换这个两位数的十位数字和个位数字,得到的数是10b+a,这两个数相加得(10a+b)+(10b+a)=11a+11b.【探究2】(1)任意写一个三位数100a+10b+c;(2)交换它的百位数字与个位数字,又得到一个数100c+10b+a;(3)这两个数的差是(100a+10b+c)-(100c+10b+a)=99a-99c.提问:在前面两个探究中,分别涉及到整式的什么运算?【归纳】进行整式加减运算时,如果遇到括号要先去括号,再合并同类项.活动三:开放训练应用举例【例1】(教材P96例4)计算:(1)2x2-3x+1与-3x2+5x-7的和;(2)-x 2+3xy -12 y 2与-12 x 2+4xy -32y 2的差. 【方法指导】几个整式相加减,通过用括号将一个整式括起来,再用加减号连接,然后去括号,合并同类项. 解:(1)(2x 2-3x +1)+(-3x 2+5x -7)=2x 2-3x +1-3x 2+5x -7=2x 2-3x 2-3x +5x +1-7=-x 2+2x -6;(2)⎝⎛⎭⎫-x 2+3xy -12y 2 -⎝⎛⎭⎫-12x 2+4xy -32y 2 =-x 2+3xy -12 y 2+12 x 2-4xy +32 y 2=-x 2+12 x 2+3xy -4xy -12y 2+32 y 2=-12x 2-xy +y 2. 【例2】我国出租车收费标准因地而异.甲市为:起步价6元,3 km 后每千米收费为1.5元;乙市为:起步价10元,3 km 后每千米收费为1.2元.(1)试问在甲、乙两市乘坐出租车S (S >3)km 的价钱差是多少元?(2)如果在甲、乙两市乘坐出租车的路程都为10 km ,那么哪个市的收费标准高些?高多少?【方法指导】先把甲、乙两市乘坐出租车S (S >3)km 的价钱分别用含S 的式子表示出来,再求甲、乙两市的价钱差.解:(1)甲:6+1.5(S -3),乙:10+1.2(S -3),则6+1.5(S -3)-[10+1.2(S -3)]=0.3S -4.9;(2)当S =10时,甲:6+1.5(S -3)=16.5,乙:10+1.2(S -3)=18.4.∵16.5<18.4,∴乙市收费标准高;高18.4-16.5=1.9(元).【例3】已知M =4x 2-3x -2,N =6x 2-3x +6,试比较M 与N 的大小关系.【方法指导】比较两个式子的大小,一般采用“作差法”,即先将两式作差,再把所得的差与0比较,若M -N >0,则M >N ;若M -N =0,则M =N ;若M -N <0,则M <N .解:M -N =4x 2-3x -2-(6x 2-3x +6)=4x 2-3x -2-6x 2+3x -6=-2x 2-8.∵x 2≥0,∴-2x 2-8<0,∴M -N <0,∴M <N .活动四:随堂练习1.化简(4a 2+2a +2)-(3a 2+3a -4)的结果是(D)A .a 2-5a +6B .a 2-5a -4C .a 2-a -4D .a 2-a +62.已知一个多项式与4x 2+9x 的和等于4x 2+4x -1,则这个多项式是(A)A .-5x -1B .5x +1C .-13x -1D .13x +13.教材P 96随堂练习.解:(1)原式=3k 2+10k -1;(2)原式=-7y -4x -16z 2;(3)原式=5p 3+7p 2-9p -7;(4)原式=-1.4.某校有A ,B ,C 三个课外活动小组,A 小组有学生(x +2y )名,B 小组学生人数是A 小组学生人数的3倍,C 小组比A 小组多2名学生,问A ,B 两小组的学生总人数比C 小组的学生人数多多少?解:x +2y +3(x +2y )-(x +2y +2)=(3x +6y -2)名.活动五:课堂小结与作业学生活动:通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?教学说明:教师引导学生回顾整式加减法的步骤,让学生大胆发言,积极与同伴交流进行知识的提炼和归纳,加深对知识的理解.作业:课本P 96习题3.7中的T 1、T 2、T 3本节课从学生探究整式加减的一般步骤,到运用整式的加减解决实际问题,强调学生自主探索和合作交流,发展有条理地思考和语言表达能力,体验应用知识的成就感,激发学生学习的兴趣.。
最新人教版七年级数学上册《第3课时 整式的加减》优质教案

