压铸原理总结

合集下载

压铸工艺总结知识点

压铸工艺总结知识点

压铸工艺总结知识点压铸工艺是一种常用的金属加工工艺,通过对金属材料的加热融化后进行注入模具中,经过冷却固化后得到所需的零部件或产品。

它具有生产效率高、生产周期短、产品质量好等优点,被广泛应用于汽车制造、电子制造、机械制造等行业。

以下是对压铸工艺的总结知识点。

一、压铸工艺的基本原理1.压铸工艺的基本原理是利用金属在一定温度下的液态性质,在高压力下将熔融金属填充到模具腔中,并使其冷却凝固形成所需形状的零部件或产品。

2.压铸工艺主要涉及到金属材料的熔化、注入、冷却凝固等过程。

熔化过程通过加热金属到其熔点以上,使其变成液态;注入过程通过压力将熔融金属注入到模具中;冷却凝固过程通过降温,使金属从液态逐渐转变为固态。

二、压铸模具的结构和类型1.压铸模具是压铸工艺中最核心的设备之一,它包括上模和下模两部分。

上模为固定模,下模为动模。

2.压铸模具还包括模具腔、分型面、导向机构等部分。

模具腔是用来形成产品外形的腔体结构;分型面用于分离上模和下模;导向机构用于保证上下模的定位和运动方向。

三、压铸工艺的工艺参数1.压铸工艺中的主要参数包括注射压力、注射速度、保压时间、冷却时间等。

注射压力是指将熔融金属注入到模具腔中所施加的压力;注射速度是指熔融金属注入到模具腔中的速度;保压时间是指保持一定压力对熔融金属进行冷却固化的时间;冷却时间是指产品在模具中冷却至一定温度的时间。

2.合理的工艺参数能够保证产品的质量和生产效率,需要根据具体材料和产品要求进行调整和控制。

四、压铸材料的选择1.压铸工艺主要适用于铝合金、镁合金、锌合金等低熔点金属的加工,也可以用于一些高熔点金属材料的加工。

2.压铸材料的选择需要考虑产品的机械性能、导热性能、耐腐蚀性、成本等因素。

五、压铸工艺的优缺点1.压铸工艺具有生产效率高、生产周期短、产品质量好等优点,能够实现高精度、高复杂度的零部件生产。

2.压铸工艺的缺点是模具制造和维护成本较高,适用于大批量生产的零部件。

压铸的过程及原理介绍

压铸的过程及原理介绍

压铸的过程及原理介绍压铸的过程及原理介绍∙浅谈压力铸造特点及优势∙发布时间:2021-10-21 15:32:27 来源:互联网文字【大中小】浏览人数:226 【收藏】∙内容摘要: 压力铸造(简称压铸) 是在压铸机的压室内,浇入液态或半液态的金属或合金,使它在高压和高速下充填型腔,并且在高压下成型和结晶而获得铸件的一种铸造方法。

1. 压铸定义及特点压力铸造(简称压铸) 是在压铸机的压室内,浇入液态或半液态的金属或合金,使它在高压和高速下充填型腔,并且在高压下成型和结晶而获得铸件的一种铸造方法。

由于金属液受到很高比压的作用,因而流速很高,充型时间极短。

高压力和高速度是压铸时液体金属充填成型过程的两大特点,也是压铸与其他铸造方法最根本区别之所在。

比如压射比压在几兆帕至几十兆帕范围内,甚至高达500MPa; 充填速度为0.5—120m/s,充型时间很短,一般为0.01-0.2s ,最短只有干分之几秒。

2. 压铸的优缺点1) 产品质量好。

由于压铸型导热快,金属冷却迅速,同时在压力下结晶,铸件具有细的晶粒组织,表面坚实,提高了铸件的强度和硬度,此外铸件尺寸稳定,互换性好,可生产出薄壁复杂零件;2) 生产率高,压铸模使用次数多;3) 经济效益良好。

压铸件的加工余量小,一般只需精加工和铰孔便可使用,从而节省了大量的原材料、加工设备及工时。

1) 压铸型结构复杂,制造费用高,准备周期长,所以,只适用于定型产品的大量生产;2) 压铸速度高,型腔中的气体很难完全排出,加之金属型在型中凝固快,实际上不可能补缩,致使铸件容易产生细小的气孔和缩松,铸件壁越厚,这种缺陷越严重,因此,压铸一般只适合于壁厚在6mm 以下的铸件;3) 压铸件的塑性低,不宜在冲击载荷及有震动的情况下工作;4) 另外,高熔点合金压铸时,铸型寿命低,影响压铸生产的扩大应用。

