无穷限反常积分敛散性及审敛法则(教案)

合集下载

反常积分审敛法

反常积分审敛法

x
lim F (x) lim f (t) d t
x
x a
存在
,
即反常积分 a
f
(x) d x收敛
.
机动 目录 上页 下页 返回 结束
定理2 . (比较审敛原理) 设 f (x) C[a , ),且对充
分大的x 有 0 f (x) g(x) , 则
a
g
(
x)
dx
收敛
a
g
(
x)
dx
发散
满足
lim x p f (x) l
x
则有: 1) 当
2) 当
证: 当p 1时, 根据极限定义 , 对取定的
分大时, 必有
,即
当x充
机动 目录 上页 下页 返回 结束
当 p 1时, 可取 0, 使 l 0, (l 时用任意正 数 N 代替 l ), 必有

注意:
此极限的大小刻画了
机动 目录 上页 下页 返回 结束
I2
xs1ex d x
1
2) 讨论 I2 .
(xs1ex )
lim
x
x s 1 ex
0
根据极限审敛法1知 I2 收敛.
综上所述 , (s) I1 I2 在 s 0上收敛.
机动 目录 上页 下页 返回 结束
2. 性质
(1) 递推公式 (s 1) s (s) (s 0)
机动 目录 上页 下页 返回 结束
例2. 判别反常积分
1x
dx 1 x2 的敛散性 .
解:
lim x2 x x
1 1 x2
lim
x
1 1
1 x2
1
根据极限审敛法 1 , 该积分收敛 .

同济高等数学第六版-D5_5反常积分审敛法

同济高等数学第六版-D5_5反常积分审敛法

满足
limxpf(x)l
x
则有: 1) 当 p1,0l 时af(x)dx收敛 ;
2) 当 p1,0l 时af(x)dx发散 .
证: 1) 当p1时, 根据极限定义, 对取定的 0,当 x 充
分大时, 必有 xpf(x)l, 即
0
f
(x)

M xp
2) 当 q1,0l 时,abf(x)dx发散 .
例5. 判别反常积分 13ldnxx的敛散性 .
解: 此处 x1为瑕,利点 用洛必达法则得
lim(x1) 1 lim 1 1
x1
lnx
x 1
1 x
根据极限审敛法2 , 所给积分发散 .
定理4 目录 上页 下页 返回 结束
(M l)
可见 af(x)dx收敛 ;
目录 上页 下页 返回 结束
2) 当p1时,可取 0,使 l0,(l 时用任意
数 N代l替 ),必有
xpf(x)l

f
(x)

l
xp
N x
(Nl)
可见 af(x)dx发散 .
注意: xl im xpf(x)xl im f(1x) 此极限的大小刻画了
1 3 x4

1
4
x3
由比较审敛法 1 可知原积分收敛 .
思考题:
讨论反常积分
13
1 dx x3 1
的收敛性
.
提示: 当 x≥1 时, 利用
1 1 1 3x31 3(x1)3 x1
可知原积分发散 .
目录 上页 下页 返回 结束
定理4. (极限审敛法1) 若 f( x ) C [ a , ) ,且 f( x ) 0 ,

