浅谈直觉思维及培养
浅谈学生的数学直觉思维及培养

培养学生的直觉思维能力符合新时期社会对人才 的需求 。 是社会发展 觉的成分? 比如 , 日常的工作 和生活 中, 在 人们 的判断 与猜想并 非都出 自 的需要。但是现实中, 师往往 忽视 了直觉思维 能 力的培养 , 是过 多地 理性的逻辑 思维 , 教 而 很大一部分都 离不开 直觉 , 觉可 以说 无时无 刻不在发 直 注重 逻 辑 思 维 能 力 的 发展 , 不 利 于 学 生 思 维 能 力 的 发 展 。 因 此 , 教 学 挥 着 作 用 。 数 学也 是 对 客 观 世 界 的 反 映 , 是 人 们 对 生活 现 象 与 世 界 运 行 这 在 它 中, 师既要培养学生的逻辑思维能力 , 教 又要培 养学生的观察力 、 觉力和 的秩序直观的体现 。 直 再将思考的理性过程用数 学的形式进行格式化 。许 多 想象力。 数学概念一开始都是基于直 觉的 , 从某 种意义 上来讲 , 数学就是 在系列 的
直 觉 思 维 的主 要 特 点 问题 不 断 得 以 解决 的过 程 中 变化 发 展 的 , 直 觉 是 数 学 问 题 得 以解 决 的 不 而 直 觉思维所拥有的特 点包括 灵活性 、 自由性、 然性、 偶 自发性和 不可靠 可 或 缺 的 因 素 。 性等 , 主要特点如下 : 其 课 堂 教 学 中 , 师 常 常把 证 明过 程 过 分 地 格 式 化 和 程 序 化 , 盖 了 学 教 遮 1简 约 性 . 生们 直 觉 的 光 环 , 得 学 生 只 看 到 僵 硬 的 逻 辑 的 外 壳 , 易 于 忽 略 自 己 的 使 而 直觉思维是调动思维者的全部 知识经验 , 对思 维的对 象进行考 察 , 通 直觉 的功 劳 , 仅 把 成 功 归 功 于 逻 辑 。 这 样 , 习 的积 极 性 没 有 被 充 分 调 仅 学
浅谈新课标下学生数学直觉思维能力的培养

就 以数 学 问题 的证 明为例 ,来考察直 觉在证 明过程 中所 起 的作 用 。
一
2 9 第 2 (第 2 ) 0年 1 总 8 0 期 期
1 简 约性 .
直觉 思维 是对思维 对象 从整体 上考察 ,调动 自 己的全 部知识经 验 ,通 过丰 富的想象作 出的敏锐 而
是割 离 的。有一种 观点 认为逻 辑重 于演绎 ,而直观 重于分 析 ,从侧重 角度来 看 ,此 话不无 道理 ,但侧 重 并 不等 于完 全 ,数 学逻 辑 中是否会 有 直觉 成 分? 数 学直 觉 是否 具 有逻 辑性 ? 比如在 日常 生活 中有 许 多说 不清道 不 明的东西 ,人们 对各种 事件 作 出判 断 与猜 想离不 开直觉 ,甚 至可 以说直觉 无 时无刻不在 起 作用 。数 学也是对 客观 世界 的反 映,它 是人们对
2 9 第 2 (第 2 ) 0年 l 总 8 0 期 期
中目 现代教育 备 装
浅谈新课标下学生数学直觉
思维能力的培养
修建伟
江苏 省扬州市 宝应县范水高级 中学 江苏扬州 0 1 1O 60
对学 生思维 能力 的培养 是数 学教 学基本 任务 之
一
上 ,感 觉 不久便会 变 的无 能 为力 。例 如 ,我 们仍无 法想象 千角 形 ,但 我们 能够通过 直觉 一般地 思考 多 角形 ,多角形 把千 角形作 为一个特 例包 括进 来 。由
的证 明摆在我们 面前 开始 ,逻 辑可 以帮助我们 确信 沿着 这条路必 定能顺 利 的到达 目的地 ,但是逻 辑却
不能 告诉我们 ,为什 么这些 路径 的选 取与这样 的组 合可 以构成 一条通道 。事 实上 ,出发不久 就会遇上
浅谈学生直觉思维能力的培养

进来。
一
