双重差分模型幻灯片+-+difference+in+differences+models
双向固定效应和双重差分演示课件

–High: RI ($3.46), NY ($2.75); NJ($2.70)
–Average of $1.32 across states
–Average in tobacco producing states: $0.40
–Average in non-tobacco states, $1.44
–Average price per pack is $5.12
• Beer
–Low (WY, $0.02/gallon)
5
6
Federal taxes
• Cigarettes, $1.01/pack • Wine
– $0.21/750ml bottle for 14% alcohol or less – $0.31/750ml bottle for 14 – 21% alcohol
for permanent differences between groups • vt – time fixed effects. Impacts common to all groups but vary by year • εit -- idiosyncratic error
3
Excises taxes on poor health
Taxes now an integral part of antismoking campaigns
• Key component of ‘Master Settlement’
• Beer, $0.02 a can • Liquor, $13.50 per 100 proof gallon (50% alcohol),
or, $2.14/750 ml bottle of 80 proof liquor • Total taxes on cigarettes are such that in NYC,
双重差分模型stata命令

双重差分模型stata命令一、什么是双重差分模型?双重差分模型(Double Difference Model)是一种常用的计量经济学方法,用于研究政策改变对个体或群体行为的影响。
该模型的特点是在研究中引入了时间和处理两个维度的差分,可以通过比较处理组和对照组在政策改变前后的差异,来分析政策改变对结果变量的影响。
双重差分模型的基本假设是平行趋势假设,即在政策改变前,处理组和对照组在趋势上是平行的,没有其他因素导致差异。
该模型适用于有处理组和对照组的面板数据,常用于实证研究、政策评估和计量经济学研究等领域。
二、如何实现双重差分模型?在Stata中,可以使用difference-in-differences命令来估计双重差分模型。
该命令结合了regress和xtreg两个命令,实现了对面板数据的估计。
1. 数据准备首先,需要准备好面板数据,包括观察单位的处理组与对照组的标识变量、时间变量和结果变量。
可以使用import delimited命令导入数据。
import delimited "data.csv", clear2. 生成虚拟变量根据处理组和对照组的标识变量,可以使用egen命令生成虚拟变量。
例如,处理组和对照组的标识变量分别为treatment和control,可以生成两个虚拟变量。
egen treat = group(treatment)egen ctrl = group(control)3. 估计双重差分模型利用difference-in-differences命令可以方便地估计双重差分模型。
difference-in-differences y treat ctrl, time(time) twoway其中,y是结果变量,treat和ctrl是处理组和对照组的虚拟变量,time是时间变量。
在这个命令中,需要指定time选项,以控制时间维度的差分。
twoway选项用于估计两路固定效应模型。
DID双重差分回归 PPT课件

17
What is nice about the model
• Suppose interventions are not random but systematic
– Occur in states with higher or lower average Y – Occur in time periods with different Y’s
11
Y
Yc1 Yt1
Yc2
Yt2
Estimated treatment
True treatment effect
control
treatment
True Treatment Effect
t1
t2
time
12
Basic Econometric Model
• Data varies by
– state (i) – time (t) – Outcome is Yit
• Year effects
– Capture differences over time that are common to all groups
19
Questions to ask?
• What parameter is identified by the quasiexperiment? Is this an economically meaningful parameter?
Difference
After Change Yt2
Yc2
Difference
ΔYt = Yt2-Yt1 ΔYc =Yc2-Yc1 ΔΔY ΔYt – ΔYc
8
Key Assumption
• Control group identifies the time path of outcomes that would have happened in the absence of the treatment
differenceindifference模型 -回复

