一元二次方程全章说课稿
一元二次方程说课稿

《一元二次方程》说课稿龙山县湾塘初中万全维一、教材分析:一元二次方程是人教版九年级上第二十二章第一节,是中学数学的主要内容,在初中代数中占有重要的地位.实数与代数式的运算、一元一次方程是学习一元二次方程的基础,通过一元二次方程的学习,可以对上述内容加以巩固.同时,一元二次方程也是以后学习(指数方程、对数方程、三角方程以及不等式、函数、二次曲线等内容)的基础.此外,学习一元二次方程对其他学科也有重要意义本节课是一元二次方程的概念,是通过丰富的实例,让学生建立一元二次方程,并通过观察归纳出一元二次方程的概念。
(二) 教学目标二、教法与学法分析:教法分析:针对九年级学生复习时的知识结构和心理特征,本节课可选择引导探索归纳法,由浅入深,由特殊到一般地提出问题。
引导学生自主探索,合作交流,归纳总结。
这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:复习引入—新知探讨—问题解决—课堂小结—布置作业五部分。
学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,回顾和获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。
因为学生已经学习了一元一次方程及相关概念,所以本节课我主要采用启发式、类比法教学。
教学中力求体现“问题情景---数学模型-----概念归纳”的模式。
但是由于学生将实践问题转化为数学方程的能力有限,所以,本节课借助多媒体辅助教学,指导学生通过直观形象的观察与演示,从具体的问题情景中抽象出数学问题,建立数学方程,从而突破难点。
同时学生在现实的生活情景中,经历数学建模,经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力。
三、教学过程设计22.1 一元二次方程万全维教学内容一元二次方程概念及一元二次方程一般式及有关概念.教学目标知识与技1.理解一元二次方程概念是以未知数的个数和次数为标准的.2.掌握一元二次方程的一般形式以及三种特殊形式,能将一个一元二次方程化为一般形式3.理解二次根式的根的概念,会判断一个数是否是一个一元二次方程的根能过程与方法1..通过根据实际问题列方程,向学生渗透知识来源于生活.2.通过观察,思考,交流,获得一元二次方程的概念及其一般形式和其它三种特殊形式.3.经历观察,归纳一元二次方程的概念,一元二次方程的根的概念情感态度通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.重难点关键1.•重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.2.难点关键:通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念.教学过程一、复习引入学生活动:列方程.问题(1)建造一个面积为20平方米,长比宽多1 米的长方形花坛,问它的宽是多少?解:设这个花坛的宽为x米,则长为(x+1)米,根据题意得:x ( x+1) = 20即x 2 + x - 20 = 0二、探索新知学生活动:观察方程x + x - 20 = 0有何特征?老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)等号两边都是整式因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.练习请判断下列方程是否为一元二次方程:(1) 2x = y 2- 1 ; (2) 3z2+1 = z (2z2 - 1) ;(3)x 2 = 0;一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)•(•5-2x)=18必须运用整式运算进行整理,包括去括号、移项等.解:去括号,得:40-16x-10x+4x2=18移项,得:4x2-26x+22=0其中二次项系数为4,一次项系数为-26,常数项为22.例2.(学生活动:请二至三位同学上台演练)将方程(x+1)2+(x-2)(x+2)=•1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.解:去括号,得:x2+2x+1+x2-4=1移项,合并得:2x2+2x-4=0其中:二次项2x2,二次项系数2;一次项2x,一次项系数2;常数项-4.三、巩固练习教材P32练习1、2四、归纳小结(学生总结,老师点评)本节课要掌握:(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)•和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.五、布置作业1.教材P34习题22.1 1、2.2.选用作业设计.四、教学评价根据新课程标准的评价理念,在教学过程中,不仅注重学生的参与意识和学生对待学习的态度是否积极,而且注重引导学生尝试从不同角度分析和解决问题。
一元二次方程(说课稿)

一元二次方程的定义中有哪些特点?