综上所述,压力铸造适用于有色合金,小型、薄壁、复杂铸件的生产,考虑到压铸其它技术上的优点,铸件需要量为2000-3000件时,即可考虑采用压铸。

压铸工艺原理和过程

压铸工艺原理和过程

压铸工艺过程压铸工艺过程是由压铸机来完成的。

压铸机相据压室的工作条件分为热压室压铸机和冷压多压铸机两大类,而冷压常压铸机又根据压室的布置形式分为卧式和立式两类。

各种压铸机的压铸基本过程都为合模、压射、增压、持压、开模。

图1-1所示为热压室帐铸机压铸过程,图1-2所示为卧式冷压室压铸机压铸过程。

图1-3所示为立式冷压室压铸机压铸过程,图1-4所示为升举压室压铸机压铸过程。

二、压铸工艺原理从本质上来说,压铸过程与其他各种铸造过程一样都是液态合金的流动与传热过程和凝固过程,也就是动量传递、质量传递和能量传递过怪及相变过程,都是基本物理过程。

都遵循自然界中关于物质运动的动量守恒原理、质量守恒原理和能量守恒原理及相变原理。

所以压铸过程中液态合金的流动与传热问题和凝固问题也都可以由建立在动量守恒、质量守恒和能量守恒定律基础上的动量方程、连续方程、能量方程及相变(凝固)理论来描述。

但是,压铸过科又有其特殊之处,这就是压铸过程是在高压、高速条件下进行的,使得液态合金充填型腔时的形态与其他铸造方法的充填形态具有很大的差别,因而理解压力和速度在压铸过程中的作用和变化,对液态合金流动(充填)形态的影响是必要的。

压铸压力和压铸速度1、压铸压力压铸压力是压铸工艺中主要参数之一。

通常用压射力和压射比压来表示。

(1)压射力压射力可分为充填压射力和增压压射力。

充填压射力指充填过程中的压射力,其值由式(1-1)进行计算,即F y=p g A D ((1-1)式中F y—充填压射力,kN;Pg —压铸机液压系统的管路工作压力,kPa;A D—压铸机压射缸活塞截面积,m2增压压射力则是指增压阶段原压射力,其值由式(1-2)进行讲算,即F yz=p gz A D(1-2)式中Fyz—增压压射力,kN;Pgz—压铸机压射缸内增压后的液压压力,kPa(2)压射比压压射比压是指压室内与压射冲头接触的金属液在单位面积上所受到的压力压力射比压和增压比压。

压铸工艺原理和过程

压铸工艺原理和过程

压铸工艺过程压铸工艺过程是由压铸机来完成的。

压铸机相据压室的工作条件分为热压室压铸机和冷压多压铸机两大类,而冷压常压铸机又根据压室的布置形式分为卧式和立式两类。

各种压铸机的压铸基本过程都为合模、压射、增压、持压、开模。

图1-1所示为热压室帐铸机压铸过程,图1-2所示为卧式冷压室压铸机压铸过程。

图1-3所示为立式冷压室压铸机压铸过程,图1-4所示为升举压室压铸机压铸过程。

二、压铸工艺原理从本质上来说,压铸过程与其他各种铸造过程一样都是液态合金的流动与传热过程和凝固过程,也就是动量传递、质量传递和能量传递过怪及相变过程,都是基本物理过程。

都遵循自然界中关于物质运动的动量守恒原理、质量守恒原理和能量守恒原理及相变原理。

所以压铸过程中液态合金的流动与传热问题和凝固问题也都可以由建立在动量守恒、质量守恒和能量守恒定律基础上的动量方程、连续方程、能量方程及相变(凝固)理论来描述。

但是,压铸过科又有其特殊之处,这就是压铸过程是在高压、高速条件下进行的,使得液态合金充填型腔时的形态与其他铸造方法的充填形态具有很大的差别,因而理解压力和速度在压铸过程中的作用和变化,对液态合金流动(充填)形态的影响是必要的。