2.2 整式的加减第3课时整式的加减一、新课导入1.课题导入:前面我们学习了合并同类项,去括号等知识,它们是进行整式加减运算的基础,这节课我们来学习整式的加减运算.(板书课题).2.三维目标:(1)知识与技能让学生从实际背景中去体会进行整式的加减的必要性,并能灵活运用整式的加减的步骤进行运算.(2)过程与方法培养学生的观察、分析、归纳、总结以及概括能力.(3)情感态度认识到数学是解决实际问题和进行交流的重要工具.3.学习重难点:重点:熟练进行整式加减运算.难点:能运用整式加减运算解决简单的实际问题.二、分层学习1.自学指导:(1)自学内容:教材第67页例6的内容.(2)自学时间:6分钟.(3)自学要求:认真阅读课文,理解例6中两个算式的意义,尝试归纳出整式加减运算的解题步骤.(4)自学参考提纲:①第(1)题是计算多项式2x-3y和5x+4y的和;第(2)题是计算多项式8a-7b和4a-5b的差.这说明求几个多项式的和或差的运算时,每个多项式都要用括号括起来.②由例题可归纳出整式加减运算的一般步骤是怎样的?小组同学相互交流一下自己的见解.先去括号,再移项,合并同类项.③尝试解答下列问题,并相互展示自己的计算过程和结果.a.计算:5(3a2b-ab2)-3(ab2+2a2b)原式=15a2b-5ab2-3ab2-6a2b=9a2b-8ab2.b.求12x-2(x-13y2)+(-32x+13y2)的值,其中x=-2,y=23.原式化简为y2-3x.当x=-2,y=23,原式=(23)2-3×(-2)=589.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师巡视课堂,了解学生是否掌握了去括号法则及自学参考提纲完成情况.②差异指导: 对个别学生在法则认知上存在的问题或提出的疑点进行点拨和引导.(2)生助生:学生相互交流探讨来解决自学中的疑难问题.4.强化:(1)整式加减的一般步骤:先去括号,再合并同类项.(2)应注意的问题:①去括号时,不能漏乘括号前的系数,并注意符号的变化.②求值时,要先化简,并注意求值的书写格式.(3)练习:教材第69页“练习”的第1、2、3题.1.自学指导:(1)自学内容:教材第68页例7和例8.(2)自学时间:8分钟.(3)自学要求:认清例题中反映的条件,思考问题中要利用的数量关系,正确列出相关的代数式.(4)自学参考提纲:①例7有两种考虑问题的角度.第一种先求出小红和小明买这两种物品分别花费多少钱,再得出花费多少钱,这样可列出式子:(3x+2y)+(4x+3y).第二种先求出买笔记本和买圆珠笔分别花费多少钱,再得共花费多少钱,于是可列出式子:(3x+4x)+(2y+3y).②长方体共有几个面?都是什么形式?相对的两个面大小有什么关系?因此,在例8中,a.小纸盒的表面积是(2ab+2bc+2ca)cm2,大纸盒的表面积是(6ab+8bc+6ca)cm2.b.做两个纸盒共用料多少平方厘米?可列出式子:(2ab+2bc+2ca)+(6ab+8bc+6ca).计算得8ab+10bc+8ca.c.做大纸盒比做小纸盒多用料多少平方厘米,可列出式子(6ab+8bc+6ca)-(2ab+2bc+2ca).计算得4ab+6bc+4ca.2.自学:同学们可结合自学参考提纲进行自学.3.助学:(1)师助生:①明了学情:教师巡视课堂了解学生的自学情况以及存在的问题.注意在求多项式的和或差时,相应的多项式是不是没加括号.②差异指导: 对个别学生在法则认知上存在的问题或提出的疑点进行点拨和引导.(2)生助生:学生相互交流探讨来解决自学中的疑难问题.4.强化:(1)集中讲解学生自学过程中存在的共性问题.(2)练习:甲村种植小麦a亩,种植水稻面积是小麦面积的2倍,乙村种植小麦b亩,种植水稻的面积比小麦面积的3倍少200亩,求甲、乙两村两种作物的总面积是多少亩?解:甲村种植作物总面积为(a+2a)亩,乙村种植总面积为(b+2b-200)亩.所以甲、乙两村两种作物的总面积为(a+2a)+(b+3b-200)=(3a+4b-200)亩.三、评价1.学生的自我评价(围绕学习目标):自我评价在本节课学习的收获和不足.2.教师对学生的评价:(1)表现性评价:对学生在本节课学习中相关方面情况进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时是在学生掌握了合并同类项、去括号法则的基础上学习的,主要任务是通过探索性练习,引导学生总结归纳出整式加减的一般步骤,并应用其进行整式加减的准确运算,所以可采用以旧带新的方式,让学生在练习中熟悉法则,纠正错误,弥补不足.鼓励学生间互相交流,互相改正问题,充分体现学生自行解决问题的主体作用.一、基础巩固(第1、2、3题每题10分,第4题20分,共50分)1.