《不等式的基本性质》教学设计

合集下载

不等式的基本性质教案

不等式的基本性质教案

不等式的基本性质教案一、教学目标:1. 让学生理解不等式的概念,掌握不等式的基本性质。

2. 培养学生解决实际问题的能力,提高逻辑思维能力。

3. 引导学生运用不等式的基本性质进行证明和求解。

二、教学内容:1. 不等式的定义及表示方法。

2. 不等式的基本性质(性质1、性质2、性质3)。

3. 不等式的运算规则。

三、教学重点与难点:1. 重点:不等式的基本性质及其运用。

2. 难点:不等式性质的证明和运用。

四、教学方法:1. 采用问题驱动法,引导学生探索不等式的基本性质。

2. 运用案例分析法,让学生在实际问题中应用不等式。

3. 利用小组合作学习法,培养学生的团队协作能力。

五、教学过程:1. 导入:通过生活实例引入不等式的概念,引导学生理解不等式的表示方法。

2. 新课导入:介绍不等式的基本性质,引导学生通过观察、分析、归纳性质1、性质2、性质3。

3. 案例分析:运用不等式的基本性质解决实际问题,巩固所学知识。

4. 课堂练习:设计相关练习题,让学生运用不等式的基本性质进行计算和证明。

5. 总结提升:对本节课的内容进行总结,强调不等式的基本性质及其运用。

6. 作业布置:布置适量作业,巩固所学知识。

六、教学评估:1. 通过课堂练习和作业,评估学生对不等式基本性质的理解和运用能力。

2. 观察学生在解决问题时的思维过程,评估其逻辑思维和问题解决能力。

3. 采用小组讨论的方式,评估学生在团队协作中的表现和沟通能力。

七、教学反馈与调整:1. 根据学生的学习情况,及时给予反馈,针对性地进行讲解和辅导。

2. 对于学生掌握不足的部分,可以适当重复讲解,或增加相关的练习题目。

3. 鼓励学生提问,积极解答学生的疑问,提高学生的学习兴趣和动力。

八、拓展与延伸:1. 引导学生思考不等式在现实生活中的应用,例如经济、科学、工程等领域。

2. 介绍不等式与其他数学概念的联系,如函数、方程、坐标系等。

3. 鼓励学生进行不等式相关的课题研究,提高学生的研究能力和创新思维。

不等式的基本性质教学设计教案

不等式的基本性质教学设计教案

不等式的基本性质教学设计-教案第一章:不等式的概念与基本性质1.1 不等式的定义介绍不等式的概念,理解不等号(>,<,≥,≤)的含义举例说明不等式的表示方法1.2 不等式的基本性质性质1:如果a>b,a+c>b+c(加法性质)性质2:如果a>b且c>0,ac>bc(乘法性质,正数)性质3:如果a>b且c<0,ac<bc(乘法性质,负数)性质4:如果a>b且c≥0,a-c>b-c(减法性质)第二章:不等式的运算2.1 不等式的加减法运算展示不等式的加减法运算规则,举例说明练习题:求解下列不等式组的解集2.2 不等式的乘除法运算介绍不等式的乘除法运算规则,注意正负数的处理练习题:求解下列不等式组的解集第三章:不等式的解法3.1 简单不等式的解法介绍简单不等式的解法,如直接解、移项、合并同类项等练习题:求解下列简单不等式的解集3.2 不等式组的解法介绍不等式组的解法,如图像法、区间法等练习题:求解下列不等式组的解集第四章:不等式的应用4.1 实际问题中的不等式举例说明不等式在实际问题中的应用,如距离问题、分配问题等练习题:解决下列实际问题中的不等式4.2 不等式的优化问题介绍不等式在优化问题中的应用,如最大值、最小值问题练习题:解决下列优化问题中的不等式第五章:不等式的综合练习5.1 不等式的综合应用综合运用不等式的基本性质、运算和解法解决实际问题练习题:解决下列综合应用问题中的不等式5.2 复习与总结复习不等式的概念、基本性质、运算和解法总结不等式的重要性和在数学中的应用第六章:不等式的标准形式6.1 不等式的标准形式介绍不等式的标准形式:x ≤a 或x ≥a说明标准形式在解不等式组中的重要性6.2 标准形式的不等式解法展示如何将不等式转换为标准形式练习题:将给定的不等式转换为标准形式并求解第七章:不等式的绝对值7.1 不等式中的绝对值解释绝对值在不等式中的含义和作用举例说明绝对值不等式的解法7.2 绝对值不等式的解法展示绝对值不等式的解法步骤练习题:求解含有绝对值的不等式第八章:不等式的函数关系8.1 不等式与函数的关系探讨不等式与函数之间的关系举例说明如何通过函数图像解决不等式问题8.2 函数图像下的不等式解法介绍如何利用函数图像求解不等式练习题:利用函数图像解决给定的不等式问题第九章:不等式的不等式系统9.1 不等式系统的概念介绍不等式系统的概念及其解法说明不等式系统在实际问题中的应用9.2 不等式系统的解法展示如何解不等式系统练习题:求解给定的不等式系统第十章:不等式的拓展与应用10.1 不等式的拓展探讨不等式在其他数学领域的应用介绍不等式的相关拓展知识10.2 不等式的实际应用分析不等式在现实生活中的应用练习题:解决实际生活中的不等式问题教案总结:本教案涵盖了不等式的基本概念、性质、运算、解法、应用以及拓展等内容。

