【60天冲刺】2012年高考数学二轮三轮总复习专题学案 专题7思想方法课件 (浙江文科专用)

合集下载

高考数学第二轮专题复习平面向量教案

高考数学第二轮专题复习平面向量教案

高考数学第二轮专题复习平面向量教案一、本章知识结构:二、高考要求1、理解向量的概念,掌握向量的几何表示,了解共线向量的概念。

2、掌握向量的加法和减法的运算法那么及运算律。

3、掌握实数与向量的积的运算法那么及运算律,理解两个向量共线的充要条件。

4、了解平面向量基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。

5、掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件。

6、掌握线段的定比分点和中点坐标公式,并且能熟练运用;掌握平移公式。

7、掌握正、余弦定理,并能初步运用它们解斜三角形。

8、通过解三角形的应用的教学,继续提高运用所学知识解决实际问题的能力。

三、热点分析对本章内容的考查主要分以下三类:1.以选择、填空题型考查本章的基本概念和性质.此类题一般难度不大,用以解决有关长度、夹角、垂直、判断多边形形状等问题.2.以解答题考查圆锥曲线中的典型问题.此类题综合性比较强,难度大,以解析几何中的常规题为主.3.向量在空间中的应用〔在B类教材中〕.在空间坐标系下,通过向量的坐标的表示,运用计算的方法研究三维空间几何图形的性质.在复习过程中,抓住源于课本,高于课本的指导方针.本章考题大多数是课本的变式题,即源于课本.因此,掌握双基、精通课本是本章关键.分析近几年来的高考试题,有关平面向量部分突出考查了向量的基本运算。

对于和解析几何相关的线段的定比分点和平移等交叉内容,作为学习解析几何的基本工具,在相关内容中会进行考查。

本章的另一部分是解斜三角形,它是考查的重点。

总而言之,平面向量这一章的学习应立足基础,强化运算,重视应用。

考查的重点是基础知识和基本技能。

四、复习建议由于本章知识分向量与解斜三角形两部分,所以应用本章知识解决的问题也分为两类:一类是根据向量的概念、定理、法那么、公式对向量进行运算,并能运用向量知识解决平面几何中的一些计算和证明问题;另一类是运用正、余弦定理正确地解斜三角形,并能应用解斜三角形知识解决测量不可到达的两点间的距离问题。

高考高三二轮复习计划策略模板(7篇)

高考高三二轮复习计划策略模板(7篇)

高考高三二轮复习计划策略模板(7篇)高考高三二轮复习计划策略模板篇1一二轮复习指导思想:高三第一轮复习一般以知识技能方法的逐点扫描和梳理为主,通过第一轮复习,学生大都能掌握基本概念的性质定理及其一般应用,但知识较为零散,综合应用存在较大的问题。

而第二轮复习承上启下,是知识系统化条理化,促进灵活运用的关键时期,是促进学生素质能力发展的关键时期,因而对讲练检测等要求较高。

二二轮复习形式内容:以专题的形式,分类进行。

具体而言有以下几大专题。

(1)集合函数与导数。

此专题函数和导数应用导数知识解决函数问题是重点,特别要注重交汇问题的训练。

每年高考中导数所占的比重都非常大,一般情况在客观题中考查的导数的几何意义和导数的计算属于容易题;二在解答题中的考查却有很高的综合性,并且与思想方法紧密结合,主要考查用导数研究函数的性质,用函数的单调性证明不等式等。

(预计5课时)(2)三角函数平面向量和解三角形。

此专题中平面向量和三角函数的图像与性质,恒等变换是重点。

近几年高考中三角函数内容的难度和比重有所降低,但仍保留一个选择题一个填空题和一个解答题的题量,难度都不大,但是解三角形的内容应用性较强,将解三角形的知识与实际问题结合起来将是今后命题的一个热点,我们可以关注。

平面向量具有几何与代数形式的“双重性”,是一个重要的只是交汇点,它与三角函数解析几何都可以整合。

(预计2课时)(3)数列。

此专题中数列是重点,同时也要注意数列与其他知识交汇问题的训练。

例如,主要是数列与方程函数不等式的结合,概率向量解析几何为点缀。

数列与不等式的综合问题是近年来的热门问题,而数列与不等式相关的大多是数列的前n项和问题。

(预计2课时)(4)立体几何。

此专题注重几何体的三视图空间点线面的关系,用空间向量解决点线面的问题是重点(理科)。

(预计3课时)(5)解析几何。

此专题中解析几何是重点,以基本性质基本运算为目标。

直线与圆锥曲线的位置关系轨迹方程的探求以及最值范围定点定值对称问题是命题的主旋律。

高三二轮专题复习学案(全套)

高三二轮专题复习学案(全套)