第8次课反常积分及其审敛法

第8次课反常积分及其审敛法

第五章定积分及其应用本节主要内容:1、无穷区间上的有界函数的反常积分的审敛法2、有限区间上的无界函数的反常积分的审敛法一、回顾定积分定义与计算()()011,1lim ()d ()d lim ()(()[,],,.,()[,].,,,,[,],,.)niii ba nbi i ai f x f x x f x x f x f x f x dx x y f x a b f x a b a b a b λλξξ→=→=∆=∆=∑⎰∑⎰设函数在上有界按照分割、求和、取极限的做法得若此极限存在则称此极限值为函数在上的定积分记为即为、定积分其中称为被积函数称积分表达式叫做积分变量为积分区间为积分下限为积分上限几何定义:曲线:由()[],,.[,][,][,]()d (1),,.d (2)0()d ()()()()d ()(),,()d ()d ,babbbaaab c aaf x x a x b x S f x x f x f x k f xg x x k f x x g x x k a c b f x x f x x a b a b a b λλλ>===+=+≤≤=⎰⎰⎰⎰⎰⎰及轴围成的曲边梯形面积为存在定理:若上连续,或者在上只有有限个第一类间断点,则上的定积分存在可积2、在性质线性性质 其中为任意常数可加性 在 若则[][][]()d ,()0()d 0,(),()(),()d ()2()d ()d (), ()().(3),,.1(4),bcbab baabbaaf x x a b f x f x x a b a b f xg x a M f x x g x dxf x x f x xf x b m b f m a x +≥≥<≤≤≤-≤⎰⎰⎰⎰⎰⎰保号性 在上如果则推上则推论在区间上的最大值论如果在区间估值定理与最小值, 设分别函数则是()[][][][]d ()(),, ()d ()()3)(5) ,, (),() (d (),()=().baba xa x Mb a f x a b a b f x x f b a f x a b F x f t t f x a b F x f x ξξ≤-=-='⎰⎰⎰定积分牛中值定理如果函数在上连续则在内至少有一个 使得、定积分与不定积分的关系原函数存在定理:若在上连续,则是在上的一个原函数.显然由此得[][]()(),(), ()d ()()()bba a F x f x ab f x a b f x x F x F b F a ==-⎰顿莱布尼茨公式:若是在上的一个原函数,在上连续,则()()()41()d ()()()2()[,](t)()[,](),(),()d ((t)(t))dt 2()d ()()()()du()bba a ba b b ba aaf x x F x F b F a f x a b x t a b f x x f u x v x u x v x v x x u βαϕϕαβϕαϕβϕϕ==-'='==='=⎰⎰⎰⎰⎰、定积分的计算牛顿莱布尼茨公式: 换元积分法:在上连续,单值,在上连续,又则分部积分法:- ,其中[]()()()0202(),(), ()[()()];0,() ().2(),()()()()();()aaa aa aT TA T T AA nT Ax v x a b f x dx f x f x dx f x f x dx f x dx f x f x T f x dx f x dx f x dx f x dx --+-+'=+-⎧⎪=⎨⎪⎩===⎰⎰⎰⎰⎰⎰⎰⎰在上连续5、常用的定积分公式:1是奇函数2是偶函数3如果是以为周期的周期函数,则()()02202200220()().4cos sin 1;1331,2422cos sin .13421,2535()(sin )(cos );(sin )(sin 2T n n n f x dx n N xdx xdx n n n n n xdx xdx n n n n n f x f x dx f x dx xf x dx f x πππππππππ∈==--⎧∙∙∙∙∙⎪⎪-==⎨--⎪∙∙∙∙∙⎪-⎩==⎰⎰⎰⎰⎰⎰⎰⎰在为正偶数为大于1的设函数[0,1]奇数上连续,正0).dx π⎰例1已知211,22()11,2x xe x f x x ⎧-≤≤⎪⎪=⎨⎪-≥⎪⎩,计算212(1)f x dx -⎰.例2证明以下结论:(1)2200()(sin )(cos );f x f x dx f x dx ππ=⎰⎰设函数在[0,1]上连续,(2)2201331,2422cos sin 13421,253n n n n n n n xdx xdx n n n n n πππ--⎧∙∙∙∙∙⎪⎪-==⎨--⎪∙∙∙∙∙⎪-⎩⎰⎰为正偶数为大于1的正奇数二、无穷区间上的有界函数的反常积分(无穷积分)1、定义1设函数f (x )在区间[a ,+∞)上连续,取b >a .如果极限dx x f ba b )(lim⎰+∞→存在,则称此极限为函数f (x )在无穷区间[a ,+∞)上的反常积分,记作dx x f a )(⎰+∞,即dx x f dx x f bab a)(lim)(⎰⎰+∞→+∞=.这时也称反常积分dx x f a )(⎰+∞收敛. 如果上述极限不存在,函数f (x )在无穷区间[a ,+∞)上的反常积分dx x f a )(⎰+∞就没有意义,此时称反常积分dx x f a )(⎰+∞发散.类似地,可定义反常积分dx x f b)(⎰∞-和dx x f )(⎰+∞∞-.2、计算:如果F (x )是f (x )的原函数,则ba b ba b ax F dx x f dx x f )]([lim )(lim)(+∞→+∞→+∞==⎰⎰)()(lim )()(lim a F x F a F b F x b -=-=+∞→+∞→.即简记形式:)()(lim )]([)(a F x F x F dx x f x a a -==+∞→∞++∞⎰.类似地)(lim )()]([)(x F b F x F dx x f x bb-∞→∞-∞--==⎰,)(lim )(lim )]([)(x F x F x F dx x f x x -∞→+∞→∞+∞-+∞∞--==⎰.例3(1)计算反常积分⎰+∞-0dt te pt(p 是常数,且p >0).(2)讨论反常积分dx x p a 1⎰+∞(a >0)的敛散性.3、无穷区间上的有界函数的反常积分的审敛法()[,)(0.)()0lim (),.1,0()1,0()p x a af x a a f x x f x l p l f x dx p l f x dx →+∞+∞+∞+∞>≥=>≤<+∞≤<≤+∞⎰⎰极设函数在区间上连续,且满足则有(1)当时,无穷限反常积分收敛; (限审敛法:2)当时,无穷限反常积分发散例4讨论下列反常积分的敛散性(1)1+∞⎰(2)32211xdx x+∞+⎰三、有限区间上的无界函数的反常积分(瑕积分)1、定义2设函数f (x )在区间(a ,b ]上连续,而在点a 的右邻域内无界.取ε>0,如果极限dx x f bt at )(lim ⎰+→存在,则称此极限为函数f (x )在(a ,b ]上的反常积分,仍然记作dx x f ba )(⎰,即dx x f dx x f bta tb a )(lim )(⎰⎰+→=.这时也称反常积分dx x f ba )(⎰收敛.如果上述极限不存在,就称反常积分dx x f ba )(⎰发散.瑕点:如果函数f (x )在点a 的任一邻域内都无界,那么点a 称为函数f (x )的瑕点,也称为无界定义2'设函数f (x )在区间(a ,b ]上连续,点a 为f (x )的瑕点.函数f (x )在(a ,b ]上的反常积分定义为dx x f dx x f bt at b a )(lim )(⎰⎰+→=.类似地,函数f (x )在[a ,b )(b 为瑕点)上的反常积分定义为dx x f dx x f ta bt b a )(lim )(⎰⎰-→=.在[a ,c )⋃(c ,b ](c 为瑕点)上的反常积分定义为dx x f dx x f dx x f btct ta ct ba )(lim )(lim )(⎰⎰⎰+-→→+=.2、反常积分的计算:如果F (x )为f (x )的原函数,则有bt at btat ba x F dx x f dx x f )]([lim )(lim )(++→→==⎰⎰)(lim )()(lim )(x Fb F t F b F ax at ++→→-=-=.简记形式:(1)当a 为瑕点时,)(lim )()]([)(x F b F x F dx x f ax ba ba +→-==⎰;(2)b 为瑕点时,)()(lim )]([)(a F x F x F dx x f b x ba ba -==-→⎰.(3)当c (a <c <b )为瑕点时,)](lim )([)]()(lim [)()()(x F b F a F x F dx x f dx x f dx x f cx cx bc c a b a +-→→-+-=+=⎰⎰⎰.例5(1)计算反常积分⎰-adx xa 0221.(2)讨论反常积分⎰-ba q a x dx)(的敛散性.3、有限区间上的无界函数的反常积分的审敛法1.()(,]()0.lim ()(),0,0()1,0()p x babaf x a b f x x a f x l p l f x dx p l f x dx →+∞≥-=<<≤<+∞≥<≤+∞⎰⎰设函数在区间上连续,且满足则有(1)当极时,瑕积分收敛;(2)瑕限审敛法:当时,积分发散例6讨论下列反常积分的敛散性(1)31ln dxx⎰(2)1201()k <⎰椭圆积分(3)101dx x ⎰。

