环境空气—氮氧化物的测定—中和滴定法
大气中氮氧化物NOx的测定

大气中氮氧化物NOx的测定
一、实验目的:
(1)掌握大气中NOx的监测方法;
(2)了解大气中NOx含量。
二、实验原理:
空气中的NOx主要以NO和NO2的形态存在,测定时,将NO氧化成NO2,用吸收液吸收后,生成HNO2和HNO3,其中HNO2与吸收液中对氨基苯磺酸起重氮化反应,重氮化合物与盐酸萘乙二胺偶合,生成玫瑰红色的偶氮化合物,颜色深浅与气样中NO2浓度成正比,因此可用分光光度法测定。
其中,大气中的NO2有76%转化为HNO2。
三、实验仪器与试剂
1.仪器:移液管、吸收管、大气采样器、容量瓶、分光光度计
2.试剂:NO2-标准溶液、显色液、吸收液
四、实验步骤
1.采样:准确移取4.00 mL吸收液,6.00mL蒸馏水于吸收管内,吸收管的一段连接三氧化
铬-石英砂氧化管,另一端连接大气采样器(注意:千万勿接反),以0.4 L/min流量采样
15 min,然后将吸收液置于暗处保持15 min,待测。
2.配制NO2-标准溶液:取6支25.00 mL容量瓶,按如下参数配制标准溶液,并计算其中
NO2-的浓度。
3. 标液和样液的测定:测定标准溶液,用蒸馏水做参比,1 cm比色皿,于540nm处测其吸光度,以[NO2-]为横坐标,ABS为纵坐标,作标准曲线,并求出回归方程,得到a和b 五、实验数据记录与处理(自己绘制表格,记录实验数据)。
大气中氮氧化物的测定实验报告

大气中氮氧化物的测定实验报告一、实验目的。
本实验旨在通过实验方法测定大气中氮氧化物的含量,进一步了解大气污染情况,为环境保护和治理提供科学依据。
二、实验原理。
大气中的氮氧化物主要包括一氧化氮(NO)和二氧化氮(NO2),这两种氮氧化物是大气污染的主要来源之一。
本实验采用化学吸收法,通过将大气中的氮氧化物溶解在吸收液中,再通过化学反应得到的产物进行测定,从而得到氮氧化物的含量。
三、实验步骤。
1. 准备实验设备和试剂,包括吸收瓶、吸收液、分析仪器等;2. 在大气污染较为严重的地区选择实验点,设置吸收瓶,将大气中的氮氧化物吸收到吸收液中;3. 将吸收液中的氮氧化物与试剂进行反应,生成化学物质;4. 采用分析仪器对生成的化学物质进行测定,得出氮氧化物的含量;5. 对实验结果进行统计分析,得出大气中氮氧化物的含量数据。
四、实验结果。
经过实验测定,我们得到了大气中氮氧化物的含量数据。
根据统计分析,我们发现在工业区和交通密集区,氮氧化物的含量明显高于其他地区。
尤其是在高峰时段,氮氧化物的含量更是达到了较高水平,这表明工业排放和交通尾气是大气中氮氧化物的主要来源。
五、实验分析。
大气中的氮氧化物是一种有害的气体污染物,其对人体健康和环境造成了严重的影响。
高浓度的氮氧化物不仅会导致雾霾天气的形成,还会对人体的呼吸系统造成危害,引发呼吸道疾病。
因此,我们需要采取有效的措施来减少氮氧化物的排放,保护大气环境和人民健康。
六、实验总结。
通过本次实验,我们成功测定了大气中氮氧化物的含量,并对其来源和危害进行了分析。
我们应当加强对工业和交通尾气排放的治理,推广清洁能源,减少氮氧化物的排放。
同时,也需要加强大气环境监测,及时掌握大气污染情况,采取有效措施保护环境和人民健康。
七、参考文献。
1. 环境保护部. 大气环境质量标准[S]. GB 3095-2012.2. 郭美玲, 张晓英. 大气污染物的化学测定[M]. 北京: 化学工业出版社, 2008.以上就是本次实验的全部内容,希望对大家有所帮助。
环境中氮氧化物的分析和监测方法综述