个 数 学 证 明可 以分 解 为许 多基 本
运 算 或 许 多演 绎推 理 元 素 , 一个 成 功 的 数 学 证 明 是 这 些 基 本 运 算 或 演 绎 推 理 元 素 的 成 功 组 合 , 如 果 把 它 看 做 是 一
简 约 性 。 直 觉 思 维 是 对 思 维 对 象 从 普遍 存 在 的对 立 统 一 、运 动 变 化 、相 互 整 体 上 考 察 , 调 动 自 己 的 全 部 知 识 经 转 化 、对 称 性 等 。 美感 和 美 的意 识 是 数 验 ,通 过 丰 富 的 想 象 作 出 的 敏 锐 而 迅 速 学 直 觉 的本 质 ,审 美 能 力 越 强 ,则 数 学
误 解 。逻 辑 思 维 与 直 觉 思 维 从 来 就不 是 样 的 组合 可 以构 成 一条 通 道 。事 实上 ,
割 裂 开 的 。 有 ~ 种 观 点 认 为 ,逻 辑 重 于 出 发不 久 就 会 遇 上 岔 路 口 ,也 就 是 遇 上
了 正 确 选 择 构 成 通道 的 路 段 的 问题 。庞 加 莱 认 为 , 即 使 能 复 写 出 一个 成 功 的数
对 象的某种直接 的领悟和洞察 。直观与 的 秩 序 直 觉 的 体 现 , 再 以数 学 的 形 式 将 直 感 都 是 以真 实 的 事 物 为 对 象 , 通过 各 思考 的 理性 过 程 格 式化 。数 学最 初 的概
种 感 觉 器 官 直 接 获 得 的 感 觉 或 感 知 。 例 念 都 是 基 于直 觉 , 数 学 在 一 定程 度 上 就 如 等腰 三 角 形 的 两 个 底 角 相 等 , 两 个 角 是 在 问 题 解 决 中 得 到 发 展 的 , 问 题解 决
浅谈数学直觉思维的培养

知 识 方法 的必 要手 段 。对 于学 生 的大胆 设 想应 给 予充分 肯 定 ,对其 合理 成 分 及 时给 予鼓 励 ,爱 护、 扶植 学生 的 自发性 直 觉 思维 , 以免挫 伤学 生直 觉 思 维 的积 极性 和学 生直 觉 思维 的悟 性 。教师 应 及 时因势 利 导,解 除 学生 心 中的疑 惑 ,使 学生对 自己的 直觉 产生 成功 的喜 悦感 。 5 . 有 目的地 设置 直觉 思 维 的意 境和 动 机 ,诱 导学 生整 体观 察 , 大胆 直 觉 判 断。 因此 ,为 培养 学 生的 创新 素质 ,在 数 学教 学 中除 了培养 好 学生 的 逻 辑 思维 以外 ,还 应充 分挖 掘 出教 材 中的各 种 因素 ,适 时诱 导学 生 大胆 直 觉 判 断。对 于 学生 的大 胆设 想给 予 充分 肯定 ,对 其合 理 成分 要及 时给 予 鼓 励 ,爱护 、扶植 学生 的 自发性 直觉 思维 。要 注 意培养 学 生的 观察 能力 。 6 . 增 强学 生 学好 数学 的信 心 ,培 养 学 生的 直觉 思维 。在课 堂 教学 中 , 数 学直 觉 思维 的培养 和 发展 是情 感 教育 的产 物之 一 ,直 觉发现 伴 随着 很 强 的“ 自信 心 ” 。从马 斯洛 的需求 层 次来看 ,它使 学 生的 自我 价值 得 以从 分 实 现 ,也 就是 最 高层 次 的需要 得 以实现 。比起 其他 的物 质奖 励和 情 感激 励 , 这种 自信 更 稳定 、更 持久 。 7了解 前 人创 造过 程 及数 学 发展 趋 势 ,激发 学 生 的探 索精 神 。 因此 , 教师 在 教学 中应 当注 意激 发 学生 的探 索精 神 。教 师应 当把 知识 系 统与 数学 学科 的发 展 史有 机结 合起 来进 行 讲授 ,介 绍数 学 学科 及其 公理 定 理产 生和 演变 过程 ,让学 生去 感 受前人 的发展 过程 和情 绪 体验 。如 在学 习 《 勾股 定 理》 内容 时 ,可 从三 国赵 爽创 制“ 勾 股 圆方 图” ,讲 到三 国刘 徽 用“ 出入相 补 法” 证 明勾 股 定理 ,再 到西 方关 于勾 股定 理 的拼 图证法 ,最 后到 2 0 0 2年 北
