顶空固相微萃取-气相色谱-质谱联用
顶空固相微萃取气相色谱-质谱法测定饮用水中的四乙基铅

Science and Technology &Innovation ┃科技与创新2021年第17期·135·文章编号:2095-6835(2021)17-0135-02顶空固相微萃取/气相色谱-质谱法测定饮用水中的四乙基铅程曦(太原供水集团有限公司,山西太原030009)摘要:介绍了采用顶空固相微萃取/气相色谱-质谱法测定饮用水中的四乙基铅的方法,此方法是利用顶空固相微萃取技术,将水样中的待测化合物吸附在固相微萃取针的吸附纤维上,再将吸附纤维插入气相色谱仪,由进样口的温度使待测化合物解析,用质谱仪检测。
关键词:四乙基铅;顶空固相微萃取;气相色谱-质谱法;饮用水中图分类号:X832文献标志码:ADOI :10.15913/ki.kjycx.2021.17.054随着生活水平的日益提高,人们对饮用水水源以及供水的水质安全健康问题越发关注。
四乙基铅(tetraethyl lead )为一种略带水果香甜味的无色透明油状液体,含铅约64%,分子量为323.44,熔点为﹣136℃,沸点198~200℃,常温下极易挥发,不溶于水,易溶于有机溶剂。
四乙基铅多用于汽油抗震添加剂,提高辛烷值。
四乙基铅为剧烈的神经毒物,可通过吸入、食入、经皮吸收侵犯中枢神经系统。
研究表明[1],四乙基铅急性中毒初期症状有睡眠障碍,全身无力、情绪不稳、植物神经功能紊乱,往往有血压、体温、脉率低现象(三低症)等,严重者发生中毒性脑病,出现谵妄、精神异常、昏迷、抽搐等,可有心脏和呼吸功能障碍。
慢性中毒主表现为神经衰弱综合症和植物神经功能紊乱。
四乙基铅一度广泛作为添加剂在汽油中使用,为保护环境,从20世纪末开始很多国家禁止使用含铅汽油,但迄今为止诸多文献[2]显示,仍能从一些地表水或土壤中检测出四乙基铅。
在GB 5749—2006《生活饮用水卫生标准》和GB 3838—2002《地表水环境质量标准》中均提出对四乙基铅有限值要求。
顶空固相微萃取-气相色谱-质谱联用

顶空固相微萃取-气相色谱-质谱联用技术的应用与优势顶空固相微萃取-气相色谱-质谱联用(Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry,SPME-GC-MS)是一种分析技术,常用于样品中挥发性有机化合物(V olatile Organic Compounds,VOCs)的提取和定量分析。
它结合了顶空固相微萃取、气相色谱和质谱的优势,能够高效地分离、富集和鉴定样品中的化合物。
这种联用技术的步骤如下:
1、顶空固相微萃取(Solid Phase Microextraction,SPME):使用SPME纤维,将化合物从样品中吸附到纤维上。
2、热解:将SPME纤维插入气相色谱柱中,通过加热使化合物从纤维上脱附。
3、气相色谱(Gas Chromatography,GC):将化合物分离并传送至质谱仪。
4、质谱(Mass Spectrometry,MS):对化合物进行离子化和检测,生成质谱图谱,通过质谱图谱进行化合物的鉴定和定量分析。
这种联用技术具有以下优点:
1、快速:整个分析过程相对迅速,可在短时间内完成样品的分析。
2、灵敏度高:SPME的富集效果好,GC-MS的质谱检测灵敏度高,可以检测到很低浓度的目标化合物。
3、样品用量小:SPME只需用少量样品,即可进行有效的化合
物提取和分析。
4、无需溶剂:SPME过程中无需使用溶剂,减少了对环境的污染。
顶空固相微萃取-气相色谱-质谱联用在环境监测、食品安全、药物代谢研究等领域广泛应用,可用于分析挥发性有机化合物、揮発性代谢物、香气成分等。
顶空固相微萃取_HS_SPME_和气相色谱_省略_谱_GC_MS_联用定量白酒中

杜 海,范文来,徐 岩3(江南大学生物工程学院酿造微生物与应用酶学研究中心,教育部工业生物技术重点实验室,江苏无锡214122)摘 要:运用顶空固相微萃取技术(HS-SP M E )和气相色谱-质谱(GC-MS ),建立了快速定量白酒中两种较为常见的异味化合物———3-辛醇(3-octanol ),1-辛烯-3-醇(1-octen-3-ol )。
优化了这些异味物质在白酒中的萃取条件,以得到最佳分析条件。
最佳的萃取条件为:将白酒的酒精度稀释到5%vol,顶空方式(HS-SP M E ),在60℃下萃取45m in 。
该方法在检测范围内有很好的线性关系(R 2>01999),每种物质的检测限(LOD )低于相应化合物的阈值。
结果表明,该方法是一种具有很好的选择性和灵敏性的定量方法,适合白酒中具有较低阈值的异味化合物的研究。
