《高等数学》电子课件(同济第六版)04第九章 第4节多元复合函数求导法则
《高等数学》(同济六版)教学课件★第9章.多元函数微分法及其应用(1)

例如, f ( x, y )
4
x2 y 2 2 2 xy 2 , x y 0 2 x y 0, x2 y 2 0
2 2 4
x 4x y y 2 2 y , x y 0 2 2 2 f x ( x, y ) (x y ) 0, x2 y2 0 x4 4x2 y 2 y 4 2 2 x , x y 0 2 2 2 f y ( x, y ) (x y ) 0, x2 y2 0 y f x (0, y ) f x (0, 0) lim 1 f x y (0,0) lim y 0 y y 0 y f y ( x, 0) f y (0, 0) x 1 lim f y x (0,0) lim x 0 x x 0 x
目录 上页 下页 返回 结束
r2
定理. 若 f x y ( x,y) 和 f y x ( x,y) 都在点 ( x0 , y0 ) 连续, 则
f x y ( x0 , y0 ) f y Байду номын сангаас ( x0 , y0 )
本定理对 n 元函数的高阶混合导数也成立.
(证明略)
例如, 对三元函数 u = f (x , y , z) , 当三阶混合偏导数 在点 (x , y , z) 连续时, 有
x 0 y 0
0
得
x 0 y 0
lim f ( x x, y y ) f ( x, y )
即 函数 z = f (x, y) 在点 (x, y) 可微
z f ( x x, y y) f ( x , y ) 函数在该点连续
下面两个定理给出了可微与偏导数的关系:
目录 上页 下页 返回
同济高等数学第六版上册第四章ppt

5. 求下列积分: dx ; (1) 2 2 x (1 x ) 提示:
dx ( 2) 2 . 2 sin x cos x
(1)
1 1 (1 x 2 ) x 2 1 2 2 2 2 2 2 x 1 x x (1 x ) x (1 x )
arcsin u C
(直接配元)
f [ ( x)] ( x)dx f ( ( x))d ( x)
2 12 C C 1
因此所求曲线为 y x 1
2
O
x
目录
上页
下页
返回
结束
从不定积分定义可知: d f ( x)d x f ( x) 或 d f ( x)dx f ( x) dx (1) dx
( 2)
F ( x) dx F ( x) C k dx
第四章 不定积分
微分法: F ( x) ( ? ) 积分法: ( ? ) f ( x) 互逆运算
第一节 不定积分的概念与性质
一、 原函数与不定积分的概念 二、 基本积分表 三、不定积分的性质
第四章
目录
上页
下页
返回
结束
问题: 1. 在什么条件下, 一个函数的原函数存在 ? 2. 若原函数存在, 它如何表示 ? 定理1. 若函数 f ( x ) 在区间 I 上连续 , 则 f ( x ) 在 I 上 (下章证明) 存在原函数 . 初等函数在定义区间上连续
x x e d x e C
(12)
x a C (13) a x dx ln a
目录
上页
下页
返回
结束
dx 例2. 求 3 . x x
高等数学第六版(同济版)第九章复习资料

高等数学第六版(同济版)第九章复习资料LT第九章 多元函数微分法及其应用引入:在上册书中,我们学习了一元函数微积分学,所讨论的对象都只有一个自变量的函数,而在实际应用中,研究的问题往往要涉及多方面的因素,反映在数量上就是一个变量要依赖几个自变量,即数学上的多元函数,从这节课开始,我们进入多元函数微积分学的学习阶段.先来学习多元函数微分学.由于从一元函数到二元函数,单与多的差异已能充分体现,我们由二元函数入手来研究多元函数微分学,然后把相关概念及性质推广到三元、四元直至n 元函数上去.第一节 多元函数的基本概念一、平面点集的相关概念1. 平面点集:),|}(),{(y x y x E =具有性质}P},|}),{(2R y R x y x R R R E ∈∈=⨯=⊂例如:}|||{}|}),{(222r OP P r y x y x C <=<+=,其中点P 表示点),(y x . 2. 邻域:2000),(R y x P ∈.