浅谈直觉思维的认识和初中生数学直觉思维的培养

浅谈直觉思维的认识和初中生数学直觉思维的培养1对直觉思维的认识1.1直觉思维与数学直觉思维直觉思维是指对一个问题未经逐步分析仅依据对内因的感知迅速地对问题答案作出判断、猜想,或者在对疑难百思其解之中,突然对问题有“灵感”和“顿悟”。
甚至对未来事物的结果有“预感”、“预言”等都是直觉思维。
而数学思维是人脑和数学对象(空间关系、数量关系、结构关系)交互作用并按照一般思维规律认识数学内容的内在的理性活动。
数学知识具有严密的逻辑性、抽象性和系统性。
数学的直觉思维是人的感性认识到理性认识的过程,是始学分析思维的基础。
1.2直觉思维的主要特点及数学直觉思维的特点直觉思维是一种心理现象。
它不仅在创造性思维活动关键阶段起着极为重要的作用,也是人生命活动、延缓衰老的重要保证。
直觉思维具有自由性、灵活性、自发性、偶然性、不可靠性等特点。
直觉思维是完全可以有意识加以训练和培养的,从直觉思维的角度来看,主要有以下特点:1.2.1简明性直觉思维是对思维对象从整体上考察,调动自己的全部知识经验,通过丰富的想象而迅速的作出判断和猜想,它省去了中间推理的环节,而采取了“跳跃式”的形式。
但它却触及到了数学对象的“本质”所在。
1.2.2创造性直觉思维是基于研究对象整体上的把握,不专于细节的推理,是思维的大手笔。
正是由于思维的无意识性,它的想象才是丰富的、发散的,使人的认知结构向外无限扩展,因而具有反常规的独创性。
1.2.3自信力成功感可以培养一个人的自信,直觉发现伴随着很强的“自信心”。
这种自信更稳定、更持久。
当一个问题不用通过逻辑推理的形式而是通过自己的直觉获得,那么内心将会产生一种强大的学习欲望和钻研动力,从而更加相信自己的能力。
如果从培养学生的能力入手,数学中的逻辑思维显得太枯燥乏味,直接影响学生的学习情趣,使得学生学习数学失去动力,这使得提高学生数学思维能力成为一句空话。
所以在重视学生的逻辑能力的同时,必须注意培养学生的观察力、直觉力、想象力,特别是直觉思维能力。
浅谈直觉思维及培养

浅谈直觉思想及培育数学教育的任务之一是培育学生的思想能力,而思想能力包含诸多方面,直觉思想能力是重要的一个方面,直觉思想能力是指人脑不受固定的逻辑规则的拘束,是对研究对象及其构造的一种快速的辨别、直接的理解、综合的判断。
传统的教课过分着重逻辑思想能力的培育,而忽略直觉思想能力的培育,常常简单造成学生们在学习数学对数学的本质产生误会,我以前问过我的学生,在他们眼里,有 80%的人认为数学就是算呀算的,无聊无聊的,这样他们对数学的学习也就缺少获得成功的信心,进而也就丧失数学学习的兴趣。
其实他们根本领会不到数学所培育的能力,可见,过分的着重逻辑思想能力的培育,不利于思想能力整体的发展。
培育直觉思想能力是社会发展的需要、是适应新时代新期间对人材的需要。
一、数学直觉思想的内涵直觉是运用相关知识组块和形象直感对目前问题进行敏锐的剖析、推理,并能快速发现解决问题的方法或门路的思想方式。
数学直觉思想是人脑对数学对象的某种快速而直接的洞察或意会,也能够说是数学洞察力。
在数学的发展史上,很多半学家都十分重视直觉思想的作用。
比如:笛卡尔创办分析几何,牛顿发明微积分都得益于数学直觉思想。
“逻辑用于论证,直觉用于发明”彭加勒这一名言关于数学创建活动中直觉的思想作用阐述的十分精粹。