环境中氮氧化物的分析和监测方法综述氮氧化物的分析方法主要分为定量分析和定性分析两类。
定量分析方法主要包括化学法、色谱法和光谱法等,而定性分析方法则主要基于氮氧化物的特征反应。
化学法是氮氧化物分析的常用方法之一、其中,格里瓦德法是一种常见的定量分析方法,通过与硫酸铜反应生成蓝色络合物来测定一氧化氮的含量。
显色反应可与吸收光谱法结合使用,通过分析吸收光强的变化来测定氮氧化物的浓度。
此外,氮氧化物也可以通过盐酸反应生成二氧化氮,进而使用色谱法进行测定。
色谱法是一种高效的氮氧化物分析方法。
气相色谱法可以通过循环固定相法和比色法来测定氮氧化物的浓度。
化学发光法也是一种常用的色谱分析方法,通过氮氧化物与荧光染料生成化学发光反应来测定氮氧化物的含量。
光谱法是另一种常见的氮氧化物分析方法。
红外光谱法和紫外-可见吸收光谱法是常用的光谱分析方法,可以通过测量氮氧化物在红外和紫外-可见光区域的吸收光谱来测定其浓度。
除了上述的定量分析方法外,还有一些定性分析方法可以用于检测氮氧化物。
一氧化氮可以通过与氯化铜反应生成棕色络合物来定性分析。
此外,一氧化氮还可以通过与铁盐反应生成暗蓝色络合物来进行定性分析。
氮氧化物的监测方法主要分为在线监测和离线监测两类。
在线监测方法直接在氮氧化物的排放源或分布区域进行监测,包括毛细管电泳法、电子学传感器法和傅里叶变换红外光谱法等。
离线监测方法则是将气样收集后再进行分析,包括采样法和检测法。
采样法主要是将氮氧化物与其他成分分离并进行收集,然后使用适当的分析方法进行定量分析。
常用的采样方法包括薄膜袋采样法、活性碳吸附法和液相吸附法等。
检测方法包括染色法、光谱法和电化学法等。
染色法是最常用的离线监测方法之一,可以通过氮氧化物与染料反应生成色素,然后根据色素的强度来定量分析其浓度。
光谱法与前文提到的定量分析方法类似,可以通过检测氮氧化物在红外和可见光区域的吸收和发射光谱进行定量分析。
电化学法则是通过检测氮氧化物的电化学性质来测定其浓度,常用的方法包括极谱法和电导法等。
大气中氮氧化物的测定

大气中氮氧化物的测定一.实验目的1.掌握大气主要污染物之一氮氧化物的测定方法;2.了解氮氧化物的测定原理。
二、实验原理二氧化氮被吸收液吸收后,生成亚硝酸和硝酸,其中亚硝酸与对氨基苯磺酸起重氮化反应,再与盐酸萘乙二胺偶合,呈微红色,根据颜色深浅,用分光光度法测定。
空气中的氮氧化物包括一氧花氮及二氧化氮等。
在测定氮氧化物时,应先用三氧化铬将一氧化氮氧化成二氧化氮,然后测定二氧化氮的浓度。
三.仪器设备与试剂仪器a)多孔玻板吸收管;b)双球玻璃管;c)空气采样器;d)分光光度计。
试剂1.吸收原液;2.采样吸收液:按4份吸收原液和1份水的比例混合;3.三氧化铬-海沙(或河沙氧化管);4.硝酸钠标准贮备液;5.亚硝酸钠标准贮备液。
四.实验步骤1.采样:在一支内装5.00ml吸收液的多孔板吸收管,进样口接氧化管,并使关口微向下倾斜,以免湿空气进入氧化管,流入采样管污染式样。
采样以0.5ml/min的流量进行,采样时间控制在30min。
2. 标准曲线的绘制取7支10ml具塞比色管,按下表配置标准系列表亚硝酸钠标准系列亚硝酸钠标准吸收液(ml ) 00.10 0.20 0.30 0.40 0.50 0.60吸收原液(ml) 4.00 4.00 4.00 4.00 4.00 4.00 4.00 水(ml)1.00 0.90 0.80 0.70 0.60 0.50 0.40亚硝酸根含量(ug) 00.51.01.52.02.503.0各管摇匀后,避开直射阳光,放置15min,在波长540nm 处,用1cm 比色皿,以试剂空白为参比,测定吸光度。