专题一物质的组成、性质和分类【考纲展示】1.了解分子、原子、离子等概念的定义。

了解原子团的定义。

2.理解物理变化和化学变化的区别和联系。

3.了解化学的主要特点是在原子、分子水平上认识物质。

了解化学可以识别、改变和创造分子。

4.了解物质的组成、结构和性质的关系。

5.理解混合物与纯净物、单质与化合物、金属与非金属的概念。

6.理解酸、碱、盐、氧化物的概念及其相互联系。

7.了解电解质的概念。

了解强电解质和弱电解质的概念。

8.了解浊液、溶液和胶体都是常见的分散系。

(1)溶液的含义,了解溶解度、饱和溶液的概念。

(2)了解溶液的组成。

理解溶液中溶质的质量分数的概念,并能进行相关计算。

(3)了解胶体的性质(如丁达尔效应、聚沉及电泳等),并能利用胶体的性质解释一些与胶体有关的简单计算。

(不要求识记胶体粒子的带电情况)。

【知识回扣】知识网络金属非金属(包括稀有气体)单质氧化物酸性氧化物碱性氧化物两性氧化物不成盐氧化物根据酸根分为含氧酸、无氧酸根据电离出H +数目分为一元酸、二元酸、多元酸根据电离程度分为强酸、弱酸根据溶解性可分为可溶性碱、微溶性碱和难溶性碱根据电离程度可分为强碱、弱碱根据电离出OH —数目可分为一元碱、二元碱等酸碱根据阳离子可分为钠盐、钾盐等根据酸根分为硫酸盐、硝酸盐等根据组成可分为正盐、酸式盐、复盐等根据成盐的酸碱性可分为强酸弱碱盐、弱酸强碱盐等盐化合物无机物有机物烷烃烯烃炔烃芳香烃醇、酚醛、酮羧酸、酯卤代烃烃烃的衍生 物物质纯净物混合物要点扫描一、电解质和非电解质概念理解的易错点1.电解质和非电解质都是化合物,单质既不是电解质也不是非电解质。

2.有些电解质只能在水溶液里导电,如共价型电解质HCl 、H 2SO 4等,因为液态HCl 、H 2SO 4不导电;离子型电解质,如NaHCO 3、CaCO 3、BaCO 3等,因为这些物质不存在熔融态。

3.判断一种化合物是电解质还是非电解质,要看起导电作用的离子是否是由该物质自身电离出来的。

高三数学教案

高三数学教案

高三数学教案高三数学教案(精选15篇)作为一位兢兢业业的人民教师,就有可能用到教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。

那么问题来了,教案应该怎么写?下面是小编帮大家整理的高三数学教案,仅供参考,欢迎大家阅读。

高三数学教案1学习目标明确排列与组合的联系与区别,能判断一个问题是排列问题还是组合问题;能运用所学的排列组合知识,正确地解决的实际问题、学习过程一、学前准备复习:1、(课本P28A13)填空:(1)有三张参观卷,要在5人中确定3人去参观,不同方法的种数是;(2)要从5件不同的礼物中选出3件分送3为同学,不同方法的种数是;(3)5名工人要在3天中各自选择1天休息,不同方法的种数是;(4)集合A有个元素,集合B有个元素,从两个集合中各取1个元素,不同方法的种数是;二、新课导学探究新知(复习教材P14~P25,找出疑惑之处)问题1:判断下列问题哪个是排列问题,哪个是组合问题:(1)从4个风景点中选出2个安排游览,有多少种不同的方法?(2)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法?应用示例例1、从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?例2、7位同学站成一排,分别求出符合下列要求的不同排法的种数、(1)甲站在中间;(2)甲、乙必须相邻;(3)甲在乙的左边(但不一定相邻);(4)甲、乙必须相邻,且丙不能站在排头和排尾;(5)甲、乙、丙相邻;(6)甲、乙不相邻;(7)甲、乙、丙两两不相邻。

反馈练习1、(课本P40A4)某学生邀请10位同学中的6位参加一项活动,其中两位同学要么都请,要么都不请,共有多少种邀请方法?2、5男5女排成一排,按下列要求各有多少种排法:(1)男女相间;(2)女生按指定顺序排列3、马路上有12盏灯,为了节约用电,可以熄灭其中3盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,那么熄灯方法共有______种、当堂检测1、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目、如果将这两个节目插入原节目单中,那么不同插法的种数为()A、42B、30C、20D、122、(课本P40A7)书架上有4本不同的数学书,5本不同的物理书,3本不同的化学书,全部排在同一层,如果不使同类的书分开,一共有多少种排法?课后作业1、(课本P41B2)用数字0,1,2,3,4,5组成没有重复数字的数,问:(1)能够组成多少个六位奇数?(2)能够组成多少个大于201345的正整数?2、(课本P41B4)某种产品的加工需要经过5道工序,问:(1)如果其中某一工序不能放在最后,有多少种排列加工顺序的方法?(2)如果其中两道工序既不能放在最前,也不能放在最后,有多少种排列加工顺序的方法?高三数学教案2【教学目标】:(1)知识目标:通过实例,了解简单的逻辑联结词“且”、“或”的含义;(2)过程与方法目标:了解含有逻辑联结词“且”、“或”复合命题的构成形式,以及会对新命题作出真假的判断;(3)情感与能力目标:在知识学习的基础上,培养学生简单推理的技能。