压铸压力和压铸速度1、压铸压力压铸压力是压铸工艺中主要参数之一。

通常用压射力和压射比压来表示。

(1)压射力压射力可分为充填压射力和增压压射力。

充填压射力指充填过程中的压射力,其值由式(1-1)进行计算,即F y=p g A D ((1-1)式中F y—充填压射力,kN;Pg —压铸机液压系统的管路工作压力,kPa;A D—压铸机压射缸活塞截面积,m2增压压射力则是指增压阶段原压射力,其值由式(1-2)进行讲算,即F yz=p gz A D(1-2)式中Fyz—增压压射力,kN;Pgz—压铸机压射缸内增压后的液压压力,kPa(2)压射比压压射比压是指压室内与压射冲头接触的金属液在单位面积上所受到的压力压力射比压和增压比压。

压铸力的传递性原理

压铸力的传递性原理

压铸力的传递性原理
压铸力的传递性原理是指在压铸过程中,通过压铸机的压力传递到金属液和模具之间,实现金属的填充和形成的过程。

具体来说,压铸机通过柱状零件(通常是活塞或液压缸)向金属液施加一定的压力。

这个压力通过液体或气体传递到活塞上,然后通过活塞的传递,在模具上产生一定的压力。

模具内壁又通过这个压力,将金属液压实,并迫使金属填充模具的空腔。

在压铸过程中,传递压力的关键是通过液体或气体。

通常使用液压系统,通过液体传递压力。

压铸机的柱状零件上设有活塞,当液体被推入柱状零件时,活塞会随之上升,进而施加压力。

这种压力会通过柱状零件传递到模具上。

需要注意的是,压铸力的传递性原理并不是简单的力的传递,而是力的转化和聚集过程。

在压铸过程中,力会从一个部分转移到另一个部分,并在转移过程中聚集和集中作用,从而形成足够的压力,实现金属的填充和形成。

总结来说,压铸力的传递性原理是通过液体或气体的传递,将压力从压铸机传递到金属液和模具之间,实现金属的填充和形成。

这一过程是通过力的转化、聚集和集中作用来实现的。

压铸的工作原理

压铸的工作原理

压铸的工作原理压铸是一种常用的金属零件生产工艺,主要用于生产大批量、高精度、复杂形状的零件。

它是通过将熔融金属注入到模具中,快速凝固成形而得名。

本文将介绍压铸的工作原理及其关键步骤。

一、压铸的工作原理压铸的工作原理是将熔融金属注入到模腔中,然后利用高压力将金属填满模具中的所有空隙。

之后,将模具冷却并打开,将固化的金属零件从中取出。

整个过程分为注射、压力、冷却和脱模四个阶段。

二、压铸的关键步骤1. 设计模具模具的质量和设计直接影响到铸件的质量。

准确的模具设计能够减少或甚至消除一些质量问题。

模具应该能够满足所需的尺寸和表面质量。

2. 加热熔融金属在压铸之前,需要将金属加热到熔点以上。

熔化的金属通常是锌、铝、镁和铜等合金。

金属加热的温度和时间由所使用的材料和压铸时的要求而定。

3. 注射金属至模具中金属熔化后,将其从炉中注入到模具中。

这个过程需要控制注入速度和数量,以确保金属填满整个模腔,但不会造成过量冲压和漏出。

4. 施加高压将金属填满模具金属注入到模具中后,施加高压以将金属压缩并填满模具内部,保证零件的密度和精度。

通常,压力的大小是根据所需的密度和强度来确定的。

5. 冷却金属零件在金属灌注完全填满模具后,直接将模具放在冷却装置中。

通过使金属快速凝固,可以保证零件的准确性和表面质量。

冷却时间通常由金属和设计要求决定。

6. 打开模具并取出零件当金属快速凝固后,就可以打开模具,并将铸件从中取出。

在取出零件之前,需要检查模具中是否还有金属残留物。

通常需要进行修理或抛光以去除表面缺陷。

三、结论压铸是一种高效、高精度、高质量的金属生产工艺。

准确的模具设计和良好的压力控制是获得优质铸件的关键。

压铸具有广泛的应用,可以用于生产各种工业部件、汽车零件和电子设备等。

压铸原理总结

压铸原理总结
压铸机通常按压室的受热条件的不同分为冷室压铸机和热室压铸机两大类。冷室压铸机又因压室和模具放置的位置和方向不同分为卧式,立式和全立式三种。
热室压铸机的主要特点是在压室和压射冲头浸在熔融金属液中.。冷室压铸机的主要特点是压室内和压射冲头不浸在熔融的金属中,冷室压铸机的卧式最为常见。
(a)(b)
4.1.2压铸代号的意义.
c.第三阶段:金属液全部充满型腔,连同浇注系统及压室形成一个封闭的水力系统,在这个系统中各处的压力均等,压射力仍可通过尚未凝固的内浇口作用于铸件,达到进一步增压的目的。
3.金属液在不同条件下的流态分析
1不同厚度内浇口所出现的流态
改变内浇口厚度与铸件厚度之比,除了影响填充的速度和时间外,也影响金属液在型腔内的流态。如下图:
5.6—6.4
0.26—0.50
Max 0.20
0.05
0.008
0.001
0.004
AM50A
4.5—5.3
0.28—0.50
Max 0.20
0.05
0.008
0.001
0.004
AM20
1.7—2.5
Min 0.20
Max 0.20
0.05
0.008
0.001
0.004
AS41
3.7—4.8
0.35—0.6
锌:改善流动性,提高力学性能,减少铁和镍等杂质的腐蚀作用,但当含量超过1%时,会引起合金的高温热脆性。
锰:提高镁合金耐蚀性,中和铁在合金中的有害作用当含锰量在0.5%以下时,改善合金的机械性能。
硅:改善合金流动性,但降低塑性和耐蚀性(尤其合金含铁时)。
铍:降低镁合金熔融时的氧化速率。
3.32镁合金材料的物理特性

压铸过程原理及压铸工艺参数确定解读

压铸过程原理及压铸工艺参数确定解读

压铸过程原理及压铸工艺参数确定解读压铸(Die casting)是一种通过将金属材料(通常为非铁金属,如铝、锌、铜等)加热至液态,然后压入模具中形成特定形状的工艺。