①方程两边都是整式 一元二次方程 ②只含有一个未知数 ③未知数的最高次数是2次
2、自主探究,学习新知
得出一般形式后,再引导学生从类比中大胆猜想一 元二次方程一般形式中a≠0这一结论, b、c能否为 2 0?让学生充分交流后归纳小结:在 ax bx c 0 中,当a≠0时是一元二次方程,当a=o,b≠0时就 是一元一次方程。这样以疑激思,以教师的“不作 为”促使学生的“有所为”,培养了学生的直觉思 维和逻辑思维能力,同时也让学生体会了一元二次 方程和一元一次方程之间的转化。 最后引导学生由一元一次方程的项与系数的概念类 比得出一元二次方程的项与系数的概念。强调项与 系数都必须包括符号。
(1)5 x 10; (3) x 160;
2
(2)9 x 4 x 6 1 2 (4) y 0 y
2
(5)3 x y 6; (7)ax 4 x 0
2
(6)4 x 6 x 3x 4 x
2
2
一元二次方程的三个特点: 是整式方程;只含一个未 知数;未知数的最高次数 是2!
教学过程设计
4、 独立思考,巩固新知 为了使学生进一步明确一元二次方程的概念, 我设计了3道练习题,第一题是判别一元二次方程, 以抢答的形式完成,在巩固知识的同时,培养学生 的反应能力;第二道题是例题的延伸,以小组竞赛 活动的方式对本课知识进行巩固。第三题是由学生 自己写出几个一元二次方程和其他方程,由同桌找 出其中的一元二次方程,并指出一元二次方程中的 各项系数和常数项。这样不仅调动了学生学习的积 极性、主动性,增强了学生积极参与数学活动的意 识和集体荣誉感,而且还能培养学生的观察能力和 判断能力。同时也提供了生生互动的平台,形成民 主和谐、平等合作、积极向上的课堂氛围。
一元二次方程说课稿

一元二次方程说课稿今天我说课的内容是华东师大版九年级上册第二十三章第二节《一元二次方程的解法---公式法》,我主要从教材分析、教学法分析、过程分析、板书设计、教学评价五个方面对本节课作如下说明。
一、教材分析(一)教材的地位和作用方程是初中数学的一项重要内容,贯穿数学教学的始终,可谓是数学领域里的一项重要交通工具,一元二次方程就相当于这个交通工具的一个零部件,在运行过程中起着重要的作用。
本节课的“公式法”又是一元二次方程的一个重要课时,是学生在学习了“配方法”解方程之后,必须掌握的另一种解一元二次方程的方法。
它为学生以后学习二次函数以及解决生活中的一些实际问题起了铺路石的作用。
(二)教学目标根据本节课的地位、作用及其内容,结合学生实际和学生认知发展水平,确定如下教学目标:知识目标:理解求根公式的推导过程和判别公式,使学生能熟练地运用公式法求解一元二次方程.能力目标:通过由配方法推导求根公式,培养学生推理能力和由特殊到一般的数学思想。
结合用公式法解一元二次方程的练习,培养学生快速准确的运算能力和运用公式解决实际问题的能力。
情感目标:让学生敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心。
培养学生寻求简便方法的探索精神和创新意识。
(三)教学重、难点重点:掌握用公式法解一元二次方程的一般步骤,会熟练用公式法解一元二次方程。
难点:理解求根公式的推导过程和判别式公式。
二、教学法分析学情:在此之前,学生已经了解和学习过一元一次方程的概念及一般形式,掌握了一些根据实际问题列方程的能力,再者,九年级学生的数学思维已有一定程度的发展,具有一定分析推理能力,同时,在讨论、探索、交流学习等方面有较为丰富的知识和经验,因此,除利用与生活实际有关的问题导出新知识外,应更多地应用探讨、合作交流等方法让学生去求得新知识,加深和扩展学生对数学的理解。
根据教材的特点和学情分析,为了突出重点、突破难点的目的,我采用以下教法与学法:教法:本节课采用引导发现与合作探究的方法;在教学中由旧知识引导探究一般化问题的形式展开,利用学生已有的知识、激励其探索新知的兴趣、使其主动参与到教学活动中来。
一元二次方程说课稿

《一元二次方程》说课稿各位老师大家好!我是本次说课人,今天我说课的题目是人教版八年级上册第五章第二节第一课时《》。