高中数学高考二轮复习数形结合思想教案

高中数学高考二轮复习数形结合思想教案

第二讲数形结合思想对应学生用书P1291数形结合的含义(1)数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法.数形结合思想通过“以形助数,以数辅形”,使复杂问题简单化,抽象问题具体化,能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合.(2)数形结合包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数形之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.2数形结合的途径(1)通过坐标系“形题数解”借助于直角坐标系、复平面,可以将几何问题代数化.这一方法在解析几何中体现得相当充分(在高考中主要也是以解析几何作为知识载体来考查的).值得强调的是,“形题数解”时,通过辅助角引入三角函数也是常常运用的技巧(这是因为三角公式的使用,可以大大缩短代数推理).实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义.如等式(x -2)2+(y -1)2=4,表示坐标平面内以(2,1)为圆心,2为半径的圆.(2)通过转化构造“数题形解”许多代数结构都有着相对应的几何意义,据此,可以将数与形进行巧妙地转化.例如,将a (a >0)与距离互化;将a 2与面积互化,将a 2+b 2+ab =a 2+b 2-2|a ||b |cos θ(θ=60°或θ=120°)与余弦定理沟通;将a ≥b ≥c >0且b +c >a 中的a 、b 、c 与三角形的三边沟通;将有序实数对(或复数)和点沟通;将二元一次方程与直线、将二元二次方程与相应的圆锥曲线对应等等.这种代数结构向几何结构的转化常常表现为构造一个图形(平面的或立体的).另外,函数的图象也是实现数形转化的有效工具之一,正是基于此,函数思想和数形结合思想经常相互渗透,演绎出解题捷径.例1 已知函数f (x )=sin ⎝ ⎭⎪⎫2ωx +π3的相邻两条对称轴之间的距离为π4,将函数f (x )的图象向右平移π8个单位后,再将所有点的横坐标伸长为原来的2倍,得到g (x )的图象,若g (x )+k =0在x ∈⎣⎢⎡⎦⎥⎤0,π2有且只有一个实数根,则k 的取值范围是( )A.k ≤12B .-1≤k <-12 C.-12<k ≤12 D .-12<k ≤12或k =-1解析 因为f (x )相邻两条对称轴之间的距离为π4,结合三角函数的图象可知T 2=π4.又T =2π2ω=πω=π2,所以ω=2,f (x )=sin ⎝ ⎛⎭⎪⎫4x +π3. 将f (x )的图象向右平移π8个单位得到f (x )=sin ⎣⎢⎡⎦⎥⎤4⎝ ⎛⎭⎪⎫x -π8+π3=sin ⎝ ⎛⎭⎪⎫4x -π6,再将所有点的横坐标伸长为原来的2倍得到g (x )=sin ⎝ ⎛⎭⎪⎫2x -π6. 所以方程为sin ⎝ ⎛⎭⎪⎫2x -π6+k =0. 令2x -π6=t ,因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以-π6≤t ≤5π6. 若g (x )+k =0在x ∈⎣⎢⎡⎦⎥⎤0,π2有且只有一个实数根, 即g (t )=sin t 与y =-k 在⎣⎢⎡⎦⎥⎤-π6,5π6有且只有一个交点. 如图所示,由正弦函数的图象可知-12≤-k <12或-k =1,即-12<k ≤12或k =-1.利用数形结合求方程解应注意两点(1)讨论方程的解(或函数的零点)可构造两个函数,使问题转化为讨论两曲线的交点问题,但用此法讨论方程的解一定要注意图象的准确性、全面性,否则会得到错解.(2)正确作出两个函数的图象是解决此类问题的关键,数形结合应以快和准为原则而采用,不要刻意去数形结合.模拟演练1 已知函数f (x )满足f (x )+1=1f (x +1),当x ∈[0,1]时,f (x )=x ,若在区间(-1,1]上方程f (x )-mx -m =0有两个不同的实根,则实数m 的取值范围是( )A.⎣⎢⎡⎭⎪⎫0,12 B.⎣⎢⎡⎭⎪⎫12,+∞ C.⎣⎢⎡⎭⎪⎫0,13 D.⎝ ⎛⎦⎥⎤0,12 答案 D解析方程f (x )-mx -m =0有两个不同的实根等价于方程f (x )=m (x +1)有两个不同的实根,等价于直线y =m (x +1)与函数f (x )的图象有两个不同的交点.因为当x ∈(-1,0)时,x +1∈(0,1),所以f (x )+1=1f (x +1)=1x +1,所以f (x )=1x +1-1,所以f (x )=⎩⎨⎧ x ,x ∈[0,1]1x +1-1,x ∈(-1,0).在同一平面直角坐标系内作出直线y =m (x+1)与函数f (x ),x ∈(-1,1]的图象,由图象可知,当直线y =m (x +1)与函数f (x )的图象在区间(-1,1]上有两个不同的公共点时,实数m 的取值范围为⎝ ⎛⎦⎥⎤0,12.例2 (1)使log 2(-x )<x +1成立的x 的取值范围是________.(2)若不等式|x -2a |≥12x +a -1对x ∈R 恒成立,则a 的取值范围是________.。

备战2024高考数学二轮复习讲义第二讲-转化思想在解三角形中的应用

备战2024高考数学二轮复习讲义第二讲-转化思想在解三角形中的应用

第2讲转化思想在解三角形中的应用转化思想是高中生必备的灵活性思维方式,也是解决数学问题的有效途径之一,其要点在于将陌生的问题情形转化为熟悉的情形,将复杂、抽象的数学问题简单化、直观化,或从不同角度切入以分析问题,逐步探索出解决问题的有效方法。

解三角形作为高中数学教学的重要内容之一,对于学生数学思维品质有着较高要求,需要学生运用三角形相关知识,结合已有条件求出三角形的三个边或三个角,其中便涉及到对转化思想的运用,例如将题干内的抽象语言转化为直观的图形、“爪型”问题的相关求解、边角互化的应用及三角形内角转化在解三角形中都有广泛的重要应用,而本文会重点就转化思想在解三角形中的几类应用展开详细讲解。

【应用一】转化思想在解三角形边角互化中的应用形如我们在学习解三角形时,会学习正弦定理及其变化的相关应用,对于基础型的“对边对角”类型,我们可以利用正弦定理直接求解,但有时也会遇到形如“cos cos sin b C c B a A +=、cos sin 0a C C b c --=、222sin sin sin sin sin A C A C B ++=、()()2sin sin sin sin sin A B A B C +-=”等类型的等式来求对应角的问题,那么此时我们该如何求解呢?我们不妨重新学习一下正弦定理,基本公式为R Cc B b A a 2sin sin sin ===(其中R 为ABC ∆外接圆的半径),可变形为①CR c B R b A R a sin 2,sin 2,sin 2===②,2sin ,2sin ,2sin Rc C R b B R a A ===③CB A c b a sin :sin :sin ::=其实上面3个变形已经解释了边角互化的本质,即R 2能否被抵消掉,能同时被抵消则可以实现边角互化。