压铸工艺参数的确定包括:模具设计、铸造温度、注射速度、注射压力、冷却时间等。

压铸过程主要包括模具的张合、铸料的注入、冷却和模具的张开四个步骤。

具体过程如下:1.模具的张合:将两块模具合拢,形成一个完整的铸造腔。

2.铸料的注入:将预先加热至液态的金属材料经过喷射系统注入到铸造腔中。

3.冷却:待金属材料充分填充铸造腔后,开始冷却过程。

通过导热系统或者液体冷却剂快速冷却铸件,使其凝固固化。

4.模具的张开:冷却完毕后,张开模具并将铸件推出。

压铸工艺参数的确定:1.模具设计:模具的设计直接影响产品的成型质量。

合理的模具设计应保证产品的一致性和尺寸精度,并考虑到产品的冷却效果以及模具的寿命等因素。

2.铸造温度:铸造温度直接决定了金属材料的流动性和充填性能。

过高的温度可能导致材料的挥发和氧化,过低的温度可能导致流动性差,影响成型质量。

因此,需要根据材料的特性和产品要求确定适当的铸造温度。

3.注射速度:注射速度决定了金属材料进入模具的速度和充填性能。

过高的注射速度可能导致气泡和缺陷,过低的注射速度可能导致不充分充填和产生残余应力。

适当的注射速度应根据具体材料和产品进行调整。

4.注射压力:注射压力决定了金属材料进入模具的力度,以及铸件的密实程度。

过高的注射压力可能导致模具磨损和损坏,过低的注射压力可能导致产品质量不稳定。

适当的注射压力应通过试模或者经验确定。

5.冷却时间:冷却时间是指充填完毕后,铸件需要保持在模具中进行冷却的时间。

适当的冷却时间可以保证铸件的完全凝固和均匀冷却,以避免产生缺陷和应力。

压铸工艺参数的确定需要结合实际情况,通过试模和不断的优化调整,以达到产品的质量要求。

同时,压铸过程还需要注意风险控制和安全生产,以保证操作人员和设备的安全。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Z表示铸造,Mg表示镁锭,
Al 8 Zn表示合金中主要各种元素符号及含量
3.3镁合金化学成分及特性
3.31镁合金铸锭化学成分
Al%
Mn%
Zn%
硅%max
Cu%max
Ni%max
Fe%max
其他%
AZ91D
8.5—9.5
0.17—0.40
0.45—0.9
0.05
0.025
0.001
0.004
AM60B
5)增压阶段增大压力使铸件结晶凝固时组织致密,轮廓清晰。
(1)阶段冲头起始动作到内浇口之前T1系统压力建立时间
(2)阶段型腔基本冲满T2增压延迟时间
(3)阶段增压延迟T3增压压力建立时间
(4)阶段持压T4增压时间t T总的增压建压时间
一般希望在系统压力建立以后立即增压,以便达到紧实铸件,压缩消除内部气孔和缩孔的目的,增压时间T4一般在0.01~0.03秒范围内为佳,增压延时(t2)过长或增压建立时间(t3)太长都会造成整个增压时间T4延长,这对铸件的质量十分不利。
Mg(液)+O2MgO
Mg(液)+O2 +SF6MgF2+SO2F2
MgO+ SF6MgF2+SO2F2
薄膜的主要成分是结构较疏松的MgO和较致密的Mg F2。
四压铸机
压铸机是压铸生产的最基本的设备,是压铸生产中提供能源和选择最佳压铸工艺参数的条件,是实现高速高压压铸特点而获得压铸件的保证基础。