differenceindifference模型-回复什么是difference-in-differences模型Difference-in-differences(DiD)模型是一种经济学研究中常用的分析策略,它可以帮助研究人员评估某个政策、干预措施或其他影响因素对特定群体或实验组的影响。
该模型的主要思想是比较两个或更多组的变化差异,其中一个组受到干预,而另一个组没有受到干预,从而确定干预的真实效果。
DiD模型的目标是通过对比干预组和对照组的差异来估计干预的处理效果。
其中,干预组是受到政策或干预措施影响的群体,而对照组则是没有受到干预的群体。
通过比较干预前后两个组的差异,我们可以得出干预对因变量的影响。
DiD模型的基本假设是双重差分(double difference),也称为平行趋势假设。
这意味着干预组和对照组在干预之前存在相同的趋势,并且没有其他因素同时发生在这两个组之间。
如果这些假设成立,我们就可以将两个组的差异归因于干预因素。
DiD模型的原理是通过构建一个回归方程来估计干预效果。
一般情况下,回归方程的自变量包括一个虚拟变量来表示是否受到干预,另一个虚拟变量来表示观测时期,以及干预与观测时期的交互项。
通过这种方式,我们可以测量干预对因变量的影响,并校正观测时期的其他因素。
DiD模型的优势在于可以解决常见的内源性问题。
由于研究中无法进行随机实验,导致干预组和对照组之间可能存在观测到的和未观测到的差异。
双重差分模型通过比较组内和组间的变化来消除这些潜在差异,从而提供一种有效的策略来解决内源性问题。
如何运用difference-in-differences模型运用DiD模型需要以下步骤:第一步是明确研究问题和研究目标。
确定需要研究的政策干预或其他因素,并明确该干预对哪个群体或实验组产生影响。
第二步是选择干预组和对照组。
干预组是受到政策或干预措施影响的群体,而对照组则是没有受到干预的群体。
为确保结果的可靠性,对照组应当与干预组具有相似的特征,并且没有被其他因素影响。
最新-双重差分模型幻灯片differenceindifferencesmodelsppt课件-PPT文档资料

26
27
Model
• Yit = duration of spell on WC • Ait = period after benefits hike • Hit = high earnings group (Income>E3)
• Yit = β0 + β1Hit + β2Ait + β3AitHit + β4Xit’ + εit • Diff-in-diff estimate is β3
– Min( pY,C) – P=percent replacement – Y = earnings – C = cap
– e.g., 65% of earnings up to $400/month
22
• Concern:
– Moral hazard. Benefits will discourage return to work
18
What is nice about the model
• Suppose interventions are not random but systematic
– Occur in states with higher or lower average Y – Occur in time periods with different Y’s
15
Yit = β0 + β1Tit + β2Ait + β3TitAit + εit
Before After Change Change
Difference
Group 1 β0+ β1 (Treat)
Group 2 β0 (Control)
双重差分模型的平行趋势假定如何检验? coefplot命令来告诉你(一)

双重差分模型的平行趋势假定如何检验?——coefplot命令来告诉你(一)双重差分模型(difference-in-differences)主要被用于社会学中的政策效果评估。
其原理是基于一个反事实的框架来评估政策发生和不发生这两种情况下被观测因素y的变化。
如果一个外生的政策冲击将样本分为两组—受政策干预的Treat组和未受政策干预的Control组,且在政策冲击前,Treat组和Control组的y没有显著差异,那么我们就可以将Control组在政策发生前后y的变化看作Treat组未受政策冲击时的状况(反事实的结果)。
通过比较Treat组y的变化(D1)以及Control组y的变化(D2),我们就可以得到政策冲击的实际效果(DD=D1-D2)。
具体地,单一冲击时点的双重差分的模型如下:其中,Ti为政策虚拟变量;Ai为时间虚拟变量;Ti ×At为两者的交互项;b3即为我们需要的双重差分估计量。
需要特别指出的是,只有在满足”政策冲击前Treat 组和Control组的y没有显著差异”(即平行性假定)的条件下,得到的双重差分估计量才是无偏的。
下面我们就通过模拟数据来进一步介绍双重差分估计和平行性假定的检验:一、构造数据1.首先我们构造观测值并生成随机数种子clearset more offset obs 1000set seed 1234567892.构造面板数据,将1000个样本,分为两组:实验组(Treat==1),对照组(Treat==0)gen Treat=(uniform()3.根据随机数构造公司-年度数据bysort Treat: gen intgroup=uniform()*90+Treat*90+1bysort group: genyear=2016-_n+14.假定2012年,实验组(Treat==1)公司受到一个外生政策冲击gen Post=(year>=2012)5.模拟被解释变量y,控制变量x1,x2gen y=ln(1+uniform()*100)replace y=y + ln(uniform()*10+rnormal()*3) if Treat==1 & Post==1 gen x1=rnormal()*3gen x2=rnormal()+uniform()我们可以看到,公司id(group)、年份(year)、分组标识(Treat)、冲击发生标识(Post)、被解释变量(y)以及控制变量(x1, x2)已经生成。
双重差分模型幻灯片