二、数学直觉思想的特色及作用数学直觉思想的主要特色是非逻辑性、自觉性、综合性、整体性、经验型和不行解说性,它能在一瞬时快速解决问题。
基本形式是直觉的灵感与顿悟。
数学直觉思想以其高度省略、简化、浓缩的方式洞察问题的本质,它是一种思路约简了的思想方式,是直觉想象和直觉判断的一致,属于数学创建性思想的范围。
在解题中,因为思想方式不一样,解题所花销的时间也不定不一样,解答时间的长短是权衡思想水平高低的一个重要标记就教育方向,社会所需人材的种类的转变来看,培育创建型人材成为目前教育的目标和方向。
这就要求我们一定对学生的直觉思想能力进行适合的培育和启迪。
三、数学直觉思想的培育1.扎实的基础是产生直觉的源泉直觉的产生不适靠“机会”,直觉的获取固然拥有有时性,但决不是平白无故的凭空臆想,而是以扎实的知识为基础的,对事物敏锐的察看,深刻的理解为前提的,若没有深沉的功底,是不会爆发出思想的火花,迪瓦多内一语点破了直觉的产生过程:“我认为获得直感觉过程,一定经历一个纯形式表面理解的期间,而后逐渐将理解提升、深入。
浅谈数学直觉思维能力的培养

浅谈数学直觉思维能力的培养摘要:“逻辑用于论证,直觉可用于发明”,数学直觉就是对数学对象、结构以及规律性东西敏锐的想象和迅速的判断。
学生直觉思维能力的培养,需要教师运用直观教学法,努力拓宽学生的知识面,同时,在课堂上给学生留下一定的学习空间,鼓励学生进行合理的猜想,进而帮助学生养成自问和反思的习惯,形成较强的直觉思维能力。
关键词:数学直觉思维能力培养“逻辑用于论证,直觉可用于发明”,庞加莱的这一名言精辟地指出了直觉在创造性思维活动中的作用。
直觉,又称为顿悟,在某些领域中又称为灵感。
平时,某人花了许多时间做一道题目,突然间他做出来了,但是还需为答案提出形式证明;或当别人向他提问时,他能够迅速作出很好的猜测,判定某事物是不是这样。
这种“突发奇想”就是直觉思维。
而数学直觉是对数学对象、结构以及规律性东西敏锐的想象和迅速的判断。
许多数学高材生常常具备较强的直觉思维能力,解题时能够“单刀直入,立刻剖析问题的核心,而不是在外围大兜圈子”,其思维过程能够省略许多看来是思考的逻辑链上的必要环节,这对具有巨大潜能的初中学生来说,培养他们的猜想能力、想象能力和直觉思维能力就显得尤为重要了。
一、运用直观性教学。
在数学教学中,要注意将客观事物中的数学特点抽象而构造出模型、表格、图形等直观形象,要尽可能为学生提供某种关于这些概念、定理、法则的直观性理解,这些直观形象有助于直觉思维的形成。
第一,要注意数形结合。
著名数学家华罗庚指出:“数缺形时少直观,形缺数时难入微。
”数和形作为数学的两个基本对象,是现实世界中数量与空间形式的反映。
因此,我们要把数、形之间的转化作为培养学生直觉思维能力的重要途径。
当面对表示题目信息的“数”有明显意义的问题时,要求学生能直觉想象出相应的图形,利用“形”的直观来寻找解题途径;反之,对表示题目信息的“形”易于用数来表示的问题,要求学生能构造出相关的“数”的命题,用数的性质来解决问题。
第二,要注意教学语言的直观性。
浅谈中学数学教学中的直觉思维

教学 中 , 培养学生进行 猜想 , 是激发学生学 习兴趣 , 发展学生直觉思维 , 掌握探求知识 方法 的必要手段 。 作为一个教 师 ,我们不仅应 当注意保护学生 已有的 猜想能力和直觉 能力 ,而且应更加注意帮助学生学 会 合理的猜 想方 法 ,并使他们 的直觉思维不断得到 发展和趋向精致 。 “ 引” 学生大胆设问 ; “ 引” 学生各抒 己见 ; “ 引” 学 生 充 分 活 动 。让 学 生猜 想 问题 的结 论 , 猜想解 题的方向 , 猜想 由特殊到一 般的可能 , 猜想知 识 间的有机 联系 ,让学生把各种各样的想法都讲出 来, 让学生真正 “ 触摸 ” 到 自己的研 究对象 , 推动其思 维 的 主 动性 。 