下面,我将从教材分析、学情分析、教学目标分析、教学重难点分析、教学方法分析、教学过程设计、板书设计、教学评价等方面进行说明。
一、教材分析《一元二次方程》是人教版九年级上册第二章第一节的内容,主要使学生了解一元二次方程的概念,掌握一般式20(0)++=≠及相关的概念,并会应用ax bx c a一元二次方程概念解决一些简单题目,本节内容也是学生学习一元二次方程解法的基础,是中学数学概念教学的主要内容,在初中代数中占有重要的地位,实数与代数式的运算、一元一次方程是学习一元二次方程的基础,通过一元二次方程的学习,可以对上述内容加以巩固。
同时,一元二次方程也是以后学习函数、高次方程、二次曲线等内容的基础。
本节课是一元二次方程的概念,是通过丰富的实例,让学生建立一元二次方程,并通过观察归纳出一元二次方程的概念。
二、学情分析本阶段的学生在七年级和八年级已经学习了整式、分式、二次根式、一元一次方程、二元一次方程、分式方程,在此基础上本节课将从实际问题入手,抽象出一元二次方程的概念及一元二次方程的一般形式。
三、教学目标分析通过对教材的分析,并且结合学生的年龄和已有的知识经验,以及新课标的教学要求,本节课我确立了以下教学目标:1.通过类比一元一次方程,了解一元二次方程的概念及一般式,分清二次项及其系数,一次项及其系数与常数项等概念。
2.通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义。
3.通过数学模型的分析、思考过程,激发学生学数学的兴趣,体会做数学的快乐,培养用数学的意识解决问题,发展实践能力与创新意识。
四、教学重难点分析基于以上对教材的分析,学情的分析,以及我对数学课程标准的把握,本节课我确立了以下教学重点与难点:重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并运用这些概念解决问题。
一元二次方程说课稿

一元二次方程说课稿(一)我说课的题目北师版九年级(上)第二章《一元二次方程》. 下面我就从以下几个方面对一元二次方程进行说课⑴说教材⑵说目标⑶说教学方法、学法⑷说教学程序⑸说评价一、说教材教材分析本节课介绍了一元二次方程的概念及一般形式.一元二次方程的学习是一次方程、方程组及不等式知识的延续和深化,也是函数等重要数学思想方法的基础。
本节课是研究一元二次方程的导入课,它为进一步学习一元二次方程的解法及简单应用起到铺垫作用。
二、说目标⑴教学目标1.知识目标:使学生充分了解一元二次方程的概念;正确掌握一元二次方程的一般形式.2.能力目标:经历抽象一元二次方程的过程, 使学生体会出方程是刻画现实世界中数量关系的一个有效数学模型; 经历探索满足方程解的过程,发展估算的意识和能力.3.情感目标:培养学生主动探索、敢于实践、勇于发现、合作交流的精神.⑵教学重点建立一元二次方程的概念,认识一元二次方程的一般形式。
⑶教学难点由实际问题抽象出方程模型的能力三、说教学方法和学生的学法⑴教法分析本节课主要采用以类比发现法为主,以讨论法、练习法为辅的教学方法.⑵学法指导本节课的教学中,教会学生善于观察、分析讨论、类比归纳,最后抽象出有价值。
让时学生在现实的生活情景中,经历数学建模,经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力。
⑶教学手段采用电脑多媒体辅助教学,利用实物投影进行集体交流,及时反馈相关信息四、说教学程序⑴知识回顾导入新课⑵自主探索归纳新知⑶巩固练习深化知识⑷归纳小结反思提高⑸布置作业分层落实⑴知识回顾导入新课什么是一元一次方程?(请学生举例)请同学们阅读教材的“问题1”和"问题2",进一步明确列方程解实际问题的思路和方法. (培养学生的自学能力)设计意图:方程模型的建立为下一环节的教学做好铺垫。
⑵自主探索归纳新知比较一:与一元一次方程作纵向比较得一元二次方程的概念:只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
《一元二次方程》(复习课)说课稿

《一元二次方程》(复习课)说课稿枣阳市吴店一中田海俊《一元二次方程》(复习课)说课稿枣阳市吴店一中田海俊一、教材分析1.教材的地位和作用一元二次方程是中学数学的重要内容之一。