我们在做题过程中遇见“边是一次”时,通常边化角;遇见“正弦乘积是二次或边与正弦乘积是二次”时,通常角化边后用余弦定理求解;例如下面这两道例题:本题是模考或高考中解三角形较常规的题型,解题关键突破口在于利用正弦定理进行边角互化求角,通过刚才分析,我们发现这是边为一次的齐次类型,我们可以边化角,即得到sin cos sin sin sin A B A B B C =+,此时我们发现有三个角,于是我们可以利用三角形内角和为︒180,进行角度转化,那么要替换哪个角呢?通过观察我们发现,B A 、角的正余弦值是乘积关系,于是我们可以替换C 角,即()sin cos sin sin sin A B A B B A B =++1cos A A =+,利用辅助角公式化简即可求值。

2012年高考数学 冲刺60天解题策略 选择填空题解题策略

2012年高考数学 冲刺60天解题策略  选择填空题解题策略

选择填空题解题策略高考数学试题中,选择题注重多个知识点的小型综合,渗透各种思想方法,体现以考查“三基”为重点的导向,题量一般为10到12个,能否在选择题上获取高分,对高考数学成绩影响重大.解答选择题的基本要求是四个字——准确、迅速.选择题主要考查基础知识的理解、接本技能的熟练、基本运算的准确、基本方法的运用、考虑问题的严谨、解题速度的快捷等方面.解答选择题的基本策略是:要充分利用题设和选项两方面提供的信息作出判断.一般说来,能定性判断的,就不再使用复杂的定量计算;能使用特殊值判断的,就不必采用常规解法;对于明显可以否定的选项应及早排除,以缩小选择的范围;对于具有多种解题思路的,宜选最简单解法等.解题时应仔细审题、深入分析、正确推理、谨防疏漏;初选后认真检验,确保准确.解数学选择题的常用方法,主要分为直接法和间接法两大类.直接法是解答选择题最基本、最常用的方法;但高考的题量较大,如果所有选择题都用直接法解答,不但时间不允许,甚至有些题目根本无法解答.因此,我们还要掌握一些特殊的解答选择题的方法.填空题是将一个数学真命题,写成其中缺少一些语句的不完整形式,要求学生在指定空位上将缺少的语句填写清楚、准确. 它是一个不完整的陈述句形式,填写的可以是一个词语、数字、符号、数学语句等. 填空题大多能在课本中找到原型和背景,故可以化归为我们熟知的题目或基本题型. 填空题不需过程,不设中间分值,更易失分,因而在解答过程中应力求准确无误.根据填空时所填写的内容形式,可以将填空题分成两种类型:一是定量型,要求考生填写数值、数集或数量关系,如:方程的解、不等式解集、函数的定义域、值域、最大值或最小值、线段长度、角度大小等等. 由于填空题和选择题相比,缺少选择的信息,所以高考题多数是以定量型问题出现.二是定性型,要求填写的是具有某种性质的对象或者填写给定数学对象的某种性质,如:给定二次曲线的焦点坐标、离心率等等. 近几年出现了定性型的具有多重选择性的填空题.填空题缺少选择的信息,故解答题的求解思路可以原封不动地移植到填空题上. 但填空题既不用说明理由,又无需书写过程,因而解选择题的有关策略、方法有时也适合于填空题.填空题虽题小,但跨度大,覆盖面广,形式灵活,可以有目的、和谐地结合一些问题,突出训练学生准确、严谨、全面、灵活地运用知识的能力和基本运算能力,突出以图助算、列表分析、精算与估算相结合等计算能力. 想要又快又准地答好填空题,除直接推理计算外,还要讲究一些解题策略,尽量避开常规解法.解答填空题时,由于不反映过程,只要求结果,故对正确性的要求比解答题更高、更严格. 《考试说明》中对解答填空题提出的基本要求是“正确、合理、迅速”. 为此在解填空题时要做到:快——运算要快,力戒小题大作;稳——变形要稳,不可操之过急;全——答案要全,力避残缺不齐;活——解题要活,不要生搬硬套;细——审题要细,不能粗心大意.第一节选择题的解题策略(1)【解法一】直接法:直接从题设条件出发,运用有关概念、性质、定理、法则和公式等知识,通过严密的推理和准确的运算,从而得出正确的结论,然后对照题目所给出选项“对号入座”,作出相应的选择. 涉及概念、性质的辨析或运算较简单的题目常用直接法.例1 双曲线方程为22-=,则它的右焦点坐标为()21x yA .0)2B.0)2C. 0)2D. 0)点拨:此题是有关圆锥曲线的基础题,将双曲线方程化为标准形式,再根据,,a b c 的关系求出c ,继而求出右焦点的坐标.解:22213122c a b =+=+=,所以右焦点坐标为(0)2,答案选C.易错点:(1)忽视双曲线标准方程的形式,错误认为22b =;(2)混淆椭圆和双曲线标准方程中,,a b c 的关系,在双曲线标准方程中222c a b =+.例 2阅读右图所示的程序框图,运行相应的程序,输出的i 值等于( )A .2 B.3 C.4 D.5点拨:此题是程序框图与数列求和的简单综合题.解:由程序框图可知,该框图的功能是输出使和123122233211iS i =⋅+⋅+⋅++⋅> 时的i 的值加1,因为1212221011⋅+⋅=<,12312223311⋅+⋅+⋅>,所以当11S >时,计算到3i =故输出的i 是4,答案选C.易错点:没有注意到1i i =+的位置,错解3i =.实际上 i 使得11S >后加1再 输出,所以输出的i 是4.变式与引申: 根据所示的程序框图(其中[]x 表示不大于x 的最大整数),输出r =( ).A .73B.74C.2D.32例3正方体ABCD -1111A B C D 中,1B B 与平面1AC D 所成角的余弦值为( )A 33C.233点拨:此题考查立体几何线面角的求解.通过平行直线与同一平面所成角相等的性质及sin h lθ=转化后,只需求点到面的距离.解:因为1B B ∥1D D ,所以1B B 与平面1AC D 所成角和1D D 与平面1AC D 所 成角相等,设DO ⊥平面1AC D ,由等体积法得11D AC D DAC DV V --=,即111133AC D AC D S D O S D D ∆∆⋅=⋅.设1D D =a ,则122211111sin 60),22222AC D AC D S AC AD S AC C D a =⋅=⨯⨯=⋅=,.所以131,3AC D AC D S D D D O a S ⋅===记1D D 与平面1AC D 所成角为θ,则1sin 3D O D D θ==,所以cos 3θ=,故答案选D.易错点:考虑直接找1B B 与平面1AC D 所成角,没有注意到角的转化,导致思路受阻. 点评:直接法是解答选择题最常用的基本方法.直接法适用的范围很广,只要运算正确必能得出正确的答案.平时练习中应不断提高直接法解选择题的能力.准确把握题目的特点,用简便的方法巧解选择题,是建立在扎实掌握“三基”的基础上,否则一味求快则会快中出错.【解法二】 特例法:用特殊值代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确的判断.常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等. 例4:在平面直角坐标系xoy 中,已知△ABC 的顶点A(-4,0) 和C(4,0),且顶点B 在椭圆221259x y +=上,则sin sin sin A C B +=( )A.54B. 35C.1D.45点拨:此题是椭圆性质与三角形的简单综合题,可根据性质直接求解,但正弦定理的使用不易想到,可根据性质用取特殊值的方法求解.解:根据B 在椭圆221259x y +=上,令B 在短轴顶点处,即可得答案选A.例5已知函数()f x =lg ,01016,102x x x x ⎧<≤⎪⎨-+>⎪⎩ 若,,a b c 均不相等,且()()()f a f b f c ==,则abc 的取值范围是 ( )A .(1,10) B.(5,6) C.(10,12) D.(20,24)点拨:此题是函数综合题,涉及分段函数,对数函数,函数图像变换,可结合图像,利用方程与函数的思想直接求解,但变量多,关系复杂,直接求解较繁,采用特例法却可以很快得出答案.解:不妨设a b c <<,取特例,如取1()()()2f a f b f c ===,则易得112210,10,11a b c -===,从而11abc =,故答案选C .另解:不妨设a b c <<,则由()()1f a f b ab =⇒=,再根据图像易得1012c <<.