不等式的基本性质(教案)

不等式的基本性质(教案)

不等式的基本性质教学对象:八年级教学课时:2课时教学目标:1. 理解不等式的基本性质,能够运用性质1、2、3解决实际问题。

2. 培养学生的逻辑思维能力和解决实际问题的能力。

教学重难点:1. 掌握不等式的性质1、2、3。

2. 能够运用不等式的性质解决实际问题。

教学准备:1. PPT课件2. 黑板3. 教案教学过程:第一课时一、导入(5分钟)1. 引入不等式的概念,让学生回顾已学过的不等式知识。

2. 提问:不等式有哪些基本性质呢?二、新课讲解(15分钟)1. 讲解不等式的性质1:如果a>b,a+c>b+c(c为任意实数)。

2. 讲解不等式的性质2:如果a>b,ac>bc(c为正数)。

3. 讲解不等式的性质3:如果a>b,c>d,ac>bd(c、d为任意实数)。

三、例题讲解(10分钟)1. 举例讲解不等式性质1的应用。

2. 举例讲解不等式性质2的应用。

3. 举例讲解不等式性质3的应用。

四、课堂练习(10分钟)1. 让学生独立完成练习题,巩固所学的不等式性质。

2. 解答学生提出的问题,及时给予指导和帮助。

第二课时五、复习导入(5分钟)1. 复习上节课所学的不等式性质。

2. 提问:不等式的性质有哪些应用呢?六、拓展讲解(15分钟)1. 讲解不等式的性质4:如果a>b,a/c>b/c(c为正数)。

2. 讲解不等式的性质5:如果a>b,a^n>b^n(n为正整数)。

七、例题讲解(10分钟)1. 举例讲解不等式性质4的应用。

2. 举例讲解不等式性质5的应用。

八、课堂练习(10分钟)1. 让学生独立完成练习题,巩固所学的不等式性质。

2. 解答学生提出的问题,及时给予指导和帮助。

1. 本节课讲解了不等式的基本性质,包括性质1、2、3、4、5。

2. 学生能够运用不等式的性质解决实际问题,提高了解决问题的能力。

3. 通过练习题的训练,巩固了所学知识,为后续学习打下了基础。

不等式的基本性质教学设计教案

不等式的基本性质教学设计教案

不等式的基本性质教学设计-教案一、教学目标:1. 让学生理解不等式的概念,掌握不等式的基本性质。

2. 培养学生解决实际问题的能力,提高学生的数学思维水平。

3. 引导学生运用不等式的基本性质进行证明和解决问题。

二、教学内容:1. 不等式的定义及表示方法。

2. 不等式的基本性质(性质1、性质2、性质3)。

3. 不等式的运算规则。

三、教学重点与难点:1. 教学重点:不等式的概念、表示方法,不等式的基本性质及运算规则。

2. 教学难点:不等式的基本性质的理解与应用。

四、教学方法:1. 采用问题驱动法,引导学生探索不等式的基本性质。

2. 运用案例分析法,让学生在实际问题中体验不等式的应用。

3. 利用多媒体辅助教学,直观展示不等式的性质及运算过程。

五、教学过程:1. 导入新课:通过生活实例引入不等式的概念,让学生感受不等式的实际意义。

2. 自主学习:让学生阅读教材,了解不等式的表示方法。

3. 课堂讲解:讲解不等式的基本性质,通过示例让学生理解并掌握性质1、性质2、性质3。