反常积分的审敛法

反常积分的审敛法

例1 判别反常积分 ∫ 1
+∞
dx
3
x4 + 1
的收敛性 .
解 ∵当 x ∈ [1,+∞ ) 时 ,
0<
1
3
<
+∞ 1
1
3
x +1
3
4
4 = , p = > 1, 4 3 x4 / 3 x
1
收敛.
∴ 反常积分 ∫
dx x4 + 1
(比较审敛法1)
定理 4 ( 极限审敛法1) 设函数 f ( x ) 在区间 [a ,+∞ ) (a > 0) 上连续,且 f ( x ) ≥ 0. 如果存在常数 p > 1,使得 lim x p f ( x ) 存在,
判别反常积分

3
1
dx 的收敛性 . ln x
1 ∵ lim = + ∞ ∴ x = 1是瑕点 x →1+ lnx
1 x −1 lim ( x − 1) = lim + x →1 x →1+ ln x ln x
0 ( )型 0
= lim +
x →1
= 1 > 0, 3 dx ∴ 反常积分 ∫ 发散 . (极限审敛法2) 1 ln x
1.递推公式 Γ( s + 1) = sΓ( s ) ( s > 0).
证明 Γ( s + 1) =
+∞ −x s 0

+∞
0
e x
+∞ 0 +∞
−x
( s + 1 ) −1
dx
−x
= ∫ e x dx = ∫ = [ x ( −e )]

无穷积分敛散性判别法

无穷积分敛散性判别法

无穷积分敛散性的判别法郑汉彬摘 要:无穷积分的基本问题就是敛散性的判别问题,是求解无穷积分近似值的—个先决条件。

由于判别方法比较多,学生不易掌握,从而是数学分析的一个难点,也一直是一个重要的研究课题。

本文就一些常见和不常见的判定方法做一个归纳,这样将有助于我们灵活地运用各种判别法判定无穷积分的敛散性。

关键词:无穷积分;瑕积分;收敛性;判别法无穷积分的基本问题就是敛散性的判别问题,是求解无穷积分近似值的一个先决条件。

由于判断方法比较多,不易掌握,从而是数学分析和高等数学的一个难点。

最原始的判别方法是对积分区间无穷型的反常积分先将积分限视为有限的积分区间,按常义积分处理,待积分求出原函数后再考查其极限是否存在,再用极限去判定原积分是否收敛。

本文以文献中相关定理为基础,并对相关的文献资料中给出的无穷积分敛散性判定方法的相关理论进行总结及一定的改进和补充,使之能够更广泛地应用于无穷积分敛散性判定中,对比了各种类型的无穷积分敛散性判定方法的应用以及在应用过程中应注意的一些巧妙方法,不仅使这些原本复杂的问题简单化,而且可避免出现错误。

1 无穷积分的敛散性 定义1 设函数)(x f 在),[+∞a 上有定义,且对)(,x f a b >∀在上],[b a 可积,当()limbab f x dx J →+∞=⎰存在,称此极限J 为函数)(x f 在区间),[+∞a 上的无穷限反常积分(简称无穷积分),记为()aJ f x dx+∞=⎰这时称积分⎰+∞adx x f )(是收敛的.如果上述极限不存在,为方便起见,并称无穷积分⎰+∞adx x f )(发散.2 无穷积分敛散性的判别法如何判断一个无穷积分的敛散性,这是无穷积分理论的重要内容之一。