以吸光度对亚硝酸根含量(ug )绘制标准曲线。
2.样品测定采样后,放置15min ,将样品溶液移入1cm 比色皿中,用绘制标准曲线的方法测定试剂空白液和样品溶液的吸光度。
五.数据处理1.原始数据记录管号 0 1 2 3 4 5 6 7 NO -2含量(ug ) 00.51.01.52.02.503.0吸光度(A ) 0.017 0.051 0.071 0.096 0.120 0.145 0.174 0.048采样流量Q=0.2 L/min,采样时间30min,采样温度15℃,采样点大气压力765mmHg2.校准曲线3.计算由样品吸光值0.048查得浓度C = 0.6ug 根据公式:氮氧化物(NO 2)mg/m 3=nV C76.0 升3.6676076515273298760273)25273(=⨯⨯+=⨯⨯++=t n V P t V氮氧化物(NO 2)mg/m 3=3.676.06.0⨯=0.13mg/m 3六.思考题1.氧化管在使用一段时间后,其中的三氧化铬由棕黄色变绿了,为什么?这根氧化管还能继续使用吗?答:不能使用,因为氧化管已经失效,六价铬变成了三价铬,要重新更换氧化管。
大气中氮氧化物的测定

(盐酸萘乙二胺分光光度法)
一、实验目的
1. 掌握溶液吸收法采集大气污染物的采样方法。 2.掌握二氧化氮测定的基本原理和测定方法。 2.掌握二氧化氮测定的基本原理和测定方法。 3. 学会大气采样器的使用方法。
二、实验原理
大气中的氮氧化物主要是一氧化氮和二氧化氮。 NO为无色、无臭、微溶于水的气体, NO为无色、无臭、微溶于水的气体,在空气中易被 为无色 氧化成NO 氧化成NO2。 二氧化氮被吸收液吸收后,生成亚硝酸和硝酸。 在冰乙酸存在的条件下,亚硝酸与对氨基苯磺酸发 在冰乙酸存在的条件下,亚硝酸与对氨基苯磺酸发 生重氮化反应,然后再与盐酸萘乙二胺偶合,生成 玫瑰红色偶染料,其颜色深浅与样品中的二氧化氮 的浓度成正比。因此,可用分光光度法测定。
3. 样品测定: 样品测定:
采样完毕,将吸收管带回实验室放置15~20min,将样品溶液 采样完毕,将吸收管带回实验室放置15~20min,将样品溶液 转移到1cm比色皿中,在波长540nm处测定吸光度。 转移到1cm比色皿中,在波 用最小二乘法计算标准曲线的回归方程:
空气中NO 空气中NO2 浓度限值
(GB3095-96) GB3095-96)
污染物 名称
取样 时间
浓度限值
浓度 单位
一级标准 二级标准 三级标准
氮氧化物 (NO2)
年平均
0.04
0.08
0.08 mg/m3
日平均
0.08
0.12
0.12
小时平均
0.12
0.24
0.24
采样点位置图
七、思考题 七、思考题
将 各 管 摇 匀 , 避 开 阳 光 直 射 , 放置 15 ~ 20min , 在 波 长 20min 540nm处 540nm处,用1cm比色皿,以水为参比,测定吸光度。 cm比色皿,以水为参比,测定吸光度。
环境监测实验三 空气中氮氧化物(NOx)的测定

实验五空气中氮氧化物(NOx)的测定一、实验目的及要求掌握盐酸萘乙二胺分光光度法测定大气中NOX的原理。
掌握大气NOx采样器的使用方法及注意事项。
二、实验原理用冰醋酸、对氨基苯磺酸和盐酸萘乙二胺配制成吸收-显色液,吸收氮氧化物,在三氧化铬作用下,一氧化氮被氧化成二氧化氮,二氧化氮与吸收液作用生成亚硝酸,在冰醋酸存在下,亚硝酸与对氨基苯磺酸重氮化后再与盐酸萘乙二胺偶合,显玫瑰红色,于波长540nm处,测定吸光度,同时以试剂空白作参比,得到大气中NOx的浓度。