(1). 邻域:})()()(),{(}||{),(20202000δδδ<-+-+-=<=z z y y x x y x P P P P U (2). 去心邻域:)(}||0{),(000P U P P P P U oo∧=<<=δδ 3. 坐标面上的点P 与平面点集E 的关系:22,R E R P ⊂∈ (1). 内点:若0>∃δ,使E P U ⊂),(δ,则称P 为E 的内点. (2). 外点:若0>∃δ,使Φδ=⋂E P U ),(,则称P 为E 的外点.(3). 边界点:若0>∀δ,Φδ≠⋂E P U ),(,且E P U ⊄),(δ,则称P 为E 的边界点.边界:E 的边界点的全体称为它的边界,记作E ∂. (4). 聚点:若0>∀δ,Φδ≠⋂E P U o),(,则称P 为E 的聚点.导集:E 的聚点的全体称为它的导集.注:1°. 若P 为E 的聚点,则P 可以属于E ,也可以不属于E .2°. 内点一定是聚点;外点一定不是聚点;边界点也不总是聚点,如孤立的边界点. 例如:}21),{(221≤+<=y x y x E ;)}0,0{(}21),{(222⋃≤+<=y x y x E . 4. 一些常用的平面点集:(1). 开集:若点集E 的点都是其内点,则称E 为开集.(2). 闭集:若点集E 的边界E E ⊂∂,则称E 为闭集. (开集加边界)(3). 连通集:若E 中任何两点都可用属于E 的折线连接,则称E 为连通集. (4). 开区域:连通的开集称为开区域,也称为区域. (5). 闭区域:开区域加上其边界称为闭区域.例如:}21),{(221≤+<=y x y x E 为区域. }21),{(222≤+≤=y x y x E 为闭区域. (6). 有界集:若0>∃r ,使),(r O U E ⊂,则称E 为有界集. (7). 无界集:若0>∀r ,使),(r O U E ⊄,则称E 为无界集.二、n 维空间:对取定的自然数n ,称n 元数组),,,(21n x x x 的全体为n 维空间,记为n R . 注:前述的邻域、区域等相关概念可推广到n 维空间. 三、多元函数的概念 1. 定义:.y x f z ↓↓↓=),(,或)(P f z =,其中D y x P ∈),(.因 映 自 变 变 量 射 量定义域:D .值 域:R D y x y x f z z D f ⊂∈==}),(),,({)(.注:可推广:n 元函数:),,,(21n x x x f u =,n n R D x x x ⊂∈),,,(21 . 例: 1.)arcsin(22y x z +=,}1),{(22≤+=y x y x D .2.)ln(y x z +=,}0),{(>+=y x y x D .2. 几何表示:函数),(y x f z =对应空间直角坐标系中的一张曲面:0),(),,(=-=y x f z z y x F . 四、二元函数的极限1.定义:设函数),(y x f 的定义域为D ,点),(000y x P 为D 的聚点,若R A ∈∃,0>∀ε,0>∃δ,),(),(0δP U D y x P o⋂∈∀,满足ε<-|),(|A y x f ,则称A 为),(y x f 当),(),(000y x P y x P →时的极限,记作A y x f y x y x =→),(lim ),(),(00,称之为),(y x f 的二重极限.例1. 设22221sin )(),(y x y x y x f ++=,求证0),(lim )0,0(),(=→y x f y x .证明:0>∀ε,要使不等式第二节 偏导数引入:在一元函数微分学中,我们研究了一元函数的变化率—导数,并利用导数研究了函数的性态.对于多元函数,我们也要讨论它的变化率,但由于多元函数的自变量不止一个,所以多元函数的变化率要比一元函数的变化率复杂得多.我们还是以二元函数为例来研究多元函数的变化率,先把二元函数中某一自变量暂时固定,再讨论二元函数关于另一个自变量的变化率,这就是数学上的偏导数. 一、偏导数的相关概念1. 偏导数:设函数),(y x f z =在点),(000y x P 的某邻域内有定义,把y 暂时固定在0y ,而x 在0x 处有增量x ∆时,z 相应地有增量),(),(0000y x f y x x f -+∆.