一方面,可以对以前学过的一元一次方程、因式分解等知识加以巩固,另一方面,又为以后学习二次函数等知识打下基础。
此外,一元二次方程对其它学科的学习也有重要意义。
因此,其地位可谓是“承上启下”,不可或缺。
2.教学目标分析知识与技能目标:1.理解一元二次方程的概念2.能灵活熟练的解一元二次方程3.会运用一元二次方程解决实际问题。
过程与方法目标:经历一元二次方程求解过程,提高观察分析能力,加深对转化等数学思想的认识。
情感态度与价值观目标:通过自主合作探究学习,养成独立思考的好习惯,培养团队合作意识。
3.教学重难点重点:构建一元二次方程知识体系,全面复习一元二次方程的解法及应用。
难点:利用根的判别式确定字母取值范围和运用一元二次方程解决实际问题。
二、教法与学法分析教法分析:叶圣陶先生主张:“教师务必启发学生的能动性,引导他们尽可能自己去探索。
”结合本节课的内容特点,我将采用启发式、讨论式以及探索式教学方法。
给学生留出足够的思考时间和空间,让学生自己去探索,归纳。
从真正意义上完成对知识的自我构建。
并用多媒体直观演示,最大限度地调动学生学习的积极性。
学法分析:人们常说:“现代文盲不是不识字的人,而是没有掌握学习方法的人”,因此教师要特别注重对学生学习方法的指导。
我贯彻的指导思想是把“学习的主动权还给学生”,倡导“合作交流、自主探究”的学习方式,具体的学法是利用学案导学,小组合作交流法,让学生养成自主学习的习惯,真正实现课堂的高效。
三、教学过程分析教学流程图:1.呈现诊断问题构建知识体系问题1:观察下列方程:⑴(x+3)²=2 ; ⑵x ²-8x+1=0 ; ⑶3x(x-1)=2(x-1);⑷x ²-4x-7=0 ; ⑸x ²+17=8x (无实数根)①这几个都是什么方程?诊断一: ②解这样的方程你有哪些方法? ③它们都有实数根吗?为什么?【教后反思】问题1出示了五个方程,目的是为了引出一元二次方程的概念、解法,以及根的判别式等知识点。
《一元二次方程》说课稿

《一元二次方程》说课稿一.教材分析1.教材内容:本节课主要介绍了一元二次方程的概念及一元二次方程的一般式。
2.地位和作用:一元二次方程的学习是一元一次部分知识点的回顾,同时又是方程组和不等式知识的延续和深化,也是函数等重要思想方法的基础。
本节课是研究一元二次方程的导入课,通过引入实际的生活问题,使同学对学习一元二次方程的兴趣增大,对比已经学习的一元一次方程,使学生正确抓住其本质特点,形成概念。
为进一步学习方程的解法和简单应用起铺垫作用。
本节课的教学不但能使同学在原有的知识和经验的基础上进一步体会数学思想,而且可以提高观察、分析、比较、抽象概括的能力以及发展简单的逻辑思维的能力。
3.教学重点与难点教学重点:一元二次方程的概念及一般形式是今后继续学习一元二次方程的重要基础,因此是本节课的重点。
教学难点:对一元二次方程的一般形式的正确理解。
二.教学目标根据学生已有的认知基础,结合素质教育的要求。
根据新课程标准纲要,我从以下方面确定了本节课的教学目标:(1)知识目标使学生充分了解一元二次方程的概念,正确掌握一元二次方程的一般形式。
(2)能力目标通过教学培养学生观察、分析、归纳等思维能力。
(3)情感目标培养学生积极参与、合作交流的主体意识和主动探索,勇于发现的科学精神。
在知识的探索和发现的过程中,使同学感受到数学学习的意义,从而产生良好的数学学习态度。
三.教学过程的设计1.复习巩固,引入新知因为数学来源于生活,因而以学生的实际生活背景为素材,引入问题,易于被同学接受和感知,所以我列举了生活中长方形草坪的面积问题,从情境分析中,更结合以前学过的一元一次方程解决实际生活问题的方法,得出了一个新的方程。
而通过与已知的一元一次方程的定义和一般形式的对比和比较,分析归纳出一元二次方程的定义及一般形式。
从生活情境和从学生身边的生活问题入手,更能激发学生的求知欲,顺利的进行新课。
2.启发探究、获取新知通过上述情境,让同学们合作交流,列出新的方程式。
一元二次方程》说课稿

一元二次方程》说课稿一)、教法分析本节课采用启发式教学法,即通过问题情境的引入,让学生自主思考,发现问题,探索解决方案。