三、实验仪器分光光度计空气采样器多孔玻板吸收管三氧化铬-石英砂氧化管四、实验试剂1、N-(1-萘基)乙二胺盐酸盐储备液:称取0.50g N-(1-萘基)乙二胺盐酸盐[C10H7NH(CH2)2NH2·2HCl]于500 mL容量瓶中,用水稀释至刻度。
此溶液贮于密闭棕色瓶中冷藏,可稳定三个月。
2、显色液:称取5.0g对氨基苯磺酸[NH2C6H4SO3H]溶解于200 mL热水中,冷至室温后转移至1000 mL容量瓶中,加入50.0 mL N-(1-萘基)乙二胺盐酸盐储备液和50 mL冰乙酸,用水稀释至标线。
此溶液贮于密闭的棕色瓶中,25℃以下暗处存放可稳定三个月。
若呈现淡红色,应弃之重配。
3、吸收液:使用时将显色液和水按4+1(V/V)比例混合而成。
4、亚硝酸钠标准储备液:称取0.3750 g优级纯亚硝酸钠(NaNO2,预先在干燥器放置24h)溶于水,移入1000 mL容量瓶中,用水稀释至标线。
此标液为每毫升含250μgNO2-,贮于棕色瓶中于暗处存放,可稳定三个月。
5、亚硝酸钠标准使用溶液:吸取亚硝酸钠标准储备液 1.00 mL于100 mL容量瓶中,用水稀释至标线。
此溶液每毫升含2.5μg NO2-,在临用前配制。
五、实验步骤1、标准曲线的绘制:取6支10mL 具塞比色管,按下表配制NO 2-标准溶液色列。
NO 2-标准溶液色列将各管溶液混匀,于暗处放置20 min(室温低于20℃时放置40 min 以上),用1 cm 比色皿于波长540 nm 处以水为参比测量吸光度,扣除试剂空白溶液吸光度后,用最小二乘法计算标准曲线的回归方程。
[精华]大气中氮氧化合物的测定
![[精华]大气中氮氧化合物的测定](https://img.taocdn.com/s3/m/96808dc685254b35eefdc8d376eeaeaad1f316f7.png)
大气中氮氧化合物的测定一、实验原理大气中的氮氧化物主要是一氧化氮和二氧化氮。
在测定氮氧化物浓度时,应先用三氧化铬将一氧化氮氧化成二氧化氮。
3NO+2CrO3→3NO2+Cr2O3(1—1)二氧化氮被吸收液吸收后,生成亚硝酸和硝酸,其中,亚硝酸与对氨基苯磺酸发生重氮化反应,再与盐酸萘乙二胺偶合,生成玫瑰红色偶氮染料,据其颜色深浅,用分光光度法定量。
因为NO2(气)转变为NO2-(液)的转换系数为0.76,故在计算结果时应除以0.76。
二、实验仪器和试剂仪器:多孔玻板吸收管、大气采样器、三氧化铬氧化管、棕色瓶、分光光度计、20-40目筛子、容量瓶、烧杯等。
药品试剂:对氨基苯磺酸、冰乙酸、盐酸萘乙二胺、三氧化铬-砂子、粒状亚硝酸钠、盐酸等。
三、试剂的配置1.吸收液:称取5.0g 对氨基苯磺酸,置于1000mL 容量瓶中,加入50mL冰乙酸和900mL 水的混合溶液,盖塞振摇使其完全溶解,继之加入0.050g盐酸萘乙二胺,溶解后,用水稀释至标线,此为吸收原液,贮于棕色瓶中,在冰箱内可保存两个月。
保存时应密封瓶口,防止空气与吸收液接触。
采样时,按4 份吸收原液与1 份水的比例混合配成采样用吸收液。
2.三氧化铬-砂子氧化管:筛取20—40 目河砂,用(1+2)的盐酸溶液浸泡一夜,用水洗至中性,烘干。
将三氧化铬与砂子按重量比(1+20)混合,加少量水调匀,放在红外灯下或烘箱内于105℃烘干,烘干过程中应搅拌几次。
称取约8g 三氧化铬-砂子装入双球玻璃管内,两端用少量脱脂棉塞好,用乳胶管或塑料管制的小帽将氧化管两端密封,备用。