对此,我们首先建立一个收敛准则,然后再介绍几种常有的敛散性判别法。

2.1 柯西收敛准则因为无穷积分⎰+∞adx x f )(的收敛问题即是极限⎰+∞→AaA dx x f )(lim的存在问题,所以由极限的柯西收敛准则立刻可以得到无穷积分的收敛准则。

反常积分审敛法-精品文档

反常积分审敛法-精品文档
x

a
f ( x)dx 收 敛 ;
x
如 果limxf ( x) d 0 (或 limxf ( x) ), 则
x


af ( x)dx 发Fra bibliotek散 .
证明
dx 的收敛性 . 例2 判别反常积分 2 1 x1 x 1 2 解 lim x 1 , p21 2 x x1 x
F (x )在 [a , )上是单调增加的 .
F (x ) 在 [ a , ) 上有上界
lim F (x ) 存在 (极限的存在准则)
x x
即 lim 存在 f(t)dt
x a

收敛 f(x)dx
a
程序设计 网络课件 教学设计 多媒 体课件 PPT文档
f(x ) dx 发散 a 1 特别地,取 g( x ) p ,即得下面的 x
网络课件 教学设计 多媒 比较审敛法. 程序设计体课件 PPT文档

定理 3 (比较审敛法1 ) 设函数 f ( x) 在区间 [a, ) (a 0) 上连续,且 f ( x) 0. 如果存在常数 M 0 及 p 1 ,使得

arctan x 例4 判 别 反 常积 dx 分 的收 . 敛性 1 x arctan x x lim arctan x 解 lim 0 x x x 2
定理 2 ( 比较审敛原 ) 理 设函数 f (x)、 g(x) 在 区 间 [a, )上 连 续 、 非 , 负
如果 f (x) g(x),(a x ),并 且 a g(x)dx收 敛 , 则a f (x)dx也 收 敛 ; 如 f( 果 x) g(x),(a x ), 并且 则 f (x)dx也 发 散 . a g(x)dx发 散 , a

无穷限反常积分敛散性及审敛法则(教案)

无穷限反常积分敛散性及审敛法则(教案)

无穷限反常积分敛散性及审敛法则一、教学目标分析在开始本节课程学习之前,学生已经对定积分有所了解,并初步掌握定积分的基本知识,本节通过介绍反常积分,加深学生对积分的了解,使同学对积分的了解更加系统化,并通过讲解让同学们减轻对积分的迷惑。

让学生反常积分在一些实际问题中的应运。

二、学情/学习者特征分析学生通过对前面课程的学习,对积分已经有了初步的了解。

但对于一些特殊积分或者有关实际问题的积分还是存在着一定的迷惑。

由于本节内容有点枯燥,所以要积极调动学生的兴趣,培养好课堂气氛,使学生充分掌握本节课的内容。

三、学习内容分析1.本节的作用和地位通过对本节的学习来解决一些不属于定积分的问题,这些问题通常是一些实际问题。

例如:常会遇到积分区间为无穷区间,或者被积函数为无界函数的积分等问题。

2.本节主要内容1. 无穷限反常积分的定义与计算方法2. 无穷限反常积分的性质3. 无穷限反常积分的比较审敛法则4. 条件收敛与绝对收敛 3.重点难点分析教学重点:无穷限反常积分计算,无穷限反常积分的比较审敛法则; 教学难点:无穷限反常积分的比较审敛法则。