若极限xy x f y x x f x ∆∆∆),(),(lim00000-+→存在,则称此极限值为函数),(y x f z =在点),(000y x P 处对x 的偏导数,记为00y y x x xz ==∂∂;0y y x x xf ==∂∂;00y y x x xz ==或),(00y x f x .注: 1°. 0),(),(),(lim),(00000000x x x x y x f x d dx y x f y x x f y x f =→=-+=∆∆∆.2°. 0),(),(),(lim),(00000000y y y y y x f yd dy y x f y y x f y x f =→=-+=∆∆∆.2. 偏导函数:若函数),(y x f z =在区域D 内每一点),(y x 处对x 或y 偏导数存在,则该偏导数称为偏导函数,也简称为偏导数,记为x z x f x z ,,∂∂∂∂或),(y x f x ;y z yfy z ,,∂∂∂∂或),(y x f y .注:可推广:三元函数),,(z y x f u =在点),,(z y x 处对x 的偏导数定义为xz y x f z y x x f z y x f x x ∆∆∆),,(),,(lim),,(0-+=→.例1. 求223y xy x z ++=在)2,1(处的偏导数. 解:先求偏导函数:y x x z 32+=∂∂,y x yz 23+=∂∂. 再求偏导数:821=∂∂==y x xz ,721=∂∂==y x yz .例2. 求y x z 2sin 2=的偏导数. 解:y x x z 2sin 2=∂∂,y x yz 2cos 22=∂∂. 例3. 求222z y x r ++=的偏导数. 解:rxz y x x x r =++=∂∂22222.由轮换对称性可知r y y r =∂∂,r z z r =∂∂. 3. 偏导数的几何意义(1). 偏导数),(00y x f x 是曲线⎩⎨⎧==0),(y y y x f z 在点)),(,,(00000y x f y x M 处的切线关于x 轴的斜率.(2). 偏导数),(00y x f y 是曲线⎩⎨⎧==0),(x x y x f z 在点)),(,,(00000y x f y x M 处的切线关于y 轴的斜率.4. 函数偏导数存在与函数连续的关系:函数偏导数存在与函数连续之间无必然的蕴含关系. (1). 函数),(y x f z =在点),(000y x P 处偏导数存在,但它在点),(000y x P 却未必连续.例如:函数⎪⎩⎪⎨⎧=+≠++==0,00,),(222222y x y x y x xy y x f z 在点)0,0(的两个偏导数都存在,即00lim )0,0()0,0(lim)0,0(00==-+=→→x x x x f x f f ∆∆∆∆, 00lim )0,0()0,0(lim)0,0(00==-+=→→y y y yf y f f ∆∆∆∆. 但二重极限),(lim )0,0(),(y x f y x →不存在,故),(y x f z =在点)0,0(不连续.(2). 函数),(y x f z =在点),(000y x P 连续,但它在点),(000y x P 处却未必存在偏导数.例如:函数22),(y x y x f z +==在点)0,0(连续,但它在点)0,0(对x 及y 的偏导数都不存在,这是因为:⎩⎨⎧<->==-+→→0,10,1||lim )0,0()0,0(lim00x x x x x f x f x x ∆∆∆∆∆∆∆∆, ⎩⎨⎧<->==-+→→0,10,1||lim )0,0()0,0(lim00y y y y y f y f x y ∆∆∆∆∆∆∆∆, 即),(y x f z =在点)0,0(对x 及y 的偏导数都不存在. 二、高阶导数1.二阶偏导数:若函数),(y x f z =对x 及y 的偏导数),(y x f x 及),(y x f y 对x 及y 的偏导数也存在,则称它们是函数),(y x f z =的二阶偏导数.