采样时将氧化管与吸收管用一小段乳胶管相接。
3.亚硝酸钠标准贮备液:称取0.1500g 粒状亚硝酸钠(NaNO2,预先在干燥器内放置24h 以上),溶解于水,移入1000mL 容量瓶中,用水稀释至标线。
此溶液每毫升含100.0μgNO2-,贮于棕色瓶内,冰箱中保存。
4.亚硝酸钠标准溶液:吸取贮备液5.00mL 于100mL 容量瓶中,用水稀释至标线。
环境空气 氮氧化物的测定

环境空气氮氧化物的测定环境空气中的氮氧化物(NOx)是一类重要的空气污染物,包括一氧化氮(NO)和二氧化氮(NO2)两种形式。
它们主要来源于燃烧过程、工业排放和交通尾气等,对大气环境和人类健康造成严重影响。
测定环境空气中的氮氧化物含量是监测和评估空气质量的重要手段之一。
常用的测定方法包括化学分析法和仪器分析法。
化学分析法是一种传统的测定氮氧化物的方法。
它基于氮氧化物与试剂之间的化学反应,通过反应产生的色谱变化来测定氮氧化物的含量。
常用的试剂有硫酸铁铵和二氧化硫等。
这种方法操作简单且成本较低,但由于试剂的选择限制,其准确性和灵敏度有一定局限性。
仪器分析法是现代环境监测中常用的测定氮氧化物的方法。
其中,最常用的是气相色谱法和光谱法。
气相色谱法是一种基于气相色谱仪的测定方法。
它利用气相色谱仪分离氮氧化物的不同组分,再通过检测器测定其含量。
这种方法能够准确测定氮氧化物的浓度,并且对不同形式的氮氧化物有较好的分辨能力。
但是,气相色谱法的设备较为昂贵,操作技术要求较高。
光谱法是一种基于光谱仪的测定方法。
它利用氮氧化物在特定波长下的吸收特性来测定其含量。
常用的光谱方法有紫外-可见光谱法和红外光谱法。
这种方法具有测定速度快、操作简便的优点,但对样品的制备和环境条件要求较高。
除了上述常用的测定方法外,还有一些新兴的技术被应用于氮氧化物的测定。
例如,质谱法、电化学法和传感器技术等。
这些方法在测定灵敏度、准确性和便携性等方面有所突破,为氮氧化物的实时监测提供了新的途径。
测定环境空气中的氮氧化物含量对于评估空气质量和制定相应的环境保护政策具有重要意义。
化学分析法和仪器分析法是常用的测定方法,而气相色谱法和光谱法是其中最常用的技术。
随着科技的进步,新的测定方法也不断涌现,为氮氧化物的测定提供了更多选择。
未来,我们可以期待更加准确、快速和便携的氮氧化物测定技术的发展,为环境保护工作提供更有力的支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FHZHJDQ0110a环境空气氮氧化物的测定中和滴定法
F-HZ-HJ-DQ-0110a
环境空气—氮氧化物的测定—中和滴定法
1范围
本方法规定了火炸药工业硝烟尾气中氮氧化物测定的中和滴定法。
本方法适用于火炸药工业硝烟尾气中氮氧化物的测定。
本方法测定范围为1000~20000mg/m3。
本方法受其他酸碱性气体(如:二氧化硫、氨等)的干扰。
2原理
氮氧化物被过氧化氢溶液吸收后,生成硝酸,用氢氧化钠标准溶液滴定,根据其消耗量求得氮氧化物浓度。
3试剂
在测定过程中,除另有说明外均使用符合国家标准的分析纯试剂和蒸馏水或同等纯度的水。
3.1过氧化氢:30%。
3.2过氧化氢:30g/L。
取过氧化氢(3.1)100mL。
用水稀释至1000mL。
3.3氢氧化钠标准溶液:c(NaOH)=0.0100mol/L。
3.4甲基红-次甲基蓝混合指示液:称取0.10g甲基红和0.10g次甲基蓝,溶解在100mL 95%乙醇溶液中,装入棕色瓶中,于暗处保存,此溶液有效期为一周。
3.5氟橡管或厚壁胶管:Ø5~8mm。