4.课时要求:2课时四、教学理念学生在之前就已经掌握了一定的知识,通过本节对学生的教学使学生进一步了解反常积分,尤其是其在一些实际问题中的应运。

五、教学策略在教学中主要讲清反常积分的定义及其性质,并适时举例讲解,引导学生互动,相互讨论解决问题。

六.教学环境网络环境下的多媒体教室与课堂互动。

七、教学过程一、无穷限反常积分的定义定义1 设函数/定义在无穷区间[+∞,a )上,且在任何有限区间[u a ,]上可积.如果存在极限 则称此极限J 为函数f 在[+∞,a )上的无穷限反常积分(简称无穷积分),记作dx x f J a⎰+∞=)(,并称dxx f a ⎰+∞)(收敛.如果极限J dx x f uau =⎰+∞→)(lim不存在,亦称dx x f a ⎰+∞)(发散.类似地,可定义f 在(b ,∞-]上的无穷积分:.)(lim )(dx x f dx x f buu b⎰⎰-∞→∞-=对于f 在(+∞∞-,)上的无穷积分,它用前面两种无穷积分来定义:,)()()(dx x f dx x f dx x f a a ⎰⎰⎰+∞∞-∞-+∞+=其中a 为任一实数,当且仅当右边两个无穷积分都收敛时它才是收敛的.注: dx x f a⎰+∞)(收敛的几何意义是:若f 在],[+∞a 上为非负连续函数,则介于曲线)(x f y =,直线ax =以及x 轴之间那一块向右无限延伸的阴影区域有面积J .例1 讨论无穷积分.1)102⎰+∞+x dx ,.1)22⎰∞+∞-+xdx ,.)302⎰+∞-dx xe x 的收敛性. 例2 讨论下列无穷积分的收敛性:⎰+∞1)1p xdx, ;)(ln )22⎰+∞p x x dx 二、无穷积分的性质由定义知道,无穷积分⎰+∞adx x f )(收敛与否,取决于积分上限函数=)(u F ⎰uadx x f )(在+∞→u 时是否存在极限.因此可由函数极限的柯西准则导出无穷积分收敛的柯西准则. 定理11.1 无穷积分⎰+∞adx x f )(收敛的充要条件是:任给ε>0,存在G ≥a ,只要G u u >21,,便有ε<=-⎰⎰⎰2121)()()(u u u au adx x f dx x f dx x f .此外,还可根据函数极限的性质与定积分的性质,导出无穷积分的一些相应性质.性质1 若dx x f a)(1⎰+∞与dx x f a)(2⎰+∞都收敛,1k ,2k 为任意常数,则[]dx x f k x f k a⎰+∞+)()(2211也收敛,且[]dx x f k dx x f k dx x f k x f k aaa )()()()(22112211⎰⎰⎰+∞+∞+∞+=+.性 质 2 若f 在任何有限区间[u a ,)上可积,且有⎰+∞adx x f )(收敛,则⎰+∞adx x f )(亦必收敛,并有⎰⎰+∞+∞≤aadx x f dx x f )()(.证:⎰+∞adx x f )( 由收敛,根据柯西准则(必要性),任给0>ε,存在G ≥a ,当G u u >>12时,总有⎰⎰≤2121)()(u u u u dx x f dx x f . 利用定积分的绝对值不等式,又有⎰21)(u u dx x f ≤ε<⎰21)(u u dx x f .再由柯西准则(充分性),证得⎰+∞adx x f )(收敛又因⎰uadx x f )(≤⎰uadx x f )(,令+∞→u 取极限,立刻得到不等式.当⎰+∞adx x f )(收敛时,称⎰+∞adx x f )(为绝对收敛.性质3指出:绝对收敛的无穷积分,它自身也一定收敛.但是它的逆命题不成立,称收敛而不绝对收敛的无穷积分为条件收敛.性质3 若f 在任何有限区间[u a ,]上可积,b a <,则⎰+∞adx x f )(与⎰+∞bdx x f )(同敛态(即同时收敛或同时发散),且有⎰+∞adx x f )(=⎰b adx x f )(+⎰+∞bdx x f )(,性质2相当于定积分的积分区间可加性,由它又可导出⎰+∞adx x f )(收敛的另一充要条件:任给ε>0,存在0≥G ,当u >G 时,总有.)(ε<⎰+∞adx x f .事实上,这可由⎰⎰⎰+∞+∞+=uaudx x f dx x f dx x f )()()(结合无穷积分的收敛定义而得.三、比较判别法首先给出无穷积分的绝对收敛判别法.由于⎰uadx x f )(关于上限u 是单调递增的,因此⎰+∞adx x f )(收敛的充要条件是⎰uadx x f )(存在上界.根据这一分析,便立即导出下述比较判别法:定理11.2 (比较法则) 设定义在[+∞,a )上的两个函数f 和g 都在任何有限区间[u a ,]上可积,且满足 则当⎰+∞adx x g )(收敛时dx x f a⎰+∞)(必收敛(或当dx x f a⎰+∞)(发散时,⎰+∞adx x g )(必发散).例3 讨论dx x x⎰+∞+021sin 的收敛性. 解:由于],0[,111sin 22+∞∈+≤+x x x x ,而2102π=+⎰+∞x dx 为收敛,故dx xx ⎰+∞+021sin 为绝对收敛. 当选用⎰+∞1p xdx作为比较对象⎰+∞a dx x g )(时,比较判别法有如下两个推论(称为柯西判别法). 推论1 设f 定义于[+∞,a ] (0>a ),且在任何有限区间[u a ,]上可积,则有:(i)当 ),[,1)(+∞∈≤a x xx f p ,且1>p 时, dx x f a ⎰+∞)(收敛; (ii)当),[,1)(+∞∈≥a x xx f p 且1≥p 时, dx x f a ⎰+∞)(发散.推论2 设定义于[+∞,a ),在任何有限区间[u a ,.]上可积,且λ=+∞→)(lim x f xpx .则有:(i)当 +∞<≤>λ0,1p 时, dx x f a⎰+∞)(收敛; (ii)当 +∞≤<≤λ0,1p 时,dx x f a⎰+∞)(发散.推论3 若f 和g 都在任何[u a ,)上可积,0)(>x g ,且,)()(lim c x g x f x =+∞→则有(i)当+∞<≤c 0时,由⎰+∞adx x g )(收敛可推知dx x f a ⎰+∞)(也收敛; (ii)当+∞≤<c 0时,由⎰+∞adx x g )(发散可推知dx x f a⎰+∞)(也发散.四、狄利克雷判别法与阿贝尔判别法这里来介绍两个判别一般无穷积分收敛的判别法. 定理11.3 (狄利克雷判别法) 若⎰=uadx x f u F )()(在[+∞,a )上有界,)(x g 在[+∞,a )上当+∞→x 时单调趋于0,则无穷积分⎰+∞adx x g x f )()(收敛.定理11.4 (阿贝尔(Abel)判别法) 若⎰+∞adx x f )(收敛,)(x g 在[+∞,a )上单调有界,则无穷积分⎰+∞adx x g x f )()(收敛.用积分第二中值定理来证明狄利克雷判别法与阿贝尔判别法. 例5 讨论dx x xp ⎰+∞1sin 与)0(cos 1>⎰+∞p dx xx p 的收敛性. 解:这里只讨论前一个无穷积分,后者有完全相同的结论.下面分两种情形来讨论: (i)当p >1时dx x xp ⎰+∞1sin 绝对收敛.这是因为),,[,1sin +∞∈≤a x x x x p p 而⎰+∞1p xdx 当p >1时收敛,故由比较法则推知dx x xp⎰∞+1sin 收敛. (ii)当10≤<p 时dx x x p ⎰+∞1sin 条件收敛.这是因为对任意u ≥1,有2co s 1co s si n 1≤-=⎰u x d x u ,而p x 1当0>p 时单调趋于)(0+∞→x ,故由狄利克雷判别法推知dx x xp ⎰+∞1sin 工当0>p 时总是收敛的. 另一方面,由于),1[,22cos 21sin sin 2+∞∈-=≥x x x x x x x x p ,其中dt ttdx x x ⎰⎰+∞+∞=21cos 2122cos 是收敛的,而⎰+∞12xdx是发散的,因此当10≤<p 时该无穷积分不是绝对收敛的.所以它是条件收敛的. 例6 证明下列无穷积分都是条件收敛的.,sin 12⎰+∞dx x ,cos 12⎰+∞dx xdx x x ⎰+∞14sin证:前两个无穷积分经换元2x t =得到,2sin sin 112dt tt dx x ⎰⎰+∞+∞=.2cos cos 112dt tt dx x ⎰⎰+∞+∞=由例5知它们是条件收敛的.对于第三个无穷积分,经换元2x t =而得⎰⎰+∞+∞=1214sin 21sin dt t dx x x ,它也是条件收敛的.从例6中三个无穷积分的收敛性可以看到,当+∞→x 时被积函数即使不趋于零,甚至是无界的,无穷积分仍有可能收敛.八、学习评价本节成功向学生讲解了两种定积分的推广即反常积分,尤其对无穷反常积分进行介绍,并对其敛散性及审敛性附带介绍。