记作:),(22y x f x z x z x xx =∂∂=⎪⎪⎭⎫ ⎝⎛∂∂∂∂; ),(22y x f y zy z y yy =∂∂=⎪⎪⎭⎫ ⎝⎛∂∂∂∂ ;(二阶纯偏导数) ),(2y x f y x z x z y xy =∂∂∂=⎪⎪⎭⎫ ⎝⎛∂∂∂∂;),(2y x f x y z y z x yx =∂∂∂=⎪⎪⎭⎫ ⎝⎛∂∂∂∂. (二阶混合偏导数) (二阶纯偏导数)注:1°. 一般地,二元函数),(y x f z =的1-n 阶偏导数的偏导数称为它的n 阶偏导数.2°. 二阶以及二阶以上的偏导数统称为高阶导数. 3°. 二元函数),(y x f z =的n 阶偏导数至多有n 2个. 例4. 设13323+--=xy xy y x z ,求它的二阶偏导数. 解:y y y x x z --=∂∂32233;x xy y x yz --=∂∂2392; 2226xy x z =∂∂;xy x yz 182322-=∂∂;196222--=∂∂∂y y x yx z;196222--=∂∂∂y y x xy z.总结:从这一例题,我们看到:x y zy x z ∂∂∂=∂∂∂22,即两个二阶混合偏导数相等,与求导顺序无关.那是不是每个二元函数都有这样的相等的二阶混合偏导数呢?我们说不是的,例如:⎪⎩⎪⎨⎧=+≠++-==0,00,),(22222222y x y x y x y x xy y x f z ,在点)0,0(,有)0,0()0,0(yx xy f f ≠,事实上,yf y f f x x y xy ∆∆∆)0,0()0,0(lim)0,0(0-+=→;xf x f f y y x yx ∆∆∆)0,0()0,0(lim)0,0(0-+=→.而0)0,0()0,0(lim)0,0(0=-+=→xf x f f x x ∆∆∆,0)0,0()0,0(lim)0,0(0=-+=→y f y f f y y ∆∆∆, y xy x y x yx x y f y x f y f x x x -=+-⋅=-+=→→∆∆∆∆∆∆∆∆222200)()(lim ),0(),0(lim ),0(,x y y x y x x y y x f y x f x f y y y =+-⋅=-+=→→∆∆∆∆∆∆∆∆222200)()(lim )0,()0,(lim )0,(.于是,1lim )0,0()0,0(lim)0,0(00-=-=-+=→→yyy f y f f y x x y xy ∆∆∆∆∆∆, 1lim)0,0()0,0(lim)0,0(00==-+=→→xxxf x f f x y y x yx ∆∆∆∆∆∆,即)0,0()0,0(yx xy f f ≠.那么满足什么条件得二元函数的两个二阶混合偏导数与求导顺序无关呢?有下面的定理: 2. 二阶混合偏导数的性质定理:若函数),(y x f z =的两个二阶混合偏导数),(y x f xy 与),(y x f yx 在区域D 内连续,则它们在D 内必相等,即),(),(y x f y x f yx xy =.注:1°. 可推广:高阶混合偏导数在连续的条件下与求导顺序无关.2°. 一般地,若二元函数),(y x f z =的高阶混合偏导数都连续,则),(y x f z =的n 阶偏导数只有1+n 个.第三节 全微分一、全微分的相关概念1. 偏增量:称),(),(y x f y x x f z x -+=∆∆为函数),(y x f z =对x 的偏增量;称),(),(y x f y y x f z y -+=∆∆为函数),(y x f z =对y 的偏增量.2. 偏微分:称x y x f x ∆),(与y y x f y ∆),(为),(y x f z =对x 及y 的偏微分. 注:x y x f y x f y x x f x ∆∆),(),(),(≈-+,y y x f y x f y y x f y ∆∆),(),(),(≈-+.但在实际应用中,往往要知道函数的全面的变化情况,即当自变量有微小增量x ∆、y ∆时,相应的函数增量z ∆与自变量的增量x ∆、y ∆之间的依赖关系,这涉及到函数的全增量. 3. 全增量:称),(),(y x f y y x x f z -++=∆∆∆为函数),(y x f z =在点),(y x P 对应于自变量增量x ∆、y ∆的全增量.一般来讲,计算全增量z ∆是比较困难的,我们总希望像一元函数那样,利用x ∆、y ∆的线性函数来近似代替函数的全增量z ∆,为此,引入了全微分.4. 