关键词:中国白酒,顶空固相微萃取,气相色谱-质谱仪,3-辛醇,1-辛烯-3-醇Quan ti f i ca ti on of two off -fl avor co m poundsi n Ch i n ese li quor usi n g headspace soli d pha se m i croextracti onand ga s chroma tography -ma ss spectro m etryD U Ha i ,FAN W en -l a i ,XU Yan3(Centre for B re wing Science and Enzy me Technol ogy,Key Laborat ory of I ndustrial B i otechnol ogy,M inistry of Educati on,School of B i otechnol ogy,J iangnan University,W uxi 214122,China )Ab s trac t:A rap i d m e thod fo r q ua n tific a tion of t w o off -fl a vo r c om p ound s,3-oc ta no l ,1-oc te n -3-o l ,w ith low th re s ho l d in C h ine s e li q uo r us ing he a d sp a c e s o lid -p ha s e m ic roe xtra c ti on (HS -S PM E )fo llow ing b y g a s c h rom a tog rap hy -m a s s sp e c trom e try (GC -M S )w a s p re s e n te d 1The e xtra c tion c ond itions w e re op ti m i ze d i n o rd e r to g e t the b e s t c om p rom i s e fo r the s i m u lta ne ous a na lys i s of the t w o c om p ound s 1The op ti m ize d c ond iti ons c ons is te d of 8mL li q uo r s am p l e d ilu te d to a fina l c onc e n tra tion 5%vo l a lc oho l ,e xtra c te d i n he a d sp a c e m od e a t 60℃fo r45m i n 1The m e thod d isp l a ye d g ood line a rity (R 2>01999)ove r the c onc e n tra tion ra ng e s e xp lo re d in C h i ne s e liq uo r 1The a na l ytic a l c ond itions e na b le the q ua n ti fic a tion of the a na lyze s b e l ow the ir re sp e c ti ve o rg a no l ep tic p e rc ep tion th re s ho l d s in C h i ne s e li q uo r 1The re s u lts s how e d tha t the p re s e n te d a na lyti c a l m e thod p rovid e d a s e le c ti ve a nd s e ns iti ve te c hn i q ue to fu rthe r inve s tig a te the off -fla vo r c om p ound s w ith low th re s ho ld in C h ine s e liq uo r 1Key wo rd s:C h ine s e li q uo r ;he a d sp a c e s o lid -p ha s e m i c roe xtra c tion;g a s c h rom a tog rap hy -m a s s sp e c trom e try;3-oc ta no l ;1-oc te n -3-o l中图分类号:TS20713 文献标识码:A 文章编号:1002-0306(2010)01-0373-04收稿日期:2009-04-30 3通讯联系人作者简介:杜海(1984-),男,硕士研究生,研究方向:酿酒工程。