4. 课堂练习:设计相关练习题,让学生运用不等式的基本性质进行解答。

5. 拓展与应用:让学生运用不等式的基本性质解决实际问题,培养学生的应用能力。

6. 总结与反思:对本节课的内容进行总结,强调不等式的基本性质的重要性。

7. 布置作业:设计适量作业,巩固所学知识。

教学评价:通过课堂讲解、练习和实际应用,评价学生对不等式的基本性质的理解和运用程度。

六、教学策略与辅助工具1. 教学策略:采用问题-探究教学模式,鼓励学生主动发现问题、解决问题。

利用小组合作学习,促进学生之间的交流与合作。

2. 辅助工具:多媒体教学课件,用于展示不等式的图形和动态变化,增强学生对不等式性质的理解。

七、教学准备1. 教材:准备不等式相关教材和教学参考书,为学生提供丰富的学习资源。

2. 课件:制作多媒体课件,包含动画、图形等元素,生动展示不等式的性质。

3. 练习题:准备一系列练习题,涵盖不等式的基本性质和应用问题。

不等式性质基本性质教案

不等式性质基本性质教案

不等式性质基本性质教案一、教学目标:1. 让学生理解不等式的基本性质,掌握不等式两边同加上或减去同一个数,不等号的方向不变;不等式两边同乘以或除以同一个正数,不等号的方向不变;不等式两边同乘以或除以同一个负数,不等号的方向改变。

2. 培养学生运用不等式的性质解决问题的能力。

3. 通过不等式的性质教学,培养学生抽象思维能力,渗透转化的数学思想。

二、教学内容:1. 不等式两边同加上或减去同一个数,不等号的方向不变。

2. 不等式两边同乘以或除以同一个正数,不等号的方向不变。

3. 不等式两边同乘以或除以同一个负数,不等号的方向改变。

4. 运用不等式的性质解决问题。

三、教学重点与难点:1. 教学重点:让学生掌握不等式的基本性质,能运用不等式的性质解决问题。

2. 教学难点:不等式两边同乘以或除以同一个负数,不等号的方向改变。

四、教学方法:1. 采用启发式教学法,引导学生发现不等式的性质,培养学生抽象思维能力。

2. 采用例题教学法,让学生通过观察、分析、归纳不等式的性质。

3. 采用练习法,巩固所学的不等式性质。

五、教学过程:1. 导入新课:复习相关知识点,如不等式的概念、不等式的解集等,为学生学习不等式的性质做好铺垫。

2. 教学不等式两边同加上或减去同一个数,不等号的方向不变:(1)展示例题,引导学生观察、分析,发现不等式两边同加上或减去同一个数,不等号的方向不变。

(2)让学生用语言表述这一性质。

(3)进行练习,巩固所学知识。

3. 教学不等式两边同乘以或除以同一个正数,不等号的方向不变:(1)展示例题,引导学生观察、分析,发现不等式两边同乘以或除以同一个正数,不等号的方向不变。

(2)让学生用语言表述这一性质。

(3)进行练习,巩固所学知识。

4. 教学不等式两边同乘以或除以同一个负数,不等号的方向改变:(1)展示例题,引导学生观察、分析,发现不等式两边同乘以或除以同一个负数,不等号的方向改变。

(2)让学生用语言表述这一性质。

不等式的基本性质(教案)

不等式的基本性质(教案)