反常积分的敛散性判定方法

反常积分的敛散性判定方法

XX财经大学本科学年堆文反常积分敛散牲的判定方法作者陈志强学院统廿与数学学院专世数学与应用数学年级2012级学号122094102 指导教师魏运导师职称蟄授最终成绩摘要 (1)关鍵词 (1)弓I 言一、预备知识......1•无穷限反常枳分2.暇枳分3•反常枳分的性质二、反常积分的收敛判别法1无穷枳分的收敛判别⑴•定义判别法(2)•比较判别法⑶嗣西圳别法⑷阿贝尔判别法.⑸•放利克雷判别法2瑕枳分的收敛判别⑴•定义列别法(2)•定理判别法(3)・比较判别法⑷•柯西判别法• ••••••...4卑屿01参考文献......在很多实际间题中,要突破枳分区同的有穷11和被枳函数的有界性,由此得到了定枳分的两种形式的推广:无穷限反常枳分和瑕枳分。

我们将这两种枳分貌称为反常枳分。

因为反常枳分涉及到一个收敛问题,所以反常枳分的敛散性判定就显得非常重要了。

本文将对反常枳分的敛散性判定进行I月纳总结,并给出了相关定理的込明,举例说明其应用,这样将有MTKffl灵活的运用各种等价定理利Bi反常枳分的敛散性。

关键词:反常枳分陨枳分极限敛散性引言近些年以来,一些数学工作者对反常枳分敛散性的判别方法做了研究并取得了许名重要的进展。

如华东IMX大学数学系编,数学分析(上IB ),对反常枳分枳分的定义,性质的运用及讲义其判别收敛性的方法。

华中科枝大学出版的数学分折理论方法与技H,也对反常枳分敛散性判别做了库细的讲解,连用图形的方法说明其直义。

引申岀反常枳分敛散II的等价定义,并通ii例题说明其应用。

众多学者研究的内容全而广,实用性很高,尤其是在研究敛散性的判别很明显,逆对我现所研究的论文题目提fftTt量的理论依据和参考文献,对我完成此次论文有很大的帮助,但绝大多数文献只是对其一种方法进行研究,而本文冷对其8H亍归纳总给,举例说明其应用。

一、预备知识1.无穷限反常秋分定义1.1设函数于(X )在[a, +00)有定义,若/(X)在[a, A]上可枳(A>a )rA 『8目当A-+OO时,[im[fZx存在,称反常枳分[fZx收敛,否则4—>oo Ja J a称反常枳分£/U^^£/(A>/X发散。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无穷限反常积分敛散性及审敛法则一、教学目标分析在开始本节课程学习之前,学生已经对定积分有所了解,并初步掌握定积分的基本知识,本节通过介绍反常积分,加深学生对积分的了解,使同学对积分的了解更加系统化,并通过讲解让同学们减轻对积分的迷惑。