顶空固相微萃取气相色谱质谱联用技术

7
8.14
Acetic acid、ethyl ester乙酸乙醑
C·H_m
明
8
1.65
9
1.95
10
2.25
ll
3.89
12
14.72
13
14.84
14
15.21
15
16.45
16
16.08
17
16.61
18
16.81
19
17.06
20
17。26
2l
17.49
Propanic aicd、ethyl ester丙酸乙酯
U。
1.4结果与讨论
5个苹果品种通过气相色谱一质谱联用分析后得到的总离子流图,见图1,2,3,4,5。
图l目光苹果香气成分质谱总离子流圈(TIC)
图2红富士苹果香气成分质谱总离子流图(TIC)
圈3红蛇皋苹果香气成分质谱总离子流图(TIC) 33
圈4花牛苹果番气成分质谱总离子流圈(TIC)
董届中国中西部地区色谱掌术交流会 一
风味物质大多为非营养物质,它们虽不参与体内代谢,但能促进食欲,影响人的精神状态[11。 良好的风味是构成食品质量的重要因素之一n1。风味和风味成分的研究在最近的40多年来有了迅速 的发展,已成为风味化学研究中令人瞩目的研究领域‘31。
对于苹果香气成分的分析,不同的研究者所得的结果并不完全一致“一·盯。由于每一品种都有独 特的风味以区别于其它,因此可以通过分析其香味成分组成和量比关系,为确定苹果品种、品质、产 地及苹果加工贮藏提供科学依据。固相微萃取(Sol id Phase J4icroextract ion,SPME)技术是一种新 型的无溶剂样品预处理技术,该技术集采样、萃取、浓缩、进样于一体,操作简单、成本低、所需样 品量少,它通过吸附/脱吸附技术,富集样品中的挥发性和半挥发性成分,克服了~些传统样品处理技 术的缺点,已经广泛应用于水、食品、环境以及生物样品分析‘7—1。
《顶空固相微萃取-气相色谱-质谱法测定水体中11种异味物质》团体标准

团体标准名称:顶空固相微萃取-气相色谱-质谱法测定水体中11种异味物质
团体标准编号:
标准简介:
该团体标准主要适用于水体中11种异味物质的分析和检测,采用顶空固相微萃取(HS-SPME)结合气相色谱-质谱联用(GC-MS)技术进行分析。
该标准包含了样品处理、仪器设备、操作方法、数据处理等方面的规范,旨在提供一种标准化的方法,确保测试结果的准确性和可比性。
标准内容:
1. 范围:适用于水体中以下11种异味物质的测定:(列举具体物质名称)
2. 仪器设备:包括顶空固相微萃取装置、气相色谱仪、质谱仪等。
3. 样品处理:包括样品采集、前处理、固相微萃取等步骤。
4. 操作方法:详细描述了顶空固相微萃取-气相色谱-质谱联用的操作步骤,包括条件设置、样品进样、柱温程序等。
5. 数据处理:包括峰面积计算、质谱图解析、定量分析等方法。
标准要求:
1. 仪器设备应满足一定的性能指标,如灵敏度、分辨率、稳定性等要求。
2. 样品处理过程中应控制好各个步骤的条件,确保提取效果和分离效果。
3. 操作人员应具备相关的实验技能和操作经验,严格按照标准要求进行操作。
4. 数据处理过程中应使用合适的软件进行数据解析和定量分析。
应用价值:
该团体标准提供了一种可靠的分析方法,适用于水体中11种异味物质的测定。
它可以广泛应用于环境监测、饮用水安全评估、水处理工艺优化等领域,为相关行业提供科学依据和参考,有助于保障公共健康和环境安全。
顶空固相微萃取结合气相色谱-质谱联用法检测山药挥发油成分

顶空固相微萃取结合气相色谱-质谱联用法检测山药挥发油成分李雅萌;郭文英;王亚茹;杨娜;刘金平;李平亚;曲渊立【摘要】首次采用顶空固相微萃取技术结合气相色谱-质谱联用法对山药挥发油化学成分进行分离鉴定,并采用色谱峰面积归一化法测定各种化合物的相对含量.从测定数据中共分离出76个峰,确认了73种化合物,所鉴定的组分占挥发油总量的100%,主要包括烯烃类、烷烃类、芳香类、杂环类等化合物,主要化学成分为α-姜黄烯(28.46%)、β-法呢烯(9.08%)、β-倍半水芹烯(5.66%)、β-没药烯(5.70%)等.实验结果为山药挥发油的进一步研究及开发利用提供科学依据.【期刊名称】《特产研究》【年(卷),期】2018(040)003【总页数】6页(P50-55)【关键词】山药;挥发油;顶空-固相微萃取;气相色谱-质谱法;萜烯类化合物【作者】李雅萌;郭文英;王亚茹;杨娜;刘金平;李平亚;曲渊立【作者单位】吉林大学药学院,长春130021;吉林金宝药业股份有限公司,吉林通化135000;吉林大学药学院,长春130021;吉林大学药学院,长春130021;吉林大学药学院,长春130021;吉林大学药学院,长春130021;吉林大学药学院,长春130021【正文语种】中文【中图分类】R284.2山药为薯蓣科(DioscoreaL)植物薯蓣(Dioscorea oppositaThunb.)的干燥根茎[1],又名淮山药、薯药、白山药等。