不等式的基本性质一、教学目标:1. 让学生理解不等式的概念,掌握不等式的基本性质。

2. 培养学生解决实际问题的能力,提高学生对数学的兴趣。

二、教学内容:1. 不等式的定义及表示方法2. 不等式的基本性质:a. 不等式两边加(减)同一个数(式子),不等号方向不变。

b. 不等式两边乘(除)同一个正数,不等号方向不变。

c. 不等式两边乘(除)同一个负数,不等号方向改变。

三、教学重点与难点:1. 教学重点:不等式的基本性质及运用。

2. 教学难点:不等式性质的灵活运用,解决实际问题。

四、教学方法:1. 采用启发式教学,引导学生发现不等式的基本性质。

2. 利用例题讲解,让学生学会运用不等式性质解决实际问题。

3. 小组讨论,培养学生的合作意识。

五、教学准备:1. 课件、黑板、粉笔2. 例题及练习题3. 学生分组合作的材料教案内容:一、导入(5分钟)1. 引入不等式的概念,让学生回顾已学的相关知识。

2. 提问:不等式有什么特点?如何表示不等式?二、新课讲解(15分钟)1. 讲解不等式的基本性质,引导学生发现规律。

2. 通过例题讲解,让学生学会运用不等式性质解决实际问题。

三、课堂练习(10分钟)1. 让学生独立完成练习题,巩固所学知识。

2. 教师点评答案,解答学生疑问。

四、小组讨论(10分钟)1. 教师给出讨论题目,让学生分组合作解决问题。

2. 各小组汇报讨论成果,教师点评并总结。

五、课堂小结(5分钟)1. 让学生总结不等式的基本性质及运用。

2. 教师补充讲解,强调重点知识点。

六、课后作业(课后自主完成)1. 巩固不等式的基本性质,提高解题能力。

2. 结合生活实际,解决相关问题。

六、教学拓展(10分钟)1. 引导学生思考:不等式性质在实际生活中的应用。

2. 举例说明:如购物时比较价格、比赛成绩排名等。

七、巩固练习(10分钟)1. 让学生完成一些巩固不等式性质的习题。

2. 教师点评答案,解答学生疑问。

八、课堂互动(10分钟)1. 教师提出问题,让学生分组讨论、回答。

不等式的基本性质(教案)

不等式的基本性质(教案)