unsure how much of the change is due to secular changes
2
Y
Yt1 Ya Yb Yt2
True effect = Yt2-Yt1 Estimated effect = Yb-Ya
6
Difference in Difference
Before Change
Group 1 Yt1 (Treat)
Group 2 Yc1 (Control)
Difference
After Change Yt2
Yc2
Difference
ΔYt = Yt2-Yt1 ΔYc =Yc2-Yc1 ΔΔY ΔYt – ΔYc
• Key concept: can control for the fact that the intervention is more likely in some types of states
5
Three different presentations
• Tabular • Graphical • Regression equation
• Application of two-way fixed effects model
1
Problem set up
• Cross-sectional and time serintervention • Have pre-post data for group receiving
t1
ti
t2
time
3
• Intervention occurs at time period t1 • True effect of law
双重差分方法的常见类型

双重差分方法的常见类型一、双重差分方法的概念与作用双重差分方法(Difference-in-Differences,DID)是一种常用的因果推断方法,主要用于评估政策干预或其他处理的因果效应。
它通过比较处理组和对照组在处理前后的平均结果变化来估计处理效应。
双重差分方法的关键假设是,在没有处理的情况下,处理组和对照组的结果变量的变化趋势是相同的,即平行趋势假设。
二、双重差分方法的常见类型1.并行双重差分法:在这种方法中,处理组和对照组在处理前后的结果变量变化趋势是平行的。
这种方法是最常见的双重差分设计,适用于评估政策干预的因果效应。
2.序列双重差分法:在这种方法中,处理组和对照组在处理后的结果变量变化趋势是平行的,但在处理前可能存在差异。
这种方法适用于评估连续性政策干预的因果效应。
3.交叉双重差分法:在这种方法中,处理组和对照组在处理前后的结果变量变化趋势可能不同,但处理组和对照组之间的差异在处理前后保持不变。
这种方法适用于评估跨部门或跨地区的政策干预效应。
4.重复双重差分法:在这种方法中,处理组和对照组在多个处理周期内的结果变量变化趋势是平行的。
这种方法适用于评估重复性政策干预的因果效应。
三、各类型双重差分法的应用场景与优缺点1.并行双重差分法:应用场景广泛,适用于政策干预、产品推广等。
优点是假设较为简单,易于操作;缺点是对于处理效应的估计可能受到平行趋势假设的限制。
2.序列双重差分法:适用于连续性政策干预的评估,可以较好地处理政策实施过程中的时间效应。
优点是能够较好地捕捉政策实施过程中的细节;缺点是对平行趋势假设的要求较高。
3.交叉双重差分法:适用于跨部门或跨地区的政策干预效应评估,可以较好地处理部门或地区间的差异。
优点是具有较强的适用性;缺点是操作复杂,对数据要求较高。
4.重复双重差分法:适用于重复性政策干预的评估,可以较好地处理政策实施过程中的动态效应。
优点是能够较好地捕捉政策实施过程中的动态变化;缺点是对重复处理周期假设的要求较高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Y Yc1 Treatment effect= (Yt2-Yt1) – (Yc2-Yc1)
Yc2 Yt1
control Yt2 treatment t1 t2 Treatment Effect
time
11
• In contrast, what is key is that the time trends in the absence of the intervention are the same in both groups • If the intervention occurs in an area with a different trend, will under/over state the treatment effect • In this example, suppose intervention occurs in area with faster falling Y
17
• ui is a state effect • vt is a complete set of year (time) effects • Analysis of covariance model • Yit = β0 + β3 TitAit + ui + λt + εit
18
What is nice about the model
3
Y True effect = Yt2-Yt1 Estimated effect = Yb-Ya Yt1 Ya Yb Yt2
t1
ti
t2
time
4
• Intervention occurs at time period t1 • True effect of law
– Ya – Yb
• Only have data at t1 and t2
– If using time series, estimate Yt1 – Yt2
• Solution?
5
Difference in difference models
• Basic two-way fixed effects model
– Cross section and time fixed effects
• Problem:
– given progressive nature of benefits, replaced wages reveal a lot about the workers – Replacement rates higher in higher wage states
23
• • • • •
• Use time series of untreated group to establish what would have occurred in the absence of the intervention • Key concept: can control for the fact that the intervention is more likely in some types of states