我国自夏朝、商朝起就开始种植山药,明朝、清朝以来逐渐形成道地药材。
河南省焦作市一带所产山药具有很高的药用和食用价值,习称怀山药,被誉为“怀参”。
山药是人所共知的滋补佳品,许多古典医籍都对山药作了很高的评价,据《神农本草经》记载,山药具有“主治伤中、补虚赢、除寒热邪气、补中益气、长肌肉、久服耳聪目明、经身不饥延年”等功效。
山药性温、味甘,温补而不骤,微香而不燥,具有补脾养胃、生津益肺、补肾涩精的作用[2]。
顶空固相微萃取-气相色谱-质谱法同时测定饮用水源水中24种VOCs

e t cin t eeo t zd T ed tcin1 t w r .3 03 g/L a dtec reainc ef insweemoeta xr t i w r pi e . h ee t i s ee00 — . a o me mi o mi 1 n orlt of ce t h o i r r h n
cm 0n s O s i dikn uc ae. 5 m C roe — o dme ysoaec R P M ) br a sdt et c o p u d( C )n r igs rew tr7 ab xnM P l i t l l n( A — D S f e s e x at V n o y h ix i w u o r
S m ula o t r na i n f24VOCsi i i o c a e a S c o i i t ne usDe e mi to o n Drnk ng S ur eW t rby He d pa eSe t a to e h d Co p e t s r ma o r p y a d M a sS e t o e r c o x r c i n M t o u ld wih Ga Ch o t g a h n s p c r m t y
V C mp sadV C ee eetd ygs ho t rpyad s set m t (C M ) i lcv n s (I ) O sns l ,n O s r dtc a rma gah s pcr e yG — S wt s et eo sSM i a e w eb c o n ma o r h e i i ma
Zha gH o g n n La n z o iYo g h ng
( at st eo E v om n Po co , hn u 10 1C i ) ( hn u n i n et oir g ti , hn u l0 1C i ) S n u n i t f i n et r et n S at 5 54 , h a Sa t v om n l n o n a o S at 5 5 4, h a h o I tu r n r t i o n oE r aM ti S tn o n
顶空固相微萃取-气相色谱-质谱联用测定香水中5种合成麝香

将 萃取 套管 伸 人顶 空瓶 , 在转 速 6 0r mi 温 度 6 0 / n、 0 ℃下平 衡 3mi 。推 出萃 取 纤 维 , 空 萃 取 2 n n 顶 0 mi
后 , 入 进 样 口 , 2 0 ℃ 下 解 吸 3 mi 进 行 G . 插 于 5 n, C
的关 注 , 世界 各 国 陆续 颁 布 了相 关 法 令 以限 制 合 成 麝香 的 使用 ¨ 。 香 水作 为化 妆 品 中的 重 要 一类 , 中的 合 成 麝 其 香含 量 也受 到 国 内外法令 的严格 限 制 。但 目前相 关 的检 测 报 道 较 少 , 常 用 超 声 提 取一 且 固相 萃 取 来
纤 维 ; 次 使用 时 以 2 0 o 化 3 n; 天 实 验 首 5 C老 0 m 每
后 解 吸 3mi 以保 证 其 清 洁 。在 l n, 0 mL顶 空 瓶 中
加 入 约 0 0 . 4 g样 品 及 14 mL水 , 体 积 约 为 1 5 . 总 .
mL 放 人 磁 子 , 紧 瓶 盖 ( 垫 预 先 穿 一 个 小 孑 ) 。 拧 内 L ,
nn ig公 司 ) 0mL精 密 螺 纹 口透 明顶 空 瓶 及 带 垫 ;1 螺 纹 口盖 ( 国 J JI d sr s 。瑞 士 Met rT — 美 & n u ti ) e t e o l ld e o公 司 UMX 5高精度 电子 天 平 ( 大 称 量值 5 1 最 .