全微分:若函数),(y x f z =在点),(y x P 的某领域内有定义,且在),(y x P 的全增量),(),(y x f y y x x f z -++=∆∆∆可表示为)(ρ∆∆∆o y B x A z ++=,其中A 、B 不依赖于x ∆、y ∆,而仅与x 、y 有关,22)()(y x ∆∆ρ+=,则称),(y x f z =在点),(y x P 可微分,而称y B x A ∆∆+ 为),(y x f z =在点),(y x P 的全微分,记作dz ,即y B x A dz ∆∆+=.若),(y x f z =在区域D 内每一点都可微分,则称),(y x f z =在D 内可微分. 注:)(ρ∆o z dz -=.我们知道,当一元函数)(x f y =在点x 的微分x A dy ∆=存在时,)('x f A =,那么,当二元函数),(y x f z =在点),(y x P 的全微分y B x A dz ∆∆+=存在时,A 、B 又为何值呢?下面讨论二元函数可微分与连续、可微分与偏导数存在的关系,从中得到A 、B 的值.二、二元函数可微分与偏导数存在、可微分与连续的关系 1.函数可微分的必要条件定理1.若函数),(y x f z =在点),(y x P 可微分,则它在点),(y x P 的两个偏导数),(y x f x 及),(y x f y 必定存在,且),(y x f z =在点),(y x P 的全微分dy y x f dx y x f dz y x ),(),(+=.证明:由于),(y x f z =在点),(y x P 可微分,则有)(ρ∆∆∆o y B x A z ++=,其中22)()(y x ∆∆ρ+=,当0=y ∆时,有|)(|),(),(x o x A y x f y x x f z x ∆∆∆∆+=-+=,从而A xx o x A x y x f y x x f x x =+=-+→→∆∆∆∆∆∆∆|)(|lim ),(),(lim00, 即),(y x f A x =,同理可得),(y x f B y =,于是y y x f x y x f dz y x ∆∆),(),(+=.特殊地,令x y x f =),(,有1),(=y x f x ,0),(=y x f y ,从而有x dx ∆=,同理令y y x f =),(,有0),(=y x f x ,1),(=y x f y ,从而有y dy ∆=.于是有dy y x f dx y x f dz y x ),(),(+=,也称之为二元函数微分学的叠加原理.注:定理说明:函数),(y x f z =可微分,),(y x f z =一定可偏导,且全微分可用偏导数表示. 但反之未必,即偏导数存在,函数),(y x f z =未必可微分.例如:⎪⎩⎪⎨⎧=+≠++==0,00,),(222222y x y x y x xy y x f z 在点)0,0(处两个偏导数都存在,且)0,0()0,0(y x f f =,但),(y x f z =在点)0,0(却不可微分.事实上,假设),(y x f z =在点)0,0(可微分,则y y x f x y x f dz y x ∆∆),(),(+=,又)(ρ∆o dz z +=,从而0→-ρ∆dzz ,当0→ρ时. 而22)()(0)0,0()0,0(y x yx f y x f dz z ∆∆∆∆∆∆∆+⋅=-+++=-,有222)0,0(),(0))()((lim),(),(limy x yx x y x f y x x f y x x ∆∆∆∆∆∆∆∆∆+⋅=-+→→不存在,更谈不上等于0,从而假设不成立,即),(y x f z =在点)0,0(不可微分. 2. 函数可微分的必要条件定理2若函数),(y x f z =在点),(y x P 可微分,则它在点),(y x P 连续.证明:由于),(y x f z =在点),(y x P 可微分,有)(ρ∆∆∆o y B x A z ++=,其中22)()(y x ∆∆ρ+=,于是有,0lim 0=→z ∆ρ.又),(y x f z =的全增量为),(),(y x f y y x x f z -++=∆∆∆,从而0),(),(lim )0,0(),(=-++→y x f y y x x f y x ∆∆∆∆,即),(),(lim)0,0(),(y x f y y x x f y x =++→∆∆∆∆,这说明),(y x f z =在点),(y x P 连续.