Yi = Xiβ + αRi + εi Y (duration) R (replacement rate) Expect α > 0 Expect Cov(Ri, εi)
– Higher wage workers have lower R and higher duration (understate) – Higher wage states have longer duration and longer R (overstate)
2
Problem set up
• Cross-sectional and time series data • One group is ‘treated’ with intervention • Have pre-post data for group receiving intervention • Can examine time-series changes but, unsure how much of the change is due to secular changes
• Yit = β0 + β1Tit + β2Ait + β3TitAit + εit
15
Yit = β0 + β1Tit + β2Ait + β3TitAit + εit
Before Change Group 1 (Treat) Group 2 (Control) Difference β0 + β1 β0 After Change Difference
22
• Concern:
– Moral hazard. Benefits will discourage return to work
• Empirical question: duration/benefits gradient • Previous estimates
– Regress duration (y) on replaced wages (x)
28Biblioteka 29Questions to ask?
20
Meyer et al.
• Workers’ compensation
– State run insurance program – Compensate workers for medical expenses and lost work due to on the job accident
Difference in Difference Models
Bill Evans Spring 2008
1
Difference in difference models
• Maybe the most popular identification strategy in applied work today • Attempts to mimic random assignment with treatment and “comparison” sample • Application of two-way fixed effects model
• Premiums
– Paid by firms – Function of previous claims and wages paid
• Benefits -- % of income w/ cap
21
• Typical benefits schedule
– Min( pY,C) – P=percent replacement – Y = earnings – C = cap – e.g., 65% of earnings up to $400/month
8
Y Treatment effect= (Yt2-Yt1) – (Yc2-Yc1) Yc1 Yt1
Yc2
Yt2
control treatment t1 t2
time
9
Key Assumption
• Control group identifies the time path of outcomes that would have happened in the absence of the treatment • In this example, Y falls by Yc2-Yc1 even without the intervention • Note that underlying ‘levels’ of outcomes are not important (return to this in the regression equation)
– ui and TitAit – λt and TitAit
19
• Group effects
– Capture differences across groups that are constant over time
• Year effects
– Capture differences over time that are common to all groups
6
Three different presentations
• Tabular • Graphical • Regression equation
7
Difference in Difference
Before Change Group 1 (Treat) Group 2 (Control) Difference Yt1 Yc1 After Change Yt2 Yc2 Difference ∆Yt = Yt2-Yt1 ∆Yc =Yc2-Yc1 ∆∆Y ∆Yt – ∆Yc
• Only two periods • Intervention will occur in a group of observations (e.g. states, firms, etc.)
14
• Three key variables
– Tit =1 if obs i belongs in the state that will eventually be treated – Ait =1 in the periods when treatment occurs – TitAit -- interaction term, treatment states after the intervention
• Compare change in duration of spell before and after change for these two groups