在 1 0mL顶 空 瓶 中添 加 含 量 为 0 5 p / . , g的 5 g
有人 为 添加 的溶 剂 、 留剂 和香 料外 , 含有 大量 的 保 还 天然 提 取物 ; 们种 类 多样 , 它 为提 取 和净 化分 离工 作
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
顶空固相微萃取-气相色谱-质谱联用分析纺织品中挥发性有机物*蔡积进张卓旻李攻科中山大学化学与化学工程学院,广东,广州 510275摘要本文以顶空固相微萃取(Head Space Solid Phase Microextraction,HSSPME)和气相色谱-质谱(GC/MS)联用技术分析纺织品中的五种常见挥发性有机物(Volatile Organic Compounds,VOCs):甲苯、4-乙烯基环己烯、苯乙烯、萘和1-苯基环己烯。
优化了顶空体积、平衡时间、萃取时间、萃取温度、搅拌速率、加盐种类和浓度以及GC/MS条件。
建立了快速测定纺织品中VOCs的方法,方法对五种待测物质均具有较宽线性范围,分别为0.087~870,3.32~3320,2.28~2280,0.015~150和0.5~500 ng/g;检出限分别为0.005、0.042、0.67、0.008和0.011 ng/g。
分析加标实际样品,回收率在80.1~122%之间,RSD在0.8~8.6%之间。
方法符合纺织品中痕量VOCs 的快速分析要求。
关键词:固相微萃取;气相色谱-质谱;纺织品;挥发性有机物生态纺织品标准100(Oeko-Tex Standard 100)[1]是纺织品领域通行的技术标准,严格规定了残留有毒、有害VOCs的释放量。
为推动纺织品质量达到出口标准,需建立有效快速的VOCs 检测方法。
由于纺织品VOCs的含量很低,常规的预富集浓缩方法很难满足分析需要,达不到相应的灵敏度要求。
SPME是八十年代末Pawliszyn等[2]研制开发的一种非溶剂分析萃取技术,具有操作简单、萃取速度快、选择性和适应性好等优点。
而HSSPME应用于纺织品中,一方面继承了顶空技术操作简单、不受样品基体干扰的优点;另一方面又能在采样的同时进行浓缩,大大提高了分析灵敏度。
国内已有学者用SPME技术对纺织品中残留干洗溶剂(如四氯乙烯和三氯乙烯等)和驱虫剂(如二氯苯和萘等)进行分析[3~5]。
本文建立了HSSPME-GC-MS联用分析纺织品中常见VOCs的分析方法,方法灵敏度高,重现性好,适合于纺织品中多种痕量挥发性有机物的分析。
1 实验1.1 仪器及操作条件1.1.1 仪器SPME手动取样装置,100 μm聚二甲基硅氧烷(PDMS),电磁搅拌/加热操作台,搅拌子(3.0 mm×10.0 mm),10、15、40 mL顶端带有孔盖子和聚四氟乙烯隔垫的样品瓶(Supelco 公司)。
HP-6890气相色谱仪带质谱检测(MSD-5973)配G1701B.02.05工作站(Hewlett-Packard, USA),所用色谱柱为HP-VOC熔融毛细管柱(60 m×0.32 mm×1.8 μm)。
1.1.2 GC-MS的操作条件色谱条件:进样口温度为250 ℃,进样口关闭五分钟,不分流进样。
采用程序升温,初始资金项目:国家质检总局科研资助项目(2002IK034)、中山大学化学院第四届创新化学实验与研究基金(批准号:03002号)。
第一作者:蔡积进(1982年出生),男,中山大学化学与化工学院材料化学专业00级指导教师:李攻科,E-mail :cesgkl@.温度60 ℃,然后以10 ℃/min的速度升至240 ℃,然后保持1 min;接着,以3 ℃/min的速度升至250 ℃;270 ℃吹扫2 min。