不等式的基本性质一、教学目标1. 让学生理解不等式的概念,掌握不等式的基本性质。

2. 培养学生运用不等式解决实际问题的能力。

3. 提高学生对数学逻辑思维的认知。

二、教学内容1. 不等式的定义及表示方法2. 不等式的基本性质1) 不等式的两边加减同一个数,不等号的方向不变。

2) 不等式的两边乘除同一个正数,不等号的方向不变。

3) 不等式的两边乘除同一个负数,不等号的方向改变。

3. 运用不等式的基本性质解决实际问题。

三、教学重点与难点1. 教学重点:不等式的基本性质及其运用。

2. 教学难点:不等式性质3的理解与应用。

四、教学方法1. 采用启发式教学,引导学生发现不等式的基本性质。

2. 通过例题讲解,让学生学会运用不等式解决实际问题。

3. 利用小组讨论,培养学生合作学习的能力。

五、教学过程1. 导入:复习相关知识点,如实数、比较大小等,为学生学习不等式打下基础。

2. 新课讲解:介绍不等式的定义及表示方法,讲解不等式的基本性质,并通过例题展示运用。

3. 课堂练习:布置练习题,让学生巩固不等式的基本性质。

4. 实际问题解决:引导学生运用不等式解决实际问题,如分配问题、排序问题等。

5. 课堂小结:总结不等式的基本性质及运用方法。

6. 课后作业:布置相关作业,巩固所学知识。

六、教学评估1. 课堂提问:通过提问了解学生对不等式基本性质的理解程度。

2. 练习题解答:检查学生运用不等式解决实际问题的能力。

3. 课后作业:评估学生对课堂所学知识的掌握情况。

七、教学拓展1. 对比等式的性质,引导学生发现等式与不等式的异同。

2. 介绍不等式的其他性质,如不等式的传递性、同向不等式的可加性等。

八、课堂互动1. 小组讨论:让学生分组讨论不等式性质的应用,分享解题心得。

2. 教学游戏:设计有关不等式的游戏,提高学生的学习兴趣。

九、教学策略调整1. 根据学生掌握情况,针对性地讲解不等式的难点知识点。

2. 对于学习困难的学生,提供个别辅导,帮助他们跟上课堂进度。

课题不等式的基本性质教案

课题不等式的基本性质教案

课题不等式的基本性质教案一、教学目标:1. 让学生理解不等式的概念,掌握不等式的基本性质。

2. 培养学生运用不等式解决实际问题的能力。

3. 培养学生合作交流、归纳总结的能力。

二、教学内容:1. 不等式的概念及表示方法。

2. 不等式的基本性质(性质1、性质2、性质3)。

3. 不等式的应用。

三、教学重点与难点:1. 教学重点:不等式的概念,不等式的基本性质。

2. 教学难点:不等式的应用,不等式性质的推导。

四、教学方法:1. 采用自主学习、合作交流的教学方法,让学生在探究中掌握不等式的基本性质。

2. 利用多媒体课件辅助教学,提高学生的学习兴趣。

3. 结合生活实例,培养学生运用不等式解决实际问题的能力。

五、教学过程:1. 导入新课:通过复习数轴,引入不等式的概念。

2. 自主学习:学生自主探究不等式的表示方法,了解不等式的基本性质。

3. 合作交流:分组讨论,让学生在实践中归纳总结不等式的基本性质。

4. 课堂讲解:教师讲解不等式的性质1、性质2、性质3,并通过例题演示。

5. 应用拓展:学生运用不等式解决实际问题,培养运用能力。

6. 课堂小结:教师引导学生总结不等式的基本性质及应用。

7. 课后作业:布置相关练习题,巩固所学知识。

8. 教学评价:通过课堂表现、作业完成情况,评价学生对不等式知识的掌握程度。

六、教学设计:1. 教学目标:让学生能够理解并应用不等式的传递性质。

2. 教学内容:不等式的传递性质及其应用。

3. 教学重点与难点:理解不等式的传递性质,并能够运用到具体问题中。

4. 教学方法:采用案例分析法,让学生通过具体例子理解并掌握不等式的传递性质。

5. 教学过程:1) 导入:通过一个具体的例子,引导学生思考不等式传递性质的概念。

2) 自主学习:学生通过自学了解不等式传递性质的定义和证明。

3) 合作交流:分组讨论,让学生通过案例分析来应用不等式的传递性质。

4) 课堂讲解:教师通过讲解进一步巩固学生对不等式传递性质的理解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《不等式的基本性质》教学设计
教学目标:
◆1、使学生掌握和理解不等式的三条基本性质.
◆2、培养学生观察、分析、比较的能力,会运用不等式的基本性质进行不等式的变形,提高他们灵活地运用所学知识解题的能力.
教学重点与难点:
◆教学重点:不等式的三条基本性质的运用.
◆教学难点:不等式的基本性质3的运用和 不等式的变形以及范例要比较两个代数式的大小的几种方法,学生缺乏这方面的经验,这些是本节教学的难点.
教法和学法:操练合作发现总结式教学法
操练 合作 发现 归纳
总结
教学过程:
一、从学生原有的认知结构提出问题 ,练习问题,解决问题,总结结论。

1.用“<、>、=“完成下列填空:
(1)如果a <- 9,而- 9< 3 ,那么a_____3 。

(2)如果a >- 9,而- 9>-13 ,那么a____-13 。

你发现了什么?你还可以再举例吗?试一试!能得到什么结论?
不等式的基本性质1:
若a <b , b <c ,则a <c ,这个性质也叫做不等式的传递性。

2.通过实验观察,用“<、>、=“完成下列填空:
8_>_5 8+2_>_5+2
10_>_ 7 10-2_>_7-2
你发现了什么?试一试!你能得到什么结论? 通过观察和举实例合作学习,完成下列两个问题,并自己判断前面的猜想的结论是否正确?
(1)已知a <b 和
a b c
由数轴上a 和 c 的位置关系,你能得到什么结论?
(2)若a > b ,则 a+ c 和 b +c 哪个较大,
a- c 和 b- c 呢?请用数轴上点的位置关系加以说明。