注:函数连续,未必可微分.例如:函数22),(y x y x f z +==在点)0,0(连续,但由于偏导数不存在,从而不可微分. 3. 函数可微分的充分条件定理3若函数),(y x f z =的偏导数),(y x f x 与),(y x f y 在点),(y x 都连续,则),(y x f z =在点),(y x 可微分.注:反之未必.例如:⎪⎩⎪⎨⎧=+≠+++==0,00,1sin )(),(22222222y x y x y x y x y x f z 在点)0,0(可微分,但),(y x f x 与),(y x f y 在点)0,0(都不连续.(1).先说明),(y x f z =在点)0,0(可微分. 设0)0,0()0,0(),(=+=y f x f y x y x ∆∆∆∆ϕ,因为01sin lim )0,0()0,(lim)0,0(2200==-=→→xx x xf x f f x x x ,01sinlim )0,0(),0(lim)0,0(2200==-=→→yy y yf y f f y y y , 令2222)()(1sin])()[()0,0()0,0(y x y x f y x f u ∆∆∆∆∆∆∆++=-++=,由于01sinlim ),(lim2200==-→→ρρρρ∆∆ϕ∆ρρy x u ,其中22)()(y x ∆∆ρ+=,于是)()0,0()0,0()(),(ρ∆∆ρ∆∆ϕ∆o y f x f o y x u y x ++=+=,由全微分的定义知),(y x f z =在)0,0(可微分.(2). 再说明偏导数),(y x f x 及),(y x f y 在点)0,0(不连续. 易知 0,1cos 21sin2),(22222222≠+++-+=y x yx y x x y x x y x f x , 由于⎪⎭⎫ ⎝⎛-==→→=→2200)0,0(),(21cos 121sin 2lim ),(lim ),(limx x x x x x f y x f x x x x xy y x 不存在,从而),(y x f x 在点)0,0(不连续.同理可知)0(1cos 21sin2),(22222222≠+++-+=y x yx y x y y x y y x f y 在点)0,0(也不连续. 例1. 计算函数22y y x z +=的全微分. 解:dy y x xydx dy yzdx x z dz )2(22++=∂∂+∂∂=. 例2. 计算函数xy e z =在点)1,2(处的全微分. 解:由于xy xy xe y z ye x z =∂∂=∂∂,,有2122122,e yz e xz y x y x =∂∂=∂∂====,所以dy e dx e dz y x 22122+===.例3. 计算yz e yx u ++=2sin 的全微分. 解: dz ye dy ze y dx dz z u dy y u dx x u du yz yz +⎪⎭⎫ ⎝⎛++=∂∂+∂∂+∂∂=2cos 21.第四节 多元复合函数的求导法则一、一元函数与多元函数复合的情形定理1.若函数)(t u ϕ=及)(t v ψ=在点t 都可导,函数),(v u f z =在对应点),(v u 具有连续偏导数,则复合函数)](),([t t f z ψϕ=在点t 可导,且dtdv v z dt du u z dt dz ⋅∂∂+⋅∂∂=.(全导数公式) 注:可推广:),,(ωv u f z =,)(t u ϕ=,)(t v ψ=,)(t ωω=复合而成的函数)](),(),([t t t f z ωψϕ=在点t 可导,且dtd z dt dv v z dt du u z dt dz ωω⋅∂∂+⋅∂∂+⋅∂∂=. 二、多元函数与多元函数复合的情形定理2. 若函数),(y x u ϕ=及),(y x v ψ=在点),(y x 具有对x 及y 的偏导数,函数),(v u f z =在对应点),(v u 具有连续偏导数,则复合函数)],(),,([y x y x f z ψϕ=在点),(y x 的两个偏导数都存在,且xvv z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂;y v v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂. 