(40分)计算:(1)(5a+4c+7b )+(5c-3b-6a)解:原式=5a+4c+7b+5c-3b-6a=-a+4b+9c(2)(8xy-x 2+y 2)-(x 2-y 2+8xy)解:原式=8xy-x 2+y 2-x 2+y 2-8xy=-2x 2+2y 2(3)(2x 2-12+3x)-4(x-x 2+12) 解:原式=2x 2-12+3x-4x+4x 2-2=6x 2-x-52 (4)3x 2-[7x-(4x-3)-2x 2]解:原式=3x 2-(7x-4x+3-2x 2)=3x 2-7x+4x-3+2x 2=5x 2-3x-32.(10分)求(-x 2+5+4x )+(5x-4+2x 2)的值,其中x=-2.解:(-x 2+5+4x)+(5x-4+2x 2)=-x 2+5+4x+5x-4+2x 2=x 2+9x+1当x=-2时,原式=(-2)2+9×(-2)+1=4-18+1=-13.3.(10分)已知一个多项式与3x 2+9x 的和等于3x 2+4x-1,求这个多项式.解:这个多项式为(3x 2+4x-1)-(3x 2+9x)=3x 2+4x-1-3x 2-9x=-5x-1.二、综合应用(每题15分,共30分)4.(10分)窗户的形状如图所示(图中长度单位:cm),其上部是半圆形,下部是边长相同的四个小正方形.已知下部小正方形的边长是a cm ,计算:(1)窗户的面积;(2)窗户外框的总长.解:(1)窗户的面积为:22a π+4a 2=π+282a π+ (cm 2) (2)窗户的外框总长是:πa+2a ×3=πa+6a=(π+6)a(cm)5.(10分)观察下列图形并填表(单位:cm).三、拓展延伸(20分)6.(20分)(1)一个两位数的个位上的数是a,十位上的数是b,列式表示这个两位数.(2)列式表示上面的两位数与10的乘积.(3)列式表示(1)中的两位数与它的10倍的和,这个和是11的倍数吗?为什么?解:(1)10b+a;(2)10(10b+a);(3)10b+a+10(10b+a)=11(10b+a),这个和是11的倍数,因为它含有11这个因数.学习小提示同学们,通过这节课的学习,你们学到了哪些知识?明白什么道理?时间就像日历一样,撕掉一张就不会再回来。
初中七年级数学《整式的加减》教案3篇

初中七年级数学《整式的加减》教案3篇学问与技能:1、在现实情境中理解整式的加减实际就是合并同类项,有意识地培育他们有条理的思索和语言表达力量。
2、了解同类项的定义及合并法则,且会运用此法则进展整式加减运算。
3、知道在求多项式的值时,一般先合并同类项再代入数值进展计算。
过程与方法:通过详细情境的观看、思索、类比、探究、沟通和反思等数学活动培育学生创新意识和分类思想,使学生把握讨论问题的方法,从而学会学习。
情感与态度与价值观:通过学生自主学习探究出合并同类项的定义和法则,培育了学生的自学力量和探究精神,提高学习兴趣。
感受数学的形式美、简洁美,感受学数学是美的享受,爱学、乐学数学。
教学重点:娴熟地进展合并同类项,化简代数式。
教学难点;如何推断同类项,正确合并同类项。
教学用具:多媒体或小黑板、教学过程:一、创设情景问题:在甲、乙两面墙壁上,各挖去一个圆形空洞安装窗花,其余局部刷油漆,请依据图中的尺寸,算出:(1)甲乙油漆面积的和。
(2)甲比乙油漆面积大多少。
(处理方式:①学生思索片刻②找学生代表沟通自己的解答③教师汇总学生的解答)板书:(1)(2ab-πr2)+(ab-πr2)或(2ab+ab)-(πr2+πr2 )(2) (2ab-πr2)-(ab-πr2)(此时提问学生:这3个式子都是什么式子?在学生答复的根底上引出课题—从本节课开头来学习:2.3整式的加减。
并板书)二、探求新知教师自问:如何计算(1)和(2)两个式子呢?接着解答:本节课来学习2.2.1合并同类项(此时板书课题——1.合并同类项)1、同类项的概念观看多项式(2ab+ab)-(πr2+πr2 )中的项:2ab、ab 的特点。
学生沟通、争论。
③师生总结:(这就是我们今日所要介绍的同类项,此时板书:1.同类项的概念)所含字母一样并且一样字母的指数也一样的项叫做同类项。
几个常数项也是同类项。
强调:①所含字母一样②一样字母的指数也一样简称“两同”。
3.4《整式的加减第3课时》 北师大版七年级数学上册教案