不等式的基本性质2:
不等式的两边都加上(或减去)同一个数,所得的不等式仍成立。

1.用适当的不等号填空:
(1) ∵ 0 1,
∴ a a+1(不等式的基本性质2)
(2) ∵ (a-1)2 0
∴ (a-1)2-2 -2(不等式的基本性质2)
2. a,b 两个实数在数轴上的对应点如图所示:用“>”或“<”号填空:
(1)a b; (2) |a | |b |; (3)a+b 0
(4)a-b 0 (5)a+b a-b (6)ab a
b o a
3.通过计算,用“<、>、=“完成下列填空:
2 3 2×(-1) 3×(-1)
2×5 3×5 2×(-5) 3 × (-5)
2×1/2 3×1/2 2×(-1/2) 3 ×(-1/2)
你发现了什么?你还可以再举例吗?试一试!你又有什么样的结论呢?
-2 -3 -2×(-1) -3×(-1)
-2×5 -3×5 -2×(-5) -3 × (-5)
-2×1/2 -3×1/2 ,-2×(-1/2) -3 ×(-1/2)
不等式的基本性质3:
不等式的两边都乘(或都除以)同一个正数,所得的不等式仍成立;不等号的方向不变。

不等式的两边都乘(或都除以)同一个负 数, 必须把不等号的方向改变,所得的不等式成立。

再做一做
我国于2001年12月11日正式加入世界贸易组织(WTO )。

加入前,产品A 的进口税超过产品B 的进口税的1倍以上;加入后,这两种产品的进口税都下调了15%。

你认为加入后产品A 的进口税仍超过产品B 的进口税的1倍以上吗?请说明理由。

二、对学生刚学的知识进行巩固应用
1.范例讲解:已知a < 0, 试比较2a 与a 的大小
解法一:举实例法
解法二:数轴表示法
解法三:应用性质2移项法
2.课内练习:书本P :106
3.探究活动:比较等式与不等式的基本性质
三、对这节课所学知识回顾总结
1。

这节课你有那些收获?2。

还有哪些困惑?3。

布置作业:书本作业和
课外练习
1. 当x 取下列数值时,不等式1-5x <16是否成立? -4.5, -4,-3,4,2.5,0,-1.
2. 用不等式表示下列数量关系:
(1)x 的3倍大于x 的2倍与5的差; 等式 不等式 两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。

两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。

两边都乘以(或除以)同一个数(除数不能是0),所得结果仍是等式。

两边都乘以(或除以)同一个正数,不等号的方向不变。

两边都乘以(或除以)同一个负数,不等号的方向改变。

(2)y的一半与4的和是负数;
(3)5与a的4倍的差不是正数;
(4)3与x的2倍的和是正数.
3.按照下列条件写出仍然成立的不等式,并说明根据不等式的哪一条基本性质:
(1)m>n,两边都减去3;(2)m>n,两边同乘以3;(3)m>n,两边同乘以-3;(4)m>n,两边同乘以m.
4.下列各题的横线上填入不等号,使不等式成立.并说明是根据哪一条不等式基本性质.
(1)若a-3<9,则a ______12;(2)若-a<10,则a______ -10;
(3)若0.5a>-2,则a ______-4;(4)若-a>0,则a______0。

5.已知a<0,用>或< 号填空:使不等式成立.并说明是根据哪一条不等式基本性质.
(1)a+2 ______ 2;(2)a-1 ______ -1;(3)3a______ 0;
(4)-3a______ 0;(5)a-1______0;(6)|a|______0.
6.判断下列各题的推导是否正确?为什么?
(1)因为7.5>5.7,所以-7.5<-5.7;(2)因为a+8>4,所以a>-4;(3)因为4a>4b,所以a>b;(4)
因为-1>-2,所以-a-1>-a-2;(5)因为3>2,所以3a>2a.
7.照下列条件,写出仍能成立的不等式:
(1)由-2<-1,两边都加-a;(2)由7>5,两边都乘以不为零的-a;
(2)由-3>-4,两边都除以不为零的-a.
8.用不等号填空:
(1)当a-b<0时,a______ b;(2)当a<0,b<0时,ab ______0;(3)当a<0,b>0时,ab ______0;(4)
当a>0,b<0时,ab ______ 0;(5)若a ______ 0,b<0,则ab>0;
9.设a<b,用不等号连接下列各题中的两个代数式:
(1)a-1,b-1;(2)a+2,b+2;(3)2a,2b;
10.用不等号填空:
(1)若a-b<0,则a ______ b;(2)若b<0,则a+b ______ a;(3)b<a<2,则(a-2)(b-2)______0;(2-a)(2-b)______ ;
(2-a)(a-b)______.。

相关文档
最新文档