载气为高纯氦气,恒定流速1.0 mL/min。
质谱条件:接口温度280 ℃,EI离子源,电子能量70 eV,离子源温度230 ℃,四极杆温度150 ℃,质量扫描范围50~550 u。
采用选择性离子流(m/z):甲苯为91、65,4-乙烯基环己烯为108、79、54,苯乙烯为104、51,萘为128,1-苯基环己烯为158、115。
以峰面积定量。
1.2 试剂甲醇色谱纯试剂(中国医药集团上海化学试剂公司)。
无水氯化纳:分析纯,650 ℃灼烧4 h,贮于密封瓶内置于干燥器内备用。
甲苯、4-乙烯基环己烯、苯乙烯、萘(Chemservice)和1-苯基环己烯标准(Acros)。
各种VOCs标准均用甲醇稀释成相应浓度的混合标准贮备液,贮存于冰箱中。
1.3 实验方法称取0.1 g剪碎的白布样品(空白样品)于顶空瓶中,加入0.1 mLVOCs混和标准,在室温放置2min使之混合均匀,制成合成样品(其中甲苯8.7 ng/g、4-乙烯基环己烯33.2 ng/g、苯乙烯22.8 ng/g、萘1.5 ng/g、1-苯基环己烯5.0 ng/g)。
加入2.5 mL 0.02 g/mL氯化钠水溶液,旋好外盖,在电磁搅拌/加热操作台上以1100 r/min搅拌速度搅拌5 min;待VOCs在顶空气相中的浓度达到平衡后,将SPME萃取头伸出,顶空萃取10 min;然后,将富集有分析物的SPME萃取头于GC/MS进样口250 ℃解吸5 min后进行分析检测。
分离色谱图见图1。
图1五种VOCs的分离色谱图(A-甲苯、B-4-乙烯基环己烯、C-苯乙烯、D-萘、 E-1-苯基环己烯)2 结果与讨论2.1 SPME萃取条件的选择2.1.1 平衡时间VOCs从基体挥发到顶空相需要一定时间,该平衡时间的长短主要与不同VOCs的挥发特性相关。
研究了平衡时间与萃取效率的关系,如图2示。
由图可知,VOCs挥发性强,因此很容易从基体中释放出来,5分钟即可达到平衡。
随着平衡时间增长,SPME萃取效率反而下降,这是因为过长的平衡时间会使VOCs重新溶解于基体溶液,造成萃取量下降。
本实验选定5 min作为优化的平衡时间。
2.1.2 萃取时间SPME所需萃取时间长短与萃取涂层结构性质、厚度、搅拌速度以及分析物的性质及其在基体介质中的分配常数、扩散系数等因素有着密切的关系。
在非平衡状态下选择萃取时间,微小的时间差异都可能引起色谱响应的巨大变化,分析的精密度和灵敏度较难控制。
考虑到VOCs挥发性强的特点,本文固定其他实验条件,在2~30 min范围内考查萃取时间对萃取效率的影响,其关系如图3示。
从图中可以看出,VOCs的SPME萃取很快达到平衡,选择10 min为优化的萃取时间。
2.1.3 萃取温度在HSSPME分析中,温度是影响萃取速度和效率的重要因素。
升高温度,一方面VOCs挥发速度加快,另一方面分配系数K会随之下降,VOCs在基体中溶解度会增加;过高的温度甚至会使VOCs分解,丧失定量的准确性。
考虑到VOCs的沸点和分解温度,本文固定其他条件,选择20 ℃、45 ℃、70 ℃三个萃取温度考查SPME 萃取效率,其关系如图4示。
图2平衡时间对VOCs 萃取效率的影响 图3萃取时间对VOCs 萃取效率的影响(A -甲苯、B -4-乙烯基环己烯、C -苯乙烯、D -萘、E -1-苯基环己烯)从图中可以看出,VOCs 在20 ℃时已经挥发完全,SPME 具有最大的萃取效率;过高的萃取温度不仅无助于提高萃取效率,反而由于VOCs 溶解和分解的影响,萃取效率下降。
最终,选择20 ℃为优化的萃取温度。
2.1.4 顶空体积 在HSSPME 分析方法中,顶空体积是影响分析物在顶空相中平衡浓度的直接因素。