第三章整式及其加减4 整式的加减第3课时一、教学目标1.在具体情境中体会去括号的必要性.2.利用乘法分配律理解去括号法则的符号变化规律,并能熟练地去括号.3.能利用去括号法则进行运算.4.培养学生观察、语言组织与表达的能力.二、教学重难点重点:利用乘法分配律理解去括号法则的符号变化规律,并能熟练地去括号.难点:能利用去括号法则进行运算.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计教学环节教师活动学生活动设计意图环节一创设情境【情境导入】教师活动:教师提出问题,引导学生复习之前所学知识.师:同学们还记得如何去括号和合并同类项吗?预设答案:(1)去括号,括号前是“+”号,直接去掉“+” 和括号;括号前是“-”号,去掉“-”和括号,括号里边的各项都变号;(2)如果括号前有数字因数时,运用乘法分配律运算,切勿漏乘;(3)出现多层括号时,一般是由里向外逐层去括号.把同类项的系数相加,字母和字母的指数不变.学生思考并反馈.通过回顾之前学习过的去括号和合并同类项的知识,为接下来进行整式的加减运算奠定基础.环节二探究新知【操作】教师活动:教师出示要求,学生动手计算并集体交流反馈.数字游戏1两个数相加后的结果有什么规律?预设答案:能被11整除.追问:换一些数试试,对于任意一个两位数都成立吗?学生活动:学生换一些数进行计算,并验证,然后集体交流.预设答案:都成立. 【证明】如果用a,b分别表示一个两位数的十位数字和个位数字,那么这个两位数可以表示为:.预设答案:10a+b交换这个两位数的十位数字和个位数字,得到的数是:.预设答案:10b+ a将这两个数相加:(10a+b)+(10b+a)=10a+b+10b+a学生写出两位数动手计算并反馈.学生在老师的引导下总结并反馈.让学生通过动手计算的过程,找到这两个两位数相加后的结果的特征,然后再引导学生通过列代数式进行验证,不仅让学生进一步熟悉了去括号和合并同类项的法则,还积累了一些经验,为接下来探究三位数相减后的规律做铺垫.=11a+11b=11(a+b)小结:这些和都是11的倍数【操作】数字游戏2两个数相减后的结果有什么规律?预设答案:它们的差是99的倍数追问:换一些数试试,对于任意一个三位数都成立吗?学生活动:学生换一些数进行计算,并验证,然后集体交流.预设答案:都成立. 【证明】任意一个三位数可以表示为:100a+10b+c交换它的百位数字和个位数字,得到的数为:100c+10b+a将这两个数相减:(100a+10b+c)-(100c+10b+a)=100a+10b+c-100c-10b-a=99a-99c=99(a-c)小结:它们的差都是99的倍数.【议一议】在上面的两个问题中,分别涉及了整式的什么运算?说说你是如何运算的?学生动手做一做并交流反馈.学生认真思考,并交流反馈.学生认真思考并回答.、通过之前学习的探究方法,探索三位数交换百位数字与个位数字之后,与原来三位数作差后结果的规律,让学生感受整式加减运算的必要性.通过议一议的活动,让学生预设答案:整式的加减运算,通过去括号,合并同类项进行运算.小结:进行整式加减运算时,如果遇到括号要先去括号,再合并同类项.【做一做】计算.(1)2x 2-3x +1与-3x 2+5x -7的和;(2) -x 2+3xy -12 y 2与-12x 2+4xy -32y 2 的差.预设答案:解:(1)(2x 2-3x +1)+(-3x 2+5x -7)=2x 2-3x +1-3x 2+5x -7=2x 2-3x 2-3x +5x +1-7 =-x 2+2x -6提示:先去括号,再合并同类项,合并同类项时把系数相加减,字母和字母的指数不变字母.(2) (-x 2+3xy -12y 2)-(12x 2+4xy -32y 2)=-x 2+3xy -12y 2-12x 2-4xy +32y 2=-x 2-12x 2+3xy -4xy -12y 2+32y 2=-12x 2-xy +y 2提示:去括号时,当括号前面是负号时,括号内各项都要变号.【归纳】1. 几个整式相加减,通常用括号把每一个整式括起来,再用加、减符号连接,然后进行运算.2. 整式加减实际上就是去括号、合并同类项.学生动手计算并反馈.明确整式加减运算实际上就是去括号和合并同类项的过程,也是为接下来进行整式的加减运算奠定基础.通过做一做,让学生进一步巩固整式加减运算的运算步骤,加强学生的运算能力..环节三应用新知教师提出问题,学生先独立思考,解答.然后再小组交流探讨,如遇到有困难的学生适当点拨,最终教师展示答题过程.【典型例题】例1 计算:(1) (4k2+7k)+(-k2+3k-1)(2) (5y+3x-15z2)-(12y+7x+z2)(3) 7(p3+p2-p-1)-2(p3+p)(4) -(13+m2n+m3)-(23-m2n-m3)分析:进行整式加减运算时,通常要先去括号,再合并同类项.