同时,采用情境教学法,将一元二次方程的概念融入实际生活中,让学生更加深刻地理解和掌握相关知识。
在教学过程中,还要注重引导学生归纳总结,形成知识体系。
二)、学法分析学生在课前应该预相关知识,掌握一元二次方程的基本概念和公式。
在课堂上,要积极参与讨论,与同学合作解决问题,积极思考,提出自己的见解。
同时,还要注重归纳总结,巩固所学知识。
四、教学过程设计一)、导入环节通过实际问题引入一元二次方程的概念,让学生感受到数学知识的实用性和生活中的应用。
二)、知识讲解环节通过讲解一元二次方程的概念、一般形式及其系数的含义,让学生掌握相关知识,为后续的问题解决打下基础。
三)、问题解决环节通过设计问题情境,引导学生列出一元二次方程,分析解决问题的方法和步骤,培养学生的逻辑思维和解决问题的能力。
四)、归纳总结环节通过课堂讨论和归纳总结,让学生深刻理解一元二次方程的概念和应用,巩固所学知识。
五)、课堂作业环节布置相关作业,巩固学生所学知识,并提高学生的自主研究能力。
以上是我对《一元二次方程》的教学设计和分析,希望能够对大家有所帮助。
本节课采用“以学生为主体,教师为主导”的原则,旨在提高学生的知识水平和能力。
为此,我选用了探究式教学法和合作交流法。
探究式教学法是根据学生的认知规律,创设合适的研究情景,引导学生自主探索、积极参与课堂活动,培养学生探索精神和研究探究方法。
合作交流法则是让学生共同讨论,从浅入深、从特殊到一般地提出问题,引导学生自主探索、合作交流,激发学生研究的积极性。
在教师的组织引导下,采用自主探索和合作交流研讨式研究方法,让学生思考问题、获取知识、掌握方法,培养学生的动手、动脑、动口能力,使学生成为研究的主体。
本节课按照循序渐进、讲练结合的特点,设计了情景引入、新课研究、归纳小结、巩固练、课堂小结、课后作业六个环节。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版《义务教育课程标准实验教科书·数学(九年级上册)》第二十一章《一元二次方程》说课标说教材稿陵城区郑家寨镇中学司艳红尊敬的各位评委,各位老师:大家好!我是来自陵城区郑家寨镇中学的司艳红。
今天我说课标说教材的内容是人教版《义务教育课程标准实验教科书·数学(九年级上册)》第二十一章《一元二次方程》。
我将从说课程标准、说教材、说建议三个方面进行阐述。
一、说课程标准(一)本章的课程目标1.以分析实际问题中的等量关系并求解其中的未知数为背景,认识一元二次方程及其有关概念。
2.根据化归的思想,抓住“降次”这一基本策略,掌握直接开平方法、配方法、公式法和因式分解法等一元二次方程的基本解法。
选学“一元二次方程的根与系数的关系”,拓展对一元二次方程的认识。
3.经历分析和解决实际问题的过程,体会一元二次方程的数学模型作用,进一步提高在实际问题中运用方程这种重要数学工具的基本能力。
(二)本章的内容标准(课程内容)1.能根据具体问题中的数量关系列出一元二次方程,体会一元二次方程是刻画现实世界数量关系的有效模型。
2.经历估计一元二次方程解的过程。
3.理解配方法,能用配方法、公式法、因式分解法解数字系数的一元二次方程。
4.会用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等。
5.*了解一元二次方程的根与系数的关系。
6.能根据具体问题的实际意义,检验一元二次方程的解是否合理。
二、说教材(一)人教版教材的编写特点1.体现整体性,螺旋上升地呈现重要的概念和思想人教版教材整体体现课程内容的核心,整体考虑知识之间的关联。
例如,人教版教材为了体现方程、不等式和函数内在的整体性,在八年级上册特意安排了“14.3 用函数观点看方程(组)与不等式”一节。
螺旋上升地呈现重要的概念和思想,不断深化对它们的认识。
人教版教科书改变了以往教科书“先集中出方程,后集中出函数”的做法,而是按照“一次”和“二次”的数量关系,使方程和函数交替出现,即按一次方程(组)、一次函数、二次方程、二次函数的顺序螺旋上升。