为 了启 发 学 生 进 行 猜 想 , 我 们 还 可 以 创 设 使学生积极 思维 , 引发猜想 的意境 , 可 以提 “ 怎 么发现 这一 定理 的?” “ 解 这 题 的方 法 是 如 何 想 到 的?” 诸如此类 的问题 , 组织学生进行猜想 、 探索 , 还 可 以编 制 一 些 变 换 结 论 , 缺少条件 的“ 藏头 露尾” 的 题 目, 引发 学 生 猜 想 的愿 望 , 猜 想 的 积 极 性 。 对 于 学 生 的 大 胆设 想应 给予 充 分 肯 定 ,对 其 合 理 成 分 及 时 给予鼓励 , 爱护 、 扶植学生 的 自发性直觉思 维 , 以免 挫 伤 学 生 直 觉 思 维 的积 极 性 和 学 生 直 觉 思 维 的 悟 性。教师应 及时因势利导 , 解 除学 生心 中的疑惑 , 使 学生对 自己的直觉产生成功 的喜悦感。
( 四) 重 视 解 题 教 学
直 觉的产生是基 于对研究对 象整体 的把握 , 而 哲 学 观 点 有 利 于 高屋 建 瓴 地 把 握 事 物 的本 质 。这 些 哲 学观 点包括普遍存在 的对立统一 、 运动变化 、 相互 转化 、对称性等 。美感和美 的意识是数学直觉的本 质 ,提 高审美能力有利于培养数学事物 间所有存在 着 的和谐关 系及秩序 的直觉意识 , 审美 能力 越强 , 则 数学直觉 能力也越强 。狄拉克于 1 9 3 1 年从数学对称 的角度 考虑 , 大胆地提出了反物质的假说 , 他认为真 空中的反电子就是正 电子 。他还对麦克斯韦方程组 提出质疑 ,他 曾经说 , “ 如果一个物理方程在数学上 看 上 去 不美 , 那么这个方程的正确性是可疑的” 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈直觉思维及培养
数学教育的任务之一是培养学生的思维能力,而思维能力包括诸多方面,直觉思维能力是重要的一个方面,直觉思维能力是指人脑不受固定的逻辑规则的约束,是对研究对象及其结构的一种迅速的识别、直接的理解、综合的判断。
传统的教学过分注重逻辑思维能力的培养,而忽视直觉思维能力的培养,往往容易造成学生们在学习数学对数学的本质产生误解,我曾经问过我的学生,在他们眼里,有80%的人认为数学就是算呀算的,枯燥乏味的,这样他们对数学的学习也就缺乏取得成功的信心,从而也就丧失数学学习的兴趣。
其实他们根本体会不到数学所培养的能力,可见,过分的注重逻辑思维能力的培养,不利于思维能力整体的发展。
培养直觉思维能力是社会发展的需
要、是适应新时代新时期对人才的需要。
一、数学直觉思维的内涵
直觉是运用有关知识组块和形象直感对当前问题进行敏锐的分析、推理,并能迅速发现解决问题的方法或途径的思维方式。
数学直觉思维是人脑对数学对象的某种迅速而直接的洞察或领悟,也可以说是数学洞察力。
在数学的发展史上,许多数学家都十分重视直觉思维的作用。
例如:笛卡尔创立解析几何,牛顿发明微积分都受益于数学直觉思维。
“逻辑用于论证,直觉用于发明”彭加勒这一名言对于数学创造活动中直觉的思维作用论述的十分精辟。
二、数学直觉思维的特点及作用
数学直觉思维的主要特征是非逻辑性、自发性、综合性、整体性、经验型和不可解释性,它能在一瞬
间迅速解决问题。
基本形式是直觉的灵感与顿悟。
数学直觉思维以其高度省略、简化、浓缩的方式洞察问题的实质,它是一种思路约简了的思维方式,是直觉想象和直觉判断的统一,属于数学创造性思维的范畴。
在解题中,由于思维方式不同,解题所花费的时间也不定不同,解答时间的长短是衡量思维水平高低的一个重要标志