增大顶空体积,可以使分析物在液相和气相的分配平衡向顶空气相移动,更多VOCs 挥发至顶空相;但过大的顶空体积,对分析物浓度无疑起到稀释作用,使分析灵敏度下降。
为了选择合适的顶空体积,本文选取10、15、40 mL 顶空萃取瓶考察最优萃取效率,其关系如图5示。
10 mL 顶空瓶顶空体积过小,VOCs 在顶空气相中平衡浓度受到影响,灵敏度下降;40 mL 顶空瓶顶空体积过大,VOCs 在顶空气相中浓度被稀释,灵敏度也不高;而15 mL 顶空瓶顶空体积适中,既可以使顶空相中VOCs 在气液分配中占优,又可以防止被过大的顶空体积稀释,因此灵敏度最高。
本实验取15 mL 顶空萃取瓶为最终优化结果。
图4萃取温度对萃取效率的影响 图5空体积对萃取效率的影响(A —甲苯、B —4-乙烯基环己烯、C —苯乙烯、D -萘、E -1-苯基环己烯)2.1.5 离子强度 在HSSPME 模式中通过增加基体溶液的离子强度,可以降低VOCs 在水溶液中的溶解度,从而更容易挥发至顶空相中,提高分析的灵敏度。
本文采取添加NaCl 的方式改变基体溶液的离子强度,考察离子强度对萃取效率的影响,其关系如图6示。
当NaCl 浓度为0.02 g/mL (质量/体积)时,萃取效率最高,之后萃取效率反而随着盐度的增加而略有减少,这可能是由于形成离子化物从而增加了VOCs 在基体溶液中溶解性所致。
因此,选择0.02 g/mL NaCl 浓度为优化结果。
2.1.6 搅拌速度 搅拌是提高SPME 分析速度的重要手段,在HSSPME 模式中VOCs 在顶空相中的扩散速度比液相高4个数量级。
当搅拌速度较慢的时候,VOCs在液相中扩散速度很慢,分析平衡因此受到限制;当搅拌充足,VOCs在液相中扩散速度加快,同时通过搅拌可以不断产生新液面,加速VOCs从液相向顶空相挥发扩散,从而提高了分析的速度和灵敏度。
本文考察了SPME专用电磁搅拌台各档搅拌速度对VOCs萃取效率的影响,其关系如图7示。
结果发现随着搅拌速度的增加,吸附量也不断增加。
为了兼顾各个VOCs的最佳萃取效率,选定1100 r/min 为本实验的优化条件。
图图6离子强度对萃取效率的影响图7搅拌速度对萃取效率的影响(A-甲苯、B-4-乙烯基环己烯、C-苯乙烯、D-萘、E-1-苯基环己烯)2.1.7 解吸温度和时间在优化的萃取条件下,将富集有VOCs的SPME萃取头在GC进样口250 ℃解吸5min后,为检验萃取头上是否有VOCs的残留,将已解吸5 min的萃取涂层再插入GC进样口解吸5 min后进行检测,没有发现VOCs的残留。
证明250 ℃解吸5 min已经使VOCs目标分析物完全从萃取头上解吸下来,SPME方法可以进行连续测定。
2.2 方法的线性范围、检出限与精密度在优化实验条件下,测定了5种VOCs的线性范围、检出限和精密度(见表1,方法线性范围达3~4个数量级,检出限在0.008~0.67 ng/g之间,RSD在4.1%~13.6%之间。
表1方法的线性范围、相关系数、检出限和精密度挥发性有机物线性范围ng/g 相关系数检出限ng/gRSD/%(n=7)甲苯0.087~870 0.9996 0.005 7.9 4-乙烯基环己烯 3.32~3320 0.9980 0.042 13.6 苯乙烯 2.28~2280 0.9996 0.67 10.6萘0.015~150 0.9983 0.008 7.5 1-苯基环己烯0.5~500 0.9980 0.011 4.12.3 实际样品分析取弹力棉布(深圳出入境检验检疫局提供)进行HSSPME/GC-MS分析检测,除萘外其他VOCs目标物分析物均未检出。