这样处理,一方面克服直线式发展所产生的不易理解消化的弊病,分阶段地不断地深化对方程和函数的理解;另一方面强化基本概念之间的内在联系,从函数角度提高对方程等内容的认识,八年级上册的“14.3 用函数观点看方程(组)与不等式”等就是为此而特意安排的。
2.体现知识的形成和应用过程,突出建立数学模型的思想人教版教材按照“问题情境---建立模型---求解验证”的模式编写教材,即从具体的问题情境中抽象出数学问题,使用数学语言表达问题,建立数学模型,获得并确认合理的解答。
例如九年级上册第二十二章章前图中的人体雕像上下高度比问题的设计就体现了知识的形成和应用过程,突出建立数学模型的思想。
3.呈现内容的素材贴近现实学生的学习是建立在自己已有基础(包括知识技能、活动经验、生活背景等)之上的,因此,人教版教材在引入学习主题时,选择的呈现内容的素材都是贴近现实的。
例如九年级上册第二十二章第三节《实际问题与一元二次方程》中的探究1,以流感为问题情境,讨论传播问题。
4.内容设计有弹性《课程标准(2011年版)》明确提出:数学教学应当实现“不同的人在数学上得到不同的发展”的目标。
它表明:在满足《课程标准(2011年版)》基本要求的前提下,对有进一步学习数学需求的学生,教材应当给他们提供必要的帮助。
为此,人教版教材设计了课题学习、数学活动、选学等内容。
例如九年级上册第二十二章第二节中安排的选学内容《一元二次方程的根与系数的关系》就体现了人教版教材内部设计的弹性。
(二)人教版教材的编写体例及目的人教版《义务教育课程标准实验教科书·数学(七~九年级)》全套书分为六册,每学期一册,每册有若干章。
本套教科书在体例安排上有如下特点:1.每章开始均配有反映本章主要内容的章前图和引言,可供学生预习用,也可作为教师导入新课的材料。
2.正文中设置了“思考”“探究”“归纳”等栏目,栏目中以问题、留白或填空等形式为学生提供思维发展、合作交流的空间。
3.适当安排了“观察与猜想”“实验与探究”“阅读与思考”“信息技术应用”等选学栏目,为加深对相关内容的认识,扩大学生的知识面,运用现代信息技术手段学习等提供资源。
4.正文的边空设有“小贴示”和“云朵”,“小贴示”介绍与正文内容相关的背景知识,“云朵”中是一些有助于理解正文的问题。
5.每章的习题分为练习、习题、复习题三类。
练习供课上使用,有些练习是对所学内容的巩固,有些练习是相关内容的延伸;习题供课内或课外作业时选用;复习题供复习全章时选用。
其中习题、复习题按照习题的功能分为“复习巩固”“综合应用”“拓广探索”三类。
6.每章安排了几个有一定综合性、实践性、开放性的“数学活动”,学生可以结合相关知识的学习或全章的复习有选择地进行活动,不同的学生可以达到不同层次的结果;“数学活动”也可供教师教学选用。
7.每章安排了“小结”,包括本章的知识结构图和对本章内容的思考。
8. 两个不同版本教科书的比较:初中数学新课程的基本理念有四条:提高数学素养、面向全体学生、倡导探究性学习和注重与现实生活的联系。
作为新课程教材,人教版和华师大版两个版全章共包括三节:21.1 一元二次方程21.2 降次---解一元二次方程21.3 实际问题与一元二次方程21.1节以实际问题为背景,引出一元二次方程的概念,归纳出一元二次方程的一般形式,给出一元二次方程的根的概念,并指出一元二次方程的根不唯一。
这些概念是全章后续内容的基础。
21.2节主要讨论一元二次方程的基本解法,其中包括直接开平方法、配方法、公式法、因式分解法等,这一节是全章的重点内容之一。
解二次方程的基本策略是将其转化为一次方程,这就是“降次”。
本节首先通过解比较简单的一元二次方程,引导学生认识直接开平方法解方程;然后讨论比较复杂的一元二次方程,使学生认识配方法的基本原理并掌握其具体方法;有了配方法作基础,再讨论如何用配方法解一元二次方程的一般形式ax2+bx+c=0(a≠0),这就得到一元二次方程的求根公式,于是有了直接利用公式的公式法,并引出用判别式确定一元二次方程的根的情况。
本节在公式法后又学习了因式分解法解一元二次方程。
这几种解法都是依“降次”的思想,将二次方程转化为一次方程,只是具体的降次手段有所不同。
本节最后增加了选学内容“一元二次方程的根与系数的关系”,学习这一内容可以进一步加深对一元二次方程及其根的认识,为以后的学习作准备。