实际上,,a b c 中较小的两个数互为倒数.例6记实数12,,x x …n x 中的最大数为12m ax{,,}n x x x ⋅⋅⋅,最小数为12min{,,}n x x x ⋅⋅⋅.已知ABC ∆的三边边长为a 、b 、c (a b c ≤≤),定义它的倾斜度为m ax{,,}m in{,,}a b c a b ct b c a b c a=⋅,则“1t =”是“ABC ∆为等边三角形”的( )A . 充分布不必要的条件 B.必要而不充分的条件C. 充要条件D.既不充分也不必要的条件点拨:此题引入新定义,需根据新信息进行解题,必要性容易判断. 解:若△ABC 为等边三角形时、即a b c ==,则m a x {,,}1m i n {,,}a b ca b c b c ab c a==则t=1;若△ABC 为等腰三角形,如2,2,3a b c ===时,则32m ax ,,,m in ,,23a b c a b c b c a b c a ⎧⎫⎧⎫==⎨⎨⎬⎪⎭⎩⎭⎩,此时t=1仍成立但△ABC 不为等边三角形, 所以答案选B.点评:当正确的选择对象在题设条件都成立的情况下,用特殊值(取的越简单越好)进行探求,从而清晰、快捷地得到正确的答案,即通过对特殊情况的研究来判断一般规律,是解答本类选择题的最佳策略. 【解法三】 排除法:充分运用选择题中单选的特征(即有且只有一个正确选项),通过分析、推理、计算、判断,逐一排除,最终达到目的.例7 下列函数中,周期为π,且在[,]42ππ上为减函数的是( )A .sin(2)2y x π=+ B.cos(2)2y x π=+C.sin()2y x π=+D.cos()2y x π=+点拨:此题考查三角函数的周期和单调性. 解:C 、D 中函数周期为2π,所以错误.当[,]42x ππ∈时,32,22x πππ⎡⎤+∈⎢⎥⎣⎦,函数sin(2)2y x π=+为减函数,而函数cos(2)2y x π=+为增函数,所以答案选A.例8函数22x y x =-的图像大致是( )点拨:此题考查函数图像,需要结合函数特点进行分析,考虑观察零点. 解:因为当x =2或4时,220xx -=,所以排除B 、C ;当x =-2时,22xx -=14<04-,故排除D ,所以答案选A.易错点:易利用导数分析单调性不清导致错误.例9 设函数()212log 0log ()0xx f x x x >⎧⎪=⎨-<⎪⎩ , 若()()f a f a >-, 则实数a 的取值范围是( )A . (1,0)(0,1)-⋃ B. (,1)(1,)-∞-⋃+∞ C. (1,0)(1,)-⋃+∞ D.(,1)(0,1)-∞-⋃点拨:此题是分段函数,对数函数,解不等式的综合题,需要结合函数单调性,对数运算性质进行分析,分类讨论,解对数不等式,运算较复杂,运用排除法较易得出答案.解:取2a =验证满足题意,排除A 、D. 取2a =-验证不满足题意, 排除B.所以答案选C. 易错点:直接求解利用函数解析时,若忽略自变量应符合相应的范围,易解错点评:排除法适用于定性型或不易直接求解的选择题.当题目中的条件多于一个时,先根据某些条件在选项中找出明显与之矛盾的,予以否定,再根据另一些条件在缩小的选项范围内找出矛盾,这样逐步排除,直到得出正确的选择.它与特例法、图解法等结合使用是解选择题, 尤其是选项为范围的选择题的常用方法.【解法四】 验证法:将选项中给出的答案代入题干逐一检验,从而确定正确答案.例10 将函数()sin()f x x ωϕ=+的图像向左平移2π个单位.若所得图像与原图像重合,则ω的值不可能...等于( ) A .4 B.6 C.8 D.12点拨:此题考查三角函数图像变换及诱导公式,ω的值有很多可能,用验证较易得出答案. 解:逐项代入验证即可得答案选B.实际上,函数()sin()f x x ωϕ=+的图像向左平移2π个单位所得函数为()sin[()]2f x x πωϕ=++=sin[()]2x πωϕω++⋅,此函数图像与原函数图像重合,即sin[()]2x πωϕω++⋅sin()x ωϕ=+,于是ω为4的倍数.易错点:()sin()f x x ωϕ=+的图像向左平移2π个单位所得函数解析式,应将原解析式中的x 变为2x π+,图像左右平移或x 轴的伸缩变换均只对x 产生影响,其中平移符合左加右减原则,这一点需要对图像变换有深刻的理解.例11设数列{}n a 中, 32,211+==+n n a a a , 则通项n a 是( )A .n 35-B .1231-⋅-n C .235n -D .3251-⋅-n点拨:此题考查数列的通项公式,直接求n a ,不好求,宜用验证法. 解:把1a 代入递推公式得:27a =,再把各项逐一代入验证可知,答案选D. 易错点:利用递推公式直接推导,运算量大,不容易求解.例12 下列双曲线中离心率为2的是( )A .22124xy-= B.22142xy-= C .22146xy-= D.221410xy-=点拨:此题考查双曲线的性质,没有确定形式,只能根据选项验证得出答案. 解:依据双曲线22221x y ab-=的离心率c e a=,逐一验证可知选B.易错点:双曲线中222c a b =+,与椭圆中222c a b =-混淆,错选D.变式与引申:下列曲线中离心率为2的是( )A .22124xy+= B.22142xy-= C .22146xy-= D.221410xy-=答案:选B 点评:验证法适用于题设复杂,但结论简单的选择题. 若能根据题意确定代入顺序则能较大提高解题速度.习题 7-1 1. 已知:p 直线1:10l x y --=与直线2:20l x ay +-=平行,:1q a =-,则p 是q 的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件2.某人要制作一个三角形,要求它的三条高的长度分别为111,,13115,则此人能( )A .不能作出这样的三角形 B.作出一个锐角三角形 C.作出一个直角三角形 D.作出一个钝角三角形3.设{}n a 是任意等比数列,它的前n 项、前2n 项、与前3n 项和分别为,,X Y Z ,则下列等式中恒成立的是( )A .2X Z Y += B.()()Y Y X Z Z X -=- C.2Y XZ =D.()()Y Y X X Z X -=-4.定义在R 上的奇函数()f x 为减函数,设0a b +≤,给出下列不等式:①()()0f a f a ⋅-≤;②()()0f b f b ⋅-≥;③()()()()f a f b f a f b +≤-+-④()()()()f a f b f a f b +≥-+-,其中正确的不等序号是( )A .①②④ B.①④ C.②③ D.①③5.如图,在棱柱的侧棱1A A 和1B B 上各有一动点P Q、满足1A P B Q =,过三点P Q C、、的截面把棱柱分成两部分,则其体积之比为( )A .3:1 B.2:1 C.4:16.已知圆C 与直线0x y -=及40x y --=都相切,圆心在直线0x y +=上,则圆C 的方程为( )A .22(1)(1)2x y ++-= B. 22(1)(1)2x y -++= C. 22(1)(1)2x y -+-= D. 22(1)(1)2x y +++= 7. 要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=-⎪3⎝⎭的图象( )A .向右平移π6个单位B .向右平移π3个单位C .向左平移π3个单位D .向左平移π6个单位【答案】 习题 7-13. D.提示:法一:(直接法)设等比数列公比为q 则 2,n n n Y X X q Z X X q X q =+⋅=+⋅+⋅2,nnnnY X X qX X Z XX q X qX X qY-⋅===-⋅+⋅+⋅即()()Y Y X X Z X -=-.法二:(特例法)取等比数列1,2,4,令1n =得1,3,7X Y Z ===代入验算、只有选项D 满足. 4. B .提示:法一:(直接法)根据()f x 为奇函数知()=(),()=()f a f a f b f b ----, 由0a b +≤知a b ≤-,b a ≤-,再根据()f x 为减函数可得()(),()()f a f b f b f a ≤-≤-,故①④正确.法二:(特例法)取()f x x =-,逐项检验可得. 5.B .。