解:(1)原式=4k2+7k-k2+3k-1=4k2-k2+7k+3k-1=3k2+10k-1.(2) 原式=5y+3x-15z2-12y-7x-z2=5y-12y+3x-7x-15z2-z2=-7y-4x-16z2.(3) 原式=(7p3+7p2-7p-7)- (2p3+2p)=7p3+7p2-7p-7-2p3-2p=7p3-2p3+7p2-7p-2p-7=5p3+7p2-9p-7.(4) 原式=-13-m2n-m3-23+m2n+m3=-13-23-m2n+m2n―m3+m3=-1.例2从1~9这九个数字中选择三个数字,由这三个数字可以组成六个两位数,先把这六个两位数相加,然后再用所得的和除以所选三个数字之和。
人教版七年级数学上册整式的加减《整式(第3课时)》示范教学设计

2.1整式(第3课时)教学目标1.理解多项式、多项式的项及其次数以及整式的概念.2.能确定一个多项式的项和次数,会用多项式表示简单的数量关系.教学重点理解整式及多项式的有关概念,会用多项式表示实际问题中的数量关系.教学难点准确确定多项式的项及次数.教学过程新课导入填空:1.买一个书包需要x元,买一支铅笔需要y元,买一个本子需要z元,买1个书包、2支铅笔、2个本子共需要(x+2y+2z)元.2.若三角形的三条边长分别为a,b,c,则三角形的周长是a+b+c .3.如下图,长方形的宽为a,长为b,圆的半径为r,则阴影部分面积是ab-πr² .新知探究一、探究学习【问题】思考:列出的这些式子有什么共同特点?与单项式有什么联系?x+2y+2z,a+b+c,ab-πr².【师生活动】学生先独立分析所写出的三个式子,尽自己努力找到它们的共同特点,师生再共同进行总结.【设计意图】通过自主探究,让学生更深刻地理解多项式和单项式之间的关系.二、新知精讲【新知】多项式的定义几个单项式的和叫做多项式.【师生活动】学生复述这一定义.【设计意图】通过重复记忆,让学生进一步加深对多项式的定义的理解.【新知】多项式的相关概念:x2-2x+18多项式中,每个单项式叫做多项式的项,不含字母的项叫做常数项.多项式里,次数最高项的次数,叫做这个多项式的次数.【师生活动】结合实例,让学生认识多项式的项和次数.【设计意图】为后面确定多项式的项和次数做好铺垫.【问题】多项式的次数与单项式的次数有什么区别?【师生活动】引导学生结合定义做出回答.【设计意图】通过对问题的解答,使学生理解多项式和单项式的次数之间的联系和区别.【思考】展示单项式与多项式的动图,想一想单项式和多项式有什么关系.【思考】多项式是几个单项式的和,那么多项式与单项式有统称吗?【新知】整式的概念单项式与多项式统称整式.【思考】单项式、多项式、整式之间有什么关系?【师生活动】对三者的定义进行区分,明确它们之间的关系.【设计意图】巩固并加深学生对概念的理解.三、典例精讲【例1】请指出下列式子中的多项式:(1)12xy3-5x+3;(2)222+a b;(3)2+mnm n;(4)-7.【答案】解:根据“多项式是几个单项式的和”进行判断即可.(1)12xy3-5x+3可看成单项式12xy3,-5x,3的和,是多项式;(2)222+a b可看成单项式22a,22b的和,是多项式;(3)2+mnm n的分母中含有字母,显然不符合题意;(4)-7是单项式.所以,(1)(2)是多项式.【师生活动】学生回答,老师点评.【设计意图】巩固学生对多项式的概念的理解和掌握.【例2】指出下列多项式的项与次数:(1)a3-a2b+ab2-b3;(2)3n4-2n2+1.【答案】解:(1)多项式a3-a2b+ab2-b3的项有a3,-a2b,ab2,-b3,次数是3.(2)多项式3n4-2n2+1的项有3n4,-2n2,1,次数是4.【师生活动】学生独立解决,组内探讨答案是否正确.【设计意图】让学生熟练找出多项式的项和次数.【例3】如图,用式子表示圆环的面积.当R=15 cm,r=10 cm时,求圆环的面积(π取3.14).【答案】解:外圆的面积减去内圆的面积就是圆环的面积,所以圆环的面积是πR2-πr2.当R=15 cm,r=10 cm时,圆环的面积(单位:cm2)是πR2-πr2=3.14×152-3.14×102=392.5.这个圆环的面积是392.5 cm2.【师生活动】首先用式子表示出圆环面积,再把数值代入求解.【设计意图】掌握用多项式表示数量关系的方法,并能对多项式进行求值.课堂小结板书设计一、多项式的定义二、多项式的项和次数三、整式的定义课后任务完成教材第58页练习1~2题.。