4.1压铸机分类及型号规格
这种理论比较适用于薄壁内浇口,高速填充的长方形铸件
2全壁厚填充理论
由德国学者在1937年提出,内浇口厚度值取0.5~2mm,内浇口与铸件的厚度比值为f/F在0.1~0.6范围内.
这种理论认:金属液通过内浇口进入型腔后,即扩张到型壁,然后沿着整个型腔截面向前填充,直到整个型腔充满为止.
3三阶段填充
由英国学者1944年提出
二压铸原理
1.压铸概念
熔融金属在高压高速下充填铸型,并在高压下结晶凝固形成铸件.特征:高速,高压.
2.金属填充型腔的流态
介绍三种填充理论
1喷射填充
填充分二个阶段:冲击阶段和涡流阶段
a.冲击阶段:在速度,压力保持不变的前提下,金属液进入内浇口后,仍保持着内浇口的截面形状,冲击到正对面的型壁处.
b.流阶段:向着内浇口反向填充
e.偏析:铸件化学成分不均匀的现象称为偏析。成分不一致势必会影响其机械及物理性能。
f.吸气:各种铸造有色合金都有吸收气体的特性,尤其在合金达到熔点时气体的溶解度剧烈增加。
g.气密性:合金的气密性是指铸件承受高压气体或液体的作用而不渗漏的能力,它通常反映着铸件内部的致密程度,一般规律是合金的凝固温度范围愈窄,铸件产生疏松的倾向愈小,因而气密性愈高。
冲头行程,各行程压力,各行程时间等解说
三压铸合金及熔炼
1压铸合金性能
1物理性能:合金的物理性能是指它们对各种物理现象,如,温度变化,电,磁等的作用所引起的反应,它有密度,熔点,热膨胀,导热性和导电性等项内容。
常用金属及压铸合金的物理性能
名称
密度
g/cm3
熔点
线膨胀系数
x10
导热系数(20)
千卡/厘米.秒
性能
单位
温度℃
AZ91
AM60
AM50
AM20
AS41
AS21
AE42
密度
G/cm3
20
1.81
1.80
1.77
1.75
1.77
1.76
1.79
凝固温度

598
615
620
638
617
632
625
融化温度

420--435
420--435
420--435
420--435
420--435
420--435
2内浇口开在型腔一侧的流态
金属液沿侧壁填充向前,到达顶端后包围,聚集,向反方向填充,聚集处有旋涡包气。
3薄壁型腔填充流态
金属流的厚度接近型腔的厚度,金属流入是的飘动,与型腔一侧或两侧相接触。
4型腔转角处的流态
金属液入型腔转角处会产生旋涡(b)
5圆弧面处的流态(见图)
注:(1)金属液(2)包气
4.压铸过程中的主要参数说明
3.4.2镁合金熔化及保护炉
合金熔化可以通过电阻式,感应式,然油或然气加热。从安全操作及温度控制方面着想,采用电阻加热炉,目前普遍采用双室熔化炉(一个室用作熔化,一个室用作保温),它的优点在于大部分温度变动和杂质只存在于熔化炉中。每1000公斤熔料大约耗电400~500千瓦小时。
熔化状态的镁与空气中的氧气和水分接触将发生剧烈的反应,因此需要避免空气进入到镁液中去。目前普遍采用气体保护方式保护容了。保护气体以SF6 +N2的混合气体为例来说明其保护原理:覆盖在镁汤表面的保护气体是经由一连串的化学反应,形成一层n微米厚的薄膜,产生保护效果:
液相线
固相线