让学生反常积分在一些实际问题中的应运。

二、学情/学习者特征分析学生通过对前面课程的学习,对积分已经有了初步的了解。

但对于一些特殊积分或者有关实际问题的积分还是存在着一定的迷惑。

由于本节内容有点枯燥,所以要积极调动学生的兴趣,培养好课堂气氛,使学生充分掌握本节课的内容。

三、学习内容分析1.本节的作用和地位通过对本节的学习来解决一些不属于定积分的问题,这些问题通常是一些实际问题。

例如:常会遇到积分区间为无穷区间,或者被积函数为无界函数的积分等问题。

2.本节主要内容1. 无穷限反常积分的定义与计算方法2. 无穷限反常积分的性质3. 无穷限反常积分的比较审敛法则4. 条件收敛与绝对收敛3.重点难点分析教学重点:无穷限反常积分计算,无穷限反常积分的比较审敛法则;教学难点:无穷限反常积分的比较审敛法则。

4.课时要求:2课时四、教学理念学生在之前就已经掌握了一定的知识,通过本节对学生的教学使学生进一步了解反常积分,尤其是其在一些实际问题中的应运。

五、教学策略在教学中主要讲清反常积分的定义及其性质,并适时举例讲解,引导学生互动,相互讨论解决问题。

六.教学环境网络环境下的多媒体教室与课堂互动。

七、教学过程一、无穷限反常积分的定义定义1 设函数/定义在无穷区间[+∞,a )上,且在任何有限区间[u a ,]上可积.如果存在极限J dx x f uau =⎰+∞→)(lim则称此极限J 为函数f 在[+∞,a )上的无穷限反常积分(简称无穷积分),记作dx x f J a ⎰+∞=)(,并称dx x f a⎰+∞)(收敛.如果极限J dx x f uau =⎰+∞→)(lim不存在,亦称dx x f a⎰+∞)(发散.类似地,可定义f 在(b ,∞-]上的无穷积分:.)(lim)(dx x f dx x f buu b⎰⎰-∞→∞-=对于f 在(+∞∞-,)上的无穷积分,它用前面两种无穷积分来定义:,)()()(dx x f dx x f dx x f a a ⎰⎰⎰+∞∞-∞-+∞+=其中a 为任一实数,当且仅当右边两个无穷积分都收敛时它才是收敛的. 注: dx x f a⎰+∞)(收敛的几何意义是:若f 在],[+∞a 上为非负连续函数,则介于曲线)(x f y =,直线a x =以及x 轴之间那一块向右无限延伸的阴影区域有面积J .例1 讨论无穷积分.1)102⎰+∞+x dx ,.1)22⎰∞+∞-+x dx ,.)302⎰+∞-dx xe x 的收敛性.例2 讨论下列无穷积分的收敛性:⎰+∞1)1px dx, ;)(ln )22⎰+∞p x x dx二、无穷积分的性质由定义知道,无穷积分⎰+∞adx x f )(收敛与否,取决于积分上限函数=)(u F ⎰uadx x f )(在+∞→u 时是否存在极限.因此可由函数极限的柯西准则导出无穷积分收敛的柯西准则.定理11.1 无穷积分⎰+∞adx x f )(收敛的充要条件是:任给ε>0,存在G ≥a ,只要G u u >21,,便有ε<=-⎰⎰⎰2121)()()(u u u au adx x f dx x f dx x f .此外,还可根据函数极限的性质与定积分的性质,导出无穷积分的一些相应性质.性质 1 若dx x f a)(1⎰+∞与dx x f a)(2⎰+∞都收敛,1k ,2k 为任意常数,则[]dx x f k x f ka⎰+∞+)()(2211也收敛,且[]dx x f k dx x f k dx x f k x f k aaa )()()()(22112211⎰⎰⎰+∞+∞+∞+=+.性 质 2 若f 在任何有限区间[u a ,)上可积,且有⎰+∞adx x f )(收敛,则⎰+∞adx x f )(亦必收敛,并有⎰⎰+∞+∞≤aadx x f dx x f )()(.证:⎰+∞adx x f )( 由收敛,根据柯西准则(必要性),任给0>ε,存在G ≥a ,当G u u >>12时,总有⎰⎰≤2121)()(u u u u dx x f dx x f . 利用定积分的绝对值不等式,又有⎰21)(u u dx x f ≤ε<⎰21)(u u dx x f .再由柯西准则(充分性),证得⎰+∞adx x f )(收敛又因⎰uadx x f )(≤⎰uadx x f )(,令+∞→u 取极限,立刻得到不等式.当⎰+∞adx x f )(收敛时,称⎰+∞adx x f )(为绝对收敛.性质3指出:绝对收敛的无穷积分,它自身也一定收敛.但是它的逆命题不成立,称收敛而不绝对收敛的无穷积分为条件收敛.性质3 若f 在任何有限区间[u a ,]上可积,b a <,则⎰+∞adx x f )(与⎰+∞bdx x f )(同敛态(即同时收敛或同时发散),且有⎰+∞adx x f )(=⎰b adx x f )(+⎰+∞bdx x f )(,性质2相当于定积分的积分区间可加性,由它又可导出⎰+∞adx x f )(收敛的另一充要条件:任给ε>0,存在0≥G ,当u >G 时,总有.)