华师大版七年级数学上册优秀教学案例:34整式的加减(3课时)

3.采用形成性评价的方式,关注学生的学习过程和进步,鼓励学生自主评价,培养学生的自我监控和自我反思能力。
四、教学内容与过程
(一)导入新课
1.利用多媒体课件展示一些实际问题,如购物时计算总价、测量长度时计算差值等,引导学生思考如何解决这些问题。
五、案例亮点
1.贴近生活的情境创设:本案例通过设计与生活实际相关的问题情境,让学生在解决实际问题的过程中自然地引入整式加减的概念和方法。这种教学方式能够激发学生的学习兴趣,提高学生的学习积极性,使学生能够更好地理解和应用所学的数学知识。
2.问题导向的教学策略:本案例在教学过程中注重引导学生提出问题,激发学生的好奇心,让学生主动思考和探究整式加减运算的规律和方法。通过提问,引导学生发现整式加减过程中的关键步骤,帮助学生建立完整的知识体系。
2.引导学生运用数形结合的方法,借助图形直观地理解整式的加减运算过程,提高学生的直观思维能力。
3.鼓励学生运用转化思想,将复杂的整式加减问题转化为简单的问题进行求解,培养学生的转化能力和解决问题的能力。
(三)情感态度与价值观
1.激发学生对整式加减运算的兴趣,培养他们积极向上的学习态度,增强他们对数学学科的Байду номын сангаас爱。
5.全面的教学目标:本案例的教学目标涵盖了知识与技能、过程与方法、情感态度与价值观三个部分。不仅注重学生对整式加减运算的掌握,还注重培养学生的逻辑思维、团队合作能力、实践能力和创新意识。通过本案例的教学,学生能够在知识、能力和情感态度方面得到全面的发展。
2.讲解整式加减的运算步骤,如去括号、合并同类项等,并通过具体的例子进行演示。
3.引导学生运用整式加减解决一些实际问题,让学生在解决问题的过程中,加深对整式加减运算的理解。
4.2 整式的加减 第3课时 教案 2024-2025学年数学人教版七年级上册

4.2整式的加减第3课时【教学目标】1.会进行整式加减的运算,并能说明其中的算理,让学生从实际背景中去体会进行整式的加减的必要性.2.经历探索的整式加减运算的法则的过程,进一步培养学生观察、归纳、类比、概括等能力.【重点难点】重点:熟练进行整式的加减运算.难点:列式表示问题中的数量关系,去掉括号前是负因数的括号.灵活准确的运用整式的加减的步骤进行运算.【教学过程】一、创设情境(一)复习回顾1.计算(1)4x-x=;(2)-6ab+ab+8ab=.2.化简下列各式:x=;(1)125x+16(2)3x-1x=.33.化简:(1)6y-(3x+2y);(2)3a2-(3a2+2a).(二)情境导入李亮和张莹到希望小学去看望小同学,李亮买了10支钢笔和5本字典作为礼物;张莹买了6支钢笔、4本字典和2个文具盒作为礼物品.钢笔的售价为每支a 元,字典的售价为每本b元,文具盒的售价为每个c元.请你计算:(1)李亮花了元;张莹花了元;李亮和张莹共花元.(2)李亮比张莹多花元.想一想:如何进行整式的加减运算?二、探究归纳探究点1:整式的加减【典例评析】例1:教材P100【例6】(1)(2x-3y)+(5x+4y);(2)(8a-7b)-(4a-5b).这是课本例题的处理,学生对如何去括号已经能够很好地掌握,学生完全可以利用以前所学习的知识进行问题的解决,稍有难度的点是合并同类项,因为有多个同类项如何处理需要教师进行点拨指导.教师可以类比有理数的加减运算,进行处理(见课本例题详解);也可以使用添括号方式进行处理,解答过程如下:(1)解:原式=2x-3y+5x+4y=(2x+5x)+(-3y+4y)=7x+y;(2)解:原式=8a-7b-4a+5b=(8a-4a)+(-7b+5b)=4a-2b教师可以对两种情况进行对比,让学生择优选择.【针对性训练】化简(x +3y )-2(x -3y )-12(x +3y )+(x -3y ) =x +3y -2x +6y -12x -32y +x -3y =x -2x -12x +x +3y +6y -32y -3y =-12x +92y 要点归纳:整式的加减运算归结为 、 ,运算结果仍是 .运算结果,常将多项式的某个字母(如x )降幂(升幂)排列.探究点2:整式的加减的应用例2:教材P100【例7】教师引导:(1)求纸盒用料实际应该求什么?(2)怎样解决这两个问题?展示两个长方体纸盒实物模型,引导学生围绕以上两个问题观察,学生分组讨论、交流,教师倾听学生交流,指导学生探究.或借助多媒体展示长方体各个面的长、宽,引导学生完成列代数式,合并同类项,解决实际问题.