2.7
658
23.8
0.504
铝合金
2.5-2.9
575-630
545-579
21
0.2-0.42

1.74
650
27.3
0.376
镁合金
1.8-1.81
607-492
26.4
0.18-0.32
2化学性能
合金的化学性能是它们在各种介质中与其它元素起化学反应的能力,主要是耐蚀性。
3机械性能
17
nm
nm
nm
nm
nm
nm
硬度
Hbs1/5
70
65
60
60
60
55
60
冲击力
j
6
17
18
18
4
5
5
5.镁合金熔炼
3.4.1镁锭预热
一般镁极易与空气中水分,氧气发生化学反应:
Mg + O22MgO(s)
Mg3;Q
因此,镁锭表面是又MgO,Mg(OH)2的膜组成,但MgO和Mg(OH)2都会吸附水分。若把受潮镁锭加入熔融镁液,极易引起熔炉爆炸,因而镁锭加入镁液前必须预热去除表面水分。预热温度:150摄氏度~350摄氏度。
5.6—6.4
0.26—0.50
Max 0.20
0.05
0.008
0.001
0.004
AM50A
4.5—5.3
0.28—0.50
Max 0.20
0.05
0.008
0.001
0.004
AM20
1.7—2.5
Min 0.20
Max 0.20
0.05
0.008
0.001
0.004
AS41
3.7—4.8
0.35—0.6
AM系列的合金适用于需要良好延展性及耐冲击性,例:汽车的方向盘,仪表板架,座椅架等。
3.2.2镁合金牌号表示法
①欧洲标准
欧洲对镁合金的表示方法:ENMC Mg Al9Zn 1(A)
EN表示欧洲标准,M表示镁,Mg Al 9 Zn 1表示主要元素及成分,A表示版本编号
②美国标准:即ASTM标准的镁合金表示法
c.第三阶段:金属液全部充满型腔,连同浇注系统及压室形成一个封闭的水力系统,在这个系统中各处的压力均等,压射力仍可通过尚未凝固的内浇口作用于铸件,达到进一步增压的目的。
3.金属液在不同条件下的流态分析
1不同厚度内浇口所出现的流态
改变内浇口厚度与铸件厚度之比,除了影响填充的速度和时间外,也影响金属液在型腔内的流态。如下图:
a.第一阶段:液态金属射入型腔冲击型壁后,沿着型腔各方向扩展,在正常的传热条件下,与型腔壁面相接触的部位形成一层凝固层,亦即铸件的表面层.
b.第二阶段:铸件表面成壳后,型腔继续受到液体金属的填充,凝固层逐渐增厚,此时合金的粘度亦增,而处于中心部位的液体金属,在第二阶段结束时,尚处于液态,除了继续得到液体金属的补充外,仍可承受来自压室的压射压力。
压铸机通常按压室的受热条件的不同分为冷室压铸机和热室压铸机两大类。冷室压铸机又因压室和模具放置的位置和方向不同分为卧式,立式和全立式三种。
热室压铸机的主要特点是在压室和压射冲头浸在熔融金属液中.。冷室压铸机的主要特点是压室内和压射冲头不浸在熔融的金属中,冷室压铸机的卧式最为常见。
(a)(b)
4.1.2压铸代号的意义.
6.6
nm
9.1
13.1
nm
10.8
11.7
3.3.3镁合金材料的机械特性
性能
单位
AZ91
AM60
AM50
AM20
AS41
AS21
AE42
极限抗拉强度
Mpa
240
225
210
190
215
175
230
拉伸屈服强度
mpa
160
130
125
90
140
110
145
延伸系数
%
3
8
10
12
6
9
10
剪切系数
Gpa
国产压铸机的代号全意如下(根据部标JB30000-81规定).
J I a b c d
J:代表金属压铸机
I:特性符号:有I表示机器是自动或半自动.
a:代表机器分类1-----代表冷室压铸机2-------代表热室压铸机
合金的铸造性:流动性,收缩性,热裂,铸造应力。偏析,吸气,杂质。
a.流动性:指合金液充填型腔的能力;影响因素:浇注温度,模具温度,压力,压射速度,铸件结构。
b.收缩性:合金从液态到凝固完毕直至常温过程中所产生的体积和尺寸的变化,总称为收缩,可分三个阶段:液态,收缩,凝固收缩和固态收缩。
相关文档
最新文档