21.3节安排了3个探究内容,结合实际问题,分别讨论传播问题,增长率问题和几何图形面积问题。
一元二次方程与许多实际问题都有联系,本节不是按照实际问题的类型分类和选材的,而是选取几个具有一定代表性的实际问题来进一步讨论如何建立和利用方程模型,重点是分析实际问题中的数量关系并以方程形式进行表示,这种数学建模思想的体现与前面有关方程各章是一致的,只是在问题中数量关系的复杂程度上又有新的发展,数学模型由一次方程或可以化为一次方程的分式方程变为一元二次方程。
在数学活动和本章小结中,教科书通过设计三个活动、本章知识结构图和思考题,再次强调一元二次方程与实际问题之间的联系,突出解一元二次方程的基本思路以及具体方法,这是本章的重点内容。
本章从引言到小结始终保持贴近实际、贴近生活。
这样安排的主要目的是:1.反映客观世界与数学的密切联系;2.加强对应用数学知识分析和解决实际问题的意识和能力的培养。
(四)本章知识与技能的立体式整合1.本章在本册教材中的横向整合九年级数学上册总共包括五章:第二十一章《一元二次方程》,第二十二章《二次函数》,第二十三章《旋转》,第二十四章《圆》,第二十五章《概率初步》。
五个单元的知识,代数与几何相互交错,二次根式的学习为解一元二次方程做了铺垫,一元二次方程的求解又为后面知识的计算打下基础。
2.本章在本学段中的纵向整合(1)由浅入深,循序渐进:教材按照“七年级上册第三章《一元一次方程》------七年级下册第八章《二元一次方程组》------八年级下册第十六章的第三节《分式方程》------九年级上册第二十二章《一元二次方程》”的顺序编排方程的内容,符合学生的认知规律。
(2)螺旋上升,不断深化:教材按照“一次”和“二次”的数量关系,使方程和函数交替出现,不断深化所学内容。
三、说建议(一)教学建议1.注重联系实际,丰富学生的感性认识本章内容与生活的联系非常紧密,方程源于生活又服务于生活。
教材从实例引入到具体教学都非常重视表达一元二次方程与现实世界的重要相关。
教师在教学中要让学生体会到这种关联性,创设学生熟悉的生活情景,引发学生的学习兴趣,让学生感觉到是在学习与生活相关的数学、对生活有用的数学。
我在这一章的实际教学中充分挖掘生活素材,结合到孔庙参加活动列队问题、举办象棋围棋比赛赛程安排问题、鲁人执竿问题这些同学们熟悉的情景开展教学,效果良好。
2.注重数学建模思想,重视数学思想方法渗透数学建模思想的教学是一个长时间渗透、巩固的过程,要体现课程标准中“呈螺旋式上升,不断深化”的理念。
例如九年级上册第二十二章章前图中的人体雕像上下高度比问题就体现了建立数学模型的思想。
实际教学中我安排学生预习时利用这个问题去感受数学建模思想,在引入本章的教学中我通过播放鲁人执竿的动画,让学生经历从具体的问题情境中抽象出数学问题,使用数学语言表达问题,建立数学模型,体会数学建模思想。
数学思想方法是数学的灵魂,是把知识转化为能力的桥梁。
本章内容蕴涵了丰富的数学思想方法,除了模型思想外,主要还有化归与转化思想,类比思想等。
化归与转化思想是解方程过程中思维活动的主导思想。
如将分式方程转化为整式方程;将一元二次方程转化为一元一次方程。
类比思想是联系新旧知识的纽带,有利于帮助我们开阔思路,研究解题途径和方法,有利于掌握新知识,巩固旧知识,教学时应特别重视。
如列一元二次方程解应用题可类比列一元一次方程解应用题的思路和一般步骤。
3.充分利用教材空间,根据实际情况组织教学,使用“自主合作,分层达标”教学模式,满足不同学生的需要实际教学中,我通过了解学生情况,研究近几年中考试题,合理地组织和使用教材,比如对第二十二章里的选学内容《22.2.4一元二次方程的根与系数的关系》就应做适当的处理;为了体现以学生为主体的思想,增加自主、合作、探究性学习的力度,实际教学中使用我校的“自主合作,分层达标”教学模式,让不同学生通过本章的学习,都能在原有基础上得到进一步的发展。
附:“自主合作分层达标”的课堂教学的基本环节及注意事项:(1)情境创设或者从已有知识出发,形成思维的迁移与发展,或者从学生的生活实际出发将知识问题生活情景化。
(2)自主学习①要有明确的自学目标和要求。