师生活动:师:我们利用整式的加减解决实际问题的步骤是什么?整式加减的实质是什么?学生分组讨论、交流后归纳出(学生自己表述).要点归纳:整式加减的运算法则:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.【针对性训练】教材P102练习T3例3:教材P101【例8】师生活动:教师板书示范,同时引导学生领会每一步的计算依据.注意引导学生总结整式化简求值的一般步骤.使学生领会整式的求值过程,能自觉地运用“先化简,然后再求值”的这一思路解决问题.同时进一步使学生体会整式的加减在求代数式的值时的便捷.三、检测反馈1.已知一个多项式与3x 2+9x 的和等于3x 2+4x -1,则这个多项式是( )A.-5x -1B.5x +1C.-13x -1D.13x +12.长方形的一边长等于3a +2b ,另一边比它大a -b ,那么这个长方形的周长是( ) A.14a +6b B.7a +3bC.10a +10b D .12a +8b3.若A 是一个二次二项式,B 是一个五次五项式,则B -A 一定是 ( )A.二次多项式 B .三次多项式C.五次三项式 D .五次多项式4.多项式2x 3-8x 2+x -1与多项式3x 3+2mx 2-5x +3的和不含二次项,则m 为( )A.2 B .-2C.4 D .-45.已知A =3a 2-2a +1,B =5a 2-3a +2,则2A -3B = .6.若mn =m +3,则2mn +3m -5mn +10= .7.计算:(1)-53ab 3+2a 3b -92a 2b -ab 3-12a 2b -a 3b ; (2)(7m 2-4mn -n 2)-(2m 2-mn +2n 2);(3)-3(3x +2y )-0.3(6y -5x );(4)(13a 3-2a -6)-12(12a 3-4a -7). 8.某公司计划砌一个形状如下图(1)的喷水池,后有人建议改为如下图(2)的形状,且外圆直径不变,只是担心原来备好的材料不够,请你比较两种方案,哪一种需用的材料多(即比较两个图形的周长)?若将三个小圆改为n 个小圆,又会得到什么结论?四、本课小结整式的加减{ 整式加减的步骤{ ①列代数式②去括号③合并同类项整式加减的应用五、布置作业基础:教材P102习题T3、4、5.综合:教材P102习题T6,P103习题T11.六、板书设计七、教学反思整式的加减是学生进入第三学段后最先遇到的有关式子的运算,是由具体的数字运算发展到代数式运算的转折点.整式的加减运算是今后学习整式的乘除、分式的化简等涉及(代数)“式”运算的基础.由于整式中的字母可以表示任意有理数,因此整式的加减运算可以类比和应用有理数的运算与加法、乘法的运算律,进一步体会“(有理)数”与“(整)式”运算的相通性.用字母可以表示数或数量关系,也可以表示特定意义的公式或具有某些规律的数.用整式表示和分析实际问题中的数量关系,能使数量之间的关系更简明,更具有普遍意义.当整式中所含字母的取值确定后,可以求得此时整式的值,通常的做法是,先将整式化简,即先去括号、合并同类项,再将字母的值代入计算,这样可以化繁为简,使运算简便,这也说明,式的运算更具有一般性,数的运算是式的运算的特殊情形.本课旨在通过探索整式加减运算法则的过程,进一步培养学生观察、归纳、类比、概括等能力,提高有条理的思考及语言表达能力.让学生在探索整式加减运算法则的活动中通过相互间的合作与交流,进一步挖掘学生合作交流的能力和数学表达能力.在解决问题的过程中了解数学的价值,增强“用数学”的信心.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
是 ,一次项是 ,此多项式可称为 次 项式。
生活中的排队
◯学生排队编排座位 ◯食堂排队用餐 ◯某医院病人排队接受义诊
多项式中各项的排列顺序
为了方便数学研究以及体现书写的整齐简洁美,我们也规 定多项式的书写的排列规律。
举例说明升幂排列和降幂排列
升降幂排列图示说明
5x2+3x-2x3+1
1+3x+5x -2x (0)
3 2a
分类结果
乘号:×
xy
a2,
1 2
ah,-m,12x,a,
3
,2
除号:÷ s
t
混合:+ - × a2-2ab,(a+b)2,5-4a,
混合:+ -
÷
2n 3m
1 2
,
a a
b b
,
混合:× ÷ 3
2a
引入单项式的定义
系数 与次数有关
系数
(数字因数)
次数 2+3+1=6
-
5 4
x2y3z1
例题1
把下面多项式按 r 的升幂排列.