高考总复习二轮数学精品课件 专题6 解析几何 第2讲 圆锥曲线的定义、方程与性质

高考总复习二轮数学精品课件 专题6 解析几何 第2讲 圆锥曲线的定义、方程与性质
(1)已知双曲线 C: 2 − =1(a>0)的离心率为 2,左、右焦点分别为 F1,F2,点 A
3
a
在双曲线 C 上,若△AF1F2 的周长为 10,则△AF1F2 的面积为(
)
A. 15
B.2 15
C.15
D.30
(2)已知|z+ 5i|+|z- 5i|=6,则复数 z 在复平面内所对应的点 P(x,y)的轨迹方程


是椭圆的右焦点,若 AF⊥BF,则 a=
答案 3+ 3
.
解析 设椭圆C的左焦点为F1,如图,连接AF1,BF1,因为|OA|=|OB|,|OF1|=|OF|,
所以四边形AF1BF为平行四边形.
又 AF⊥BF,所以四边形 AF1BF
π
为矩形,所以∠F1AF= ,则
2
|OF1|=|OF|=|OA|=2 3.

.
(3)已知O为坐标原点,抛物线C:y2=2px(p>0)的焦点为F,P为C上一点,PF与x
Hale Waihona Puke 轴垂直,Q为x轴上一点,且PQ⊥OP.若|FQ|=6,则C的准线方程