就教育方向,社会所需人才的类型的转变来看,培养创造型人才成为当前教育的目标和方向。
这就要求我们必须对学生的直觉思维能力进行适当的培养和启发。
三、数学直觉思维的培养
1.扎实的基础是产生直觉的源泉
直觉的产生不适靠“机遇”,直觉的获得虽然具有偶然性,但决不是无缘无故的凭空臆想,而是以扎实的
知识为基础的,对事物敏锐的观察,深刻的理解为前提的,若没有深厚的功底,是不会迸发出思维的火花,迪瓦多内一语道破了直觉的产生过程:“我以为获得直觉得过程,必须经历一个纯形式表面理解的时期,然后逐步将理解提高、深化。
”
2.巧设数学教学情境是培养直觉思维的催化剂
提供丰富的背景材料,恰当的设置教学情境,促使学生作整体思考,是数学直觉思维的重要特征之一,就是思维形式的整体性。
对问题作局部的考察是必要的,但必须有整体考察的环节。
人们常常遇到这种情况:拘泥于一部分在研究工作往往不得要领,而返回头来做整体观念考察则豁然开朗。
因此,着眼于从整体上揭示出事物的本质与内在联系,往往可激发直觉思维,从而导致思维能力在创新。
3.使数学生活化是培养直觉思维的捷径
陶行知说:“教育只有通过生活才能产生作用并真正成为教育”,数学来源于实践生活,而生活又离不开数学,让学生在实践中获取知识,让学生自我发现问题和自我解决问题,充分发展学生的想象力和创造力,重视学生直接经验,把教学归朴于实践,归朴于生活。
4.鼓励学生积累经验,也是培养学生直觉思维的有效措施
数学中,有很多结论来源于我们平时的经验积累,如果学生在平时善于积累,题后进行反思。
使自己获得的知识或解题的某种思路在大脑中有了较深刻的印象,那么,在今后的解题中,当学生再度遇到于此题相类似的题时,在他的头脑中贮存着比一般学生更多的知识经验和形象直感,顿时火花闪过,因此快速反应的数学直觉就能应运而生。
5.直觉思维离不开数学的哲学观点及审美观念
直觉的产生是基于对研究对象的整体的把握,而哲学观点有利于把握事物的本质,这些哲学观点包括数学中普遍存在的对立统一、运动变化、相互转化、对称性等。
例如(a+b)2=a2+2ab+b2,即使没有学过完全平方公式,也可以运用对称的观点判断结论的真伪。
6.增强学生对数学的求知欲望,积极开展谈论活动
教书首先应该转变教学观念和自己的角色转换,把主动权交给学生,对于学生的大胆设想要给予充分的肯定,对其合理成分及时给予鼓励、爱护、扶植学生的自发性直觉思维。
教师应该把直觉思维在课堂教学中明确地提出,制定相应的活动策率,直觉的产生要有大量的信息作为基础,教师要培养学生的直觉思维,就应多组织学生进行讨论、漫谈、以及听取报告
会等,以获取一定的信息,经过筛选,取其与思考的题目有关的信息,来启发思维,促使直觉的产生。
7.还应培养学生对右脑的开发使用
日本医大教授品川嘉也博士经过系统的科学研究得出结论:右脑是创造力和直觉的源泉。
直觉的产生,首先要求右脑直观的、综合的、形象的思维技能发挥作用,并且要同左脑很好的配合,所以我们欲求不断有崭新的设想产生,不断随着环境的变化而转变自己的认识,充分使用右脑,教师就要在教学过程中有意识的培养学生使用右脑,如培养学生的空间想象力、形象思维能力、绘图能力来训练学生的右脑,以促进其直觉思维的发挥。
以上是笔者的一则肤浅的知识,直觉思维是逻辑思维的方向,过多地注重逻辑思维的培养,不利于思维能力的整体发展,而逻辑思维是直觉思维的补充,
偏离任何方向都会制约一个人的思维能力的发展,培养直觉思维能力是社会发展的需要,是适应新时期社会对人才的需求,伊恩斯图尔特曾经说过这样一句话:“数学的全部力量就在于直觉和严格性巧妙的结合起来。
”“受控制的精神和富有灵感的逻辑”正是数学的魅
力所在,也是数学教育者努力的方向。