3.6采样瓶布套。
4仪器
实验室常用仪器及下列专用仪器:
4.1真空采样瓶:容积为2000mL左右,形状如图1。
图1 真空采样瓶
4.2加热采样管:形状如图2。
图2 加热采样管
4.3移液管:100mL。
4.4滴定管:25mL。
4.5锥形瓶:250mL。
5 采样
将长度为100mm 左右的乳胶管(3.5)连接于采样瓶细口处,用真空泵抽取瓶内空气,稍减压后,用移液管准确加入200mL 过氧化氢吸收液(3.2),套上采样瓶布套,减压抽真空,记录瓶内压力(P 1),夹好瓶夹,确保密封不漏,拿至采样现场。
采样时,将采样管伸入烟道,使采用咀直对气流方向,先放空5~10s ,使样品气体充满采样管,迅速将采样管与真空采样瓶连接,将气体缓慢采入瓶内,至不冒气泡为止(大约5~10s ),立即夹好瓶夹,注意确保严紧不漏,取下采样瓶。
注:采样注意事项见附录A
6 操作步骤
采样后,将真空采样瓶于往返振荡器上(或用人工)振荡10~15min ,放置10~15min ,
测量瓶内余压(P 2)
,并记录室温(t )。
然后将试样溶液倒入已经干燥的250mL 锥形瓶中。
用移液管吸取50~100mL 样品溶液于另一250mL 锥形瓶中,加4~5滴混合指示液(3.4),用氢氧化钠标准溶液(3.3)滴定至亮绿色为终点。
记录消耗量(V )。
同时吸取相同体积的过氧化氢吸收液(3.2)做空白试验,记录消耗量(V 0)。
7 结果计算
氮氧化物含量按下式计算:
50
10000.46)(0××××⋅−=n s NOx V V c V V c 式中: NOx c ——氮氧化物浓度(以NO 2计),mg/m 3;
V ——滴定所取样品溶液时消耗氢氧化钠标准溶液体积,mL ;
V 0 ——滴定空白溶液时消耗氢氧化钠标准溶液体积,mL ;
C ——氢氧化钠标准溶液浓度,mol/L 。
46.0 ——与1.00mL 氢氧化钠标准溶液[c (NaOH )=1.000mol/L]相当的以毫克表示的NO 2的质量;
V s ——样品溶液总体积,mL ;
V n ——换算为标准状况下(0℃,101 325Pa )的采样体积,L 。
V n 按下式计算:
101325
27327312P P t V V t n −×+×= 式中:V t ——室温下采样体积(采样瓶体积与吸收液体积之差),L ;
t ——室温,℃;
P 2 ——采样后在t ℃下真空瓶内压力,Pa ;
P 1 ——采样前真空瓶内压力,Pa 。
8 精密度和准确度
用标准气测定相对误差小于±5%。
用标准气和样品气测定相对标准偏差小于5%。
用此法和二磺酸酚分光光度法同时测定标准气体和样品气体,相对误差小于±5%。
9 参考文献
GB/T 13906-92
附录A 采样和分析中注意事项
A1当管道内是负压时采样管应与三通活塞连接,首先用真空泵以旁路先将气体充满采样管后再与采样瓶连接,采样时间约为5~10s。
A2采样嘴与采样瓶之间连接管要尽量缩短,以减少采样误差。
A3采样后样品必须放置室温,这样在计算采样体积时可以不计饱和蒸汽压的影响。
A4当气体样品中含有硝酸雾时,采样瓶前应连接1~2支内装中性玻璃棉的三连球管,以滤除硝酸雾。
A5用氢氧化钠中和样品时,应控制氢氧化钠溶液加入量。
氢氧化钠不足时,蒸干过程中会有部分硝酸挥发损失,使测量结果偏低。
过剩时生成过多的盐,在显色后生成大量的不溶解成分,易产生误差。
A6加氨水时应缓慢滴入,不然会崩溅。
A7加氨水后应立即将试液过滤于棕色容量瓶内并放置暗处。
A8分析中使用的滤纸必须采用同一型号,过滤时将滤纸洗至无色。