答案 (1)A
.
2
(2)
9
2
+ =1
4
3
(3)x=2
解析 (1)由题意得

e=
所以双曲线方程为
=
2
1 + 2
=
3
1 + 2=2,所以 a2=1.
2
即 x±2y=0,故 B 正确;
2 5
5
e1·
e2= 5 × 2 =1,所以 C1 与 C2 的离心率互为倒数,故 C
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第19讲
函数与方程思想和数形结合思想
第19讲
函数与方程思想和数形结合思想
第19讲 │ 主干知识整合
主干知识整合
1.函数与方程思想 (1)函数思想的实质是抛开所研究对象的非数学特征,用联系和 变化的观点提取数学对象,抽象其数学特征,建立各变量之间固有 的函数关系,通过函数形式,利用函数的有关性质,使问题得到解 决. (2)方程思想的实质就是将所求的量设成未知数,用它表示问题 中的其他各量,根据题中隐含的等量关系,列方程(组),通过解方 程(组)或对方程(组)进行研究,以求得问题的解决. (3)函数与方程思想在一定的条件下是可以相互转化的,是相辅 相成的,函数思想重在对问题进行动态的研究,方程思想则是在动 中求静,研究运动中的等量关系.
第19讲 │ 要点热点探究
要点热点探究 ► 探究点一 列方程(组)解题
例 1 (1)公差不为零的等差数列{an}的前 n 项和为 Sn,若 a4 是 a3 与 a7 的等比中项,S8=32,则 S10 等于( ) A.18 B.24 C.60 D.90 (2)过抛物线 y2=2px(p>0)的焦点 F 作倾斜角为 45° 的直线交 抛物线于 A,B 两点,若线段 AB 的长为 8,则 p=________.
第19讲 │ 要点热点探究
► 探究点四 数量分析解决图形问题(以数助形)
例 4 (1)若实数 a, c, b, 满足对任意实数 x, 有 x+2y-3≤ax y +by+c≤x+2y+3,则 a+2b-3c 的最小值为( A.-6 C.-2 B.-4 D.0 )
第19讲 │ 要点热点探究
(2)“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行 的乌龟, 骄傲起来, 睡了一觉, 当它醒来时, 发现乌龟快到达终点了, 于是急忙追赶,但为时已晚,乌龟还是先到达了终点„„,用 S1, S2 分别表示乌龟和兔子所行的路程,t 为时间,则下图与故事情节相 吻合的是( )
图 19-1
第19讲 │ 要点热点探究
(1)B
(2)B 【解析】 (1)【解析】 只有在 a=1,b=
2,c 在[-3,3]之间,才能对任意的 x,y 都成立,此时就是 求 1+4-3c=5-3c 的最小值,为-4,故选 B. (2)根据时间和路程的关系以及是乌龟首先到达目的 地,答案为 B.
第19讲 │ 规律技巧提炼
(2)点 P 到抛物线焦点距离等于点 P 到抛物线准线距离,如图, PF+PQ=PS+PQ,故最小值在 S,P,Q 三点共线时取得,此时 1 2 P,Q 的纵坐标都是-1,代入 y =4x,得 x= ,故点 P 坐标为 4 1 ,-1,正确选项为 A. 4
第19讲 │ 要点热点探究
专题七 │ 考情分析预测
(2)与数形结合思想有关的常见题型: ①集合间关系利用韦恩图求解; ②以数学公式、数学概念的几何意义、函数图象为载体的综合题, 如截距、斜率、距离、导数的几何意义,借助图象求解. (3)与分类与整合思想有关的常见题型: ①含有参数的函数性质问题、交点问题; ②对由数学概念引起的分类讨论问题,如对指数函数、对数函数的 底数的讨论,对一元二次不等式的二次项系数的讨论; ③由公式定理引起的讨论问题,如绝对值、等比数列前 n 项和的计 算问题. (4)与转化与化归思想有关的常见题型: ①未知转化为已知(复杂转化为简单); ②函数与方程的相互转化;
m=cosα- 1 sinα, 3 解得 n= 2 sinα. 3
π 2 3 1 2 3 π α+ ≤ 故 m+n=cosα+ sinα= sin , 当且仅当 α+ 3 3 3 3 3 π π π = ,即 α= (满足 0≤α≤ )时,取最大值. 2 6 3
第19讲 │ 要点热点探究
第19讲 │ 要点热点探究
► 探究点三 以形助数探索解题思路
π 1 sinx-4 = x 4
例 3 (1)方程 A.2 C.4
的实数解的个数是(
)
B.3 D.以上均不对
(2)已知点 P 在抛物线 y2=4x 上,那么点 P 到ห้องสมุดไป่ตู้ Q(2,-1) 的距离与点 P 到抛物线焦点距离之和取得最小值时,点 P 的坐 标为( )
专题七 │ 考情分析预测
(2)数形结合的实质是把抽象的数学语言和直观的图象语言结合起来, 即将代数问题几何化,几何问题代数化.在运用数形结合思想分析问题时, 要注意三点:①理解一些概念与运算法则的几何意义以及曲线的代数特征, 对题目中的条件和结论既分析其几何意义,又分析其代数意义;②恰当设 参、合理用参,建立关系,由形思数,以数想形,做好数形转化;③确定 参数的取值范围,参数的范围决定图形的范围. (3)分类与整合思想实质上是“化整为零,各个击破,再积零为整”的 数学策略.利用好分类与整合思想可以优化解题思路,降低问题难度.复 习中要养成分类与整合的习惯,常见的分类情形有:概念分类型,运算需 要型,参数变化型,图形变动型. (4)转化与化归思想是高中数学学习中最基本、最重要的思想方法,它 无处不在.比如:解不等式时,将分式不等式转化为整式不等式;处理立 体几何问题时,将空间的问题转化到一个平面上解决;在解析几何中,通 过建立坐标系将几何问题划归为代数问题;复数问题化归为实数问题等.