(ε<⎰+∞adx x f .事实上,这可由 ⎰⎰⎰+∞+∞+=uaudx x f dx x f dx x f )()()(结合无穷积分的收敛定义而得.三、比较判别法首先给出无穷积分的绝对收敛判别法.由于⎰uadx x f )(关于上限u 是单调递增的,因此⎰+∞adx x f )(收敛的充要条件是⎰uadx x f )(存在上界.根据这一分析,便立即导出下述比较判别法:定理11.2 (比较法则) 设定义在[+∞,a )上的两个函数f 和g 都在任何有限区间[u a ,]上可积,且满足),,[),()(+∞∈≤a x x g x f 则当⎰+∞adx x g )(收敛时dx x f a⎰+∞)(必收敛(或当dx x f a⎰+∞)(发散时,⎰+∞adx x g )(必发散).例3 讨论dx xx⎰+∞+021sin 的收敛性. 解:由于],0[,111sin 22+∞∈+≤+x x x x ,而2102π=+⎰+∞x dx 为收敛,故dx x x ⎰+∞+021sin 为绝对收敛. 当选用⎰+∞1p xdx作为比较对象⎰+∞a dx x g )(时,比较判别法有如下两个推论(称为柯西判别法). 推论1 设f 定义于[+∞,a ] (0>a ),且在任何有限区间[u a ,]上可积,则有:(i)当 ),[,1)(+∞∈≤a x xx f p ,且1>p 时, dx x f a ⎰+∞)(收敛;(ii)当),[,1)(+∞∈≥a x xx f p 且1≥p 时, dx x f a ⎰+∞)(发散.推论2 设定义于[+∞,a ),在任何有限区间[u a ,.]上可积,且λ=+∞→)(lim x f xpx .则有:(i)当 +∞<≤>λ0,1p 时, dx x f a⎰+∞)(收敛; (ii)当 +∞≤<≤λ0,1p 时,dx x f a⎰+∞)(发散.推论3 若f 和g 都在任何[u a ,)上可积,0)(>x g ,且,)()(lim c x g x f x =+∞→则有(i)当+∞<≤c 0时,由⎰+∞adx x g )(收敛可推知dx x f a ⎰+∞)(也收敛; (ii)当+∞≤<c 0时,由⎰+∞adx x g )(发散可推知dx x f a⎰+∞)(也发散.四、狄利克雷判别法与阿贝尔判别法这里来介绍两个判别一般无穷积分收敛的判别法. 定理11.3 (狄利克雷判别法) 若⎰=uadx x f u F )()(在[+∞,a )上有界,)(x g 在[+∞,a )上当+∞→x 时单调趋于0,则无穷积分⎰+∞adx x g x f )()(收敛.定理11.4 (阿贝尔(Abel)判别法) 若⎰+∞adx x f )(收敛,)(x g 在[+∞,a )上单调有界,则无穷积分⎰+∞adx x g x f )()(收敛.用积分第二中值定理来证明狄利克雷判别法与阿贝尔判别法.例5 讨论dx x xp ⎰+∞1sin 与)0(cos 1>⎰+∞p dx xx p 的收敛性. 解:这里只讨论前一个无穷积分,后者有完全相同的结论.下面分两种情形来讨论: (i)当p >1时dx x xp ⎰+∞1sin 绝对收敛.这是因为),,[,1sin +∞∈≤a x x x x p p 而⎰+∞1p xdx 当p >1时收敛,故由比较法则推知dx x xp⎰∞+1sin 收敛. (ii)当10≤<p 时dx x xp ⎰+∞1sin 条件收敛.这是因为对任意u ≥1,有2cos 1cos sin 1≤-=⎰u xdx u ,而p x1当0>p 时单调趋于)(0+∞→x ,故由狄利克雷判别法推知dx xxp ⎰+∞1sin 工当0>p 时总是收敛的. 另一方面,由于),1[,22cos 21sin sin 2+∞∈-=≥x x xx x x x x p,其中dt t tdx x x ⎰⎰+∞+∞=21cos 2122cos 是收敛的,而⎰+∞12xdx 是发散的,因此当10≤<p 时该无穷积分不是绝对收敛的.所以它是条件收敛的. 例6 证明下列无穷积分都是条件收敛的.,sin 12⎰+∞dx x ,cos 12⎰+∞dx xdx x x ⎰+∞14sin证:前两个无穷积分经换元2x t =得到,2sin sin 112dt tt dx x ⎰⎰+∞+∞=.2cos cos 112dt tt dx x ⎰⎰+∞+∞=由例5知它们是条件收敛的.对于第三个无穷积分,经换元2x t =而得⎰⎰+∞+∞=1214sin 21sin dt t dx x x ,它也是条件收敛的.从例6中三个无穷积分的收敛性可以看到,当+∞→x 时被积函数即使不趋于零,甚至是无界的,无穷积分仍有可能收敛.八、学习评价本节成功向学生讲解了两种定积分的推广即反常积分,尤其对无穷反常积分进行介绍,并对其敛散性及审敛性附带介绍。

作业内容:教材260P :1(4,6,9);2;3.。

相关文档
最新文档