2r 1 4 r3 r2 3
例题2
把下面多项式重新排列: (1)按a的升幂排列 (2)按b的降幂排列
a³+b²-3a²b-3ab³
练习:课本P100(1、2)
பைடு நூலகம் 作业:课本P100(4、5);练习册P45-46
多项式相关定义举例分析
次数 最高
(2次) (1次) (0次)
3x2-2x+5 2次3项式
(1) (2) (3) 有3项,分别是3x2、-2x、5
项数
常数项
整式
例题1
◯指出下列多项式的项与次数∶
(1)a3-a2b+ab2-b3 (2)3n4-2n2+1
例题2
◯指出下列多项式是几次几项式∶
(1)x3-x+1 (2)x3-2x2y2+3y2
a2
1 2
ah
-m
a2-2ab y=3-2x 2
5-4a
2n 1
ab
3m 2
ab
a 2b
s
xy
t
3
12x (a+b)2 a
3 2a
请你按照运算符号给下列代数式分类
a2 a2-2ab
1 2
ah
-m
y=3-2x(×)2
5-4a
2n 1
ab
3m 2
ab
a 2b(×) s
xy
t
3
12x (a+b)2 a
整式的加减
七年级数学上册第三章
佳文韵赢
3.3.1
单项式
列代数式
(1)若正方形的边长为a,则正方形的面积
;
(2)若三角形的一边长为a,这边上的高为h,则这个三
角形的面积为
;
(3)若m表示一个有理数,则它的相反数 ;
(4)小馨每月从零花钱拿出x元捐给希望工程,一年下来
小馨共捐款
元;
请判断哪些是代数式?
(1)
2 (2)
3 (3)
-2x +5x +3x+1 (3) 3
2 (2)
(1)
(0)
按照x的升幂排列: 按照x的指数从小到大排列
按照x的降幂排列: 按照x的指数从大到小排列
加法交换律
升降幂排列的定义
升幂排列:一个多项式按照某个字母的指数从小到大的顺 序进行排列.
降幂排列:一个多项式按照某个字母的指数从大到小的顺 序进行排列,叫做降幂排列.
小结
练习:课本P98(1、2、3、4)
作业:课本P100(2、3),练习册P45-46(2、4、6、B、C)
3.3.3
升幂排列与降幂排列
回顾引入
温故知新
◯单项式-a²b²c 的系数是 ,次数是 .
◯多项式 3x3y-5y2z+x2-y-1 有 项,常数项是
,
四次项系数为 ,三次项系数为 ,二次项
20x+10y+6z
3个单项式
列代数式
(1)若三角形的三条边长分别为a、b、c,则三角形的
周长是
,
(2)某班有男生x人,女生21人,这个班学生一共有
人,
(3)如图所示的阴影部分
a
的面积为
。
2r
引入多项式的定义
多项式:几个单项式的和叫做多项式。 项:每个单项式叫做多项式的项, 常数项:不含字母的项叫做常数项 项数:一个多项式含有几项,就叫做几项式. 次数:多项式里,次数最高项的次数,就是这个多项式的 次数
(所有字母指数的和)
例题
判断下列各代数式是不是单项式,如果不是,请说明理
由;如果是,请指出它的系数与次数∶
(1)x+1 (4) r2
(2)
3 2
a
2
b
2
(5) x
x2y3
(3) 7
练习:课本P96-97(1、2、3)
练习:课本P96-97(1、2、3)
作业:课本P100习题3.3;练习册P45-46(1、4、5)
3.3.2
多项式
引例
◯学校要采购一批球类,有篮球、排球和足球,篮球每个 x元,排球每个y元,足球每个z元,篮球、排球和足球分 别采购20个、10个、6个。 (1)采购篮球需要多少钱? (2)采购排球需要多少钱? (3)采购足球需要多少钱? (4)采购这批球类共花了多少钱?
特征分析
三个单项式20x、10y、6z的和