第19讲 │ 要点热点探究
→ → (2)建立平面直角坐标系,设向量OA=(2,0),OB=(1, 3), → =(2cosα,2sinα),0≤α≤π.由OC=mOA+nOB, → → → OC 3 得(2cosα,2sinα)=(2m+n, 3n), 2cosα=2m+n, 即 2sinα= 3n,
第19讲 │ 规律技巧提炼
3.在数学中,函数的图象、方程的曲线、不等式所表示 的平面区域、向量的几何意义、复数的几何意义等都涉及以 形助数的思想,当试题中涉及这些问题的数量关系时,我们 可以通过图形分析这些数量关系,达到解题的目的. 4.有些图形问题,单纯从图形上无法看出问题的结论, 这就要对图形进行数量上的分析,通过对数的分析计算达到 解题的目的.
【分析】 (1)根据数列中的基本量方法,列方程组求数列的首 项和公差;(2)根据弦长公式建立关于 p 的方程.
第19讲 │ 要点热点探究
2 【解析】 (1)由 a4=a3a7 得(a1+3d)2=(a1+2d)(a1+ 56 6d),得 2a1+3d=0.再由 S8=8a1+ d=32 得 2a1+7d=8,则 d=2, 2 90 a1=-3,所以 S10=10a1+ d=60.故选 C. 2 (2)设 A(x1,y1),B(x2,y2),由题意可知过焦点的直线方程为 y=
函数 f(θ)=
1 【解析】
sinθ 的最大值为________. 2+cosθ
sinθ 可以与两点连线的斜率联系起来,它 2+cosθ 实际上是点 P(cosθ, sinθ)与点 A(- 2, 0)连线的斜率, 而点 P(cosθ, sinθ)在单位圆上移动,问题变为:求单位圆上的点与 A(- 2,0) 连线斜率的最大值.如图,显然,当 P 点移动到 B 点(此时,AB 与 |OB| 圆相切)时,AP 的斜率最大,最大值为 tan∠BAO= =1. |AB|
1 ,1 B. 4 1 ,-1 A. 4
C.(1,2)
D.(1,-2)
第19讲 │ 要点热点探究
(1)B
(2)A
【解析】 (1)分别作出
π y=sinx-4 和
1 y= x 4
的图象如图:
由图象知方程的实数解有 3 个.
第19讲 │ 要点热点探究
专题七
数学思想方法
专题七 │ 知识网络构建
知识网络构建
专题七 │ 考情分析预测
考情分析预测
考向预测 对数学思想和方法的考查是对数学知识在更高层次上的抽象和概 括的考查,考查时必须要与数学知识相结合,高考命题是通过数学知识 的考查,来反映对数学思想方法的理解和掌握程度.四种数学思想方法 是每年高考的必考内容,是高考考查的重点,各种题型都有,难度中等 偏上. (1)与函数和方程思想有关的常见题型有: ①与不等式、方程有关的最值问题; ②建立目标函数,求最值或最优解问题; ③在含有多个变量的问题中,选择合适的自变量构造函数解题; ④实际应用问题,建立函数关系,利用函数性质、导数、不等式性 质等知识解答; ⑤利用函数思想解决数列中的问题
(1)C
(2)2
y =2px, p p2 2 x- ,联立有 消去 y 后,得 x -3px+ =0, p 2 4 y=x-2,
2
∴x1+x2=3p. 又|AB|=x1+x2+p=8,解得 p=2.
第19讲 │ 要点热点探究
△ABC 中,内角 A,B,C 成等差数列,边长 a=8,b=7,求边 c 及△ABC 的面积.
专题七 │ 考情分析预测
③正与反、一般与特殊的转化,即正难则反、特殊化原则; ④空间与平面的相互转化; ⑤常量与变量的转化; ⑥数与形的转化; ⑦相等与不等的相互转化; ⑧实际问题与数学模型的转化. 备考策略 二轮复习时,要有效地掌握以下几个方面: 数学思想与方法是通过数学知识体现的,在复习中,要养成利 用数学思想分析问题、思考问题、解答问题的习惯意识. (1)对于函数与方程思想,在解题中要善于挖掘题目中的隐含 条件, 构造出函数解析式和妙用函数与方程的相互转化的关系是应 用函数与方程思想解题的关键.
x2 y2 若 a>1,则双曲线 2- =1 的离心率 e a a+12 的取值范围是________.
c 2 a 2 e =a =
2
( 2, 5) 【解析】
+a+12 12 =1+1+a , a2
1 1 因为a是减函数,所以当 a>1 时,0<a<1,所以 2<e2<5,即 2<e< 5.
【分析】 根据三内角成等差数列得关于三内角的方程,根 据余弦定理建立三边的方程. 【解答】 由 A,B,C 成等差数列,得 2B=A+C. π 又 A+B+C=π,∴B= . 3 由余弦定理 b2=a2+c2-2accosB 得: π 2 49=64+c -2×8ccos , 3 即 c2-8c+15=0,解得 c=3 或 c=5. 1 π 当 c=3 时,S△ABC= ×8×3×sin =6 3; 2 3 1 π 当 c=5 时,S△ABC= ×8×5×sin =10 3. 2 3
相关文档
最新文档