注:可推广:由),,(ωv u f z =,),(y x u ϕ=,),(y x v ψ=,),(y x ωω=复合而成的函数)],(),,(),,([y x y x y x f z ωψϕ=在点),(y x 两个偏导数都存在,且xz x v v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂=∂∂ωω;y z y v v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂=∂∂ωω. 三、其它情形1. 函数),(y x u ϕ=在点),(y x 对x 及y 的偏导数都存在,函数及)(y v ψ=在点t 可导,),(v u f z =在点),(v u 具有连续偏导数,则复合函数]),,([y y x f z ϕ=在点),(y x 的两个偏导数都存在,且xuu z v z x u u z dx dv v z x u u z x z ∂∂⋅∂∂=⋅∂∂+∂∂⋅∂∂=⋅∂∂+∂∂⋅∂∂=∂∂0; dydvv z y u u z y z ⋅∂∂+∂∂⋅∂∂=∂∂. 2. 函数),(y x u ϕ=在点),(y x 具有对x 及y 的偏导数,),,(y x u f z =在点),,(y x u 具有连续偏导数,则复合函数],),,([y x y x f z ϕ=在点),(y x 的两个偏导数都存在,且1⋅∂∂+∂∂⋅∂∂=⋅∂∂+⋅∂∂+∂∂⋅∂∂=∂∂xf x u u f dx dy y f dx dx x f x u u f x z ; 1⋅∂∂+∂∂⋅∂∂=⋅∂∂+⋅∂∂+∂∂⋅∂∂=∂∂yf y u u f dy dy y f dy dx x f y u u f y z . 例1. 设v e z u sin =,而xy u =,y x v +=,求xz∂∂及y z ∂∂.解:)]cos()sin([1cos sin y x y x y e v e y v e xv v z x u u z x z xy u u +++=⋅+⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂; )]cos()sin([1cos sin y x y x x e v e x v e yv v z y u u z y z xy u u +++=⋅+⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂. 例2.设222),,(z y xe z y xf u ++==,而y x z sin 2=,求xu ∂∂及y u ∂∂. 解:xzz f dx dy y f dx dx x f x u ∂∂⋅∂∂+⋅∂∂+⋅∂∂=∂∂ yx y xz y xz y xe y x x y x ze xe 2422222222sin 22)sin 21(2sin 222+++++++=⋅+=;yz z f dy dx x f dx dy y f y u ∂∂⋅∂∂+⋅∂∂+⋅∂∂=∂∂ yx y xz y xz y xe y y x y y x ze ye 2422222222sin 42)cos sin (2cos 22+++++++=⋅+=.例3. 设t uv z sin +=,而t e u =,t v cos =,求求导数dtdz . 解:t t u ve dtdt t z dt dv v z dt du u z dt dz t cos sin +-=⋅∂∂+⋅∂∂+⋅∂∂= tt t e t t e t e t t t cos )sin (cos cos sin cos +-=+-=.四、全微分形式不变性:若函数),(v u f z =具有连续偏导数,则有全微分dv vz du u z dt dz ∂∂+∂∂=.若函数),(y x u ϕ=及),(y x v ψ=也具有连续偏导数,则复合函数)],(),,([y x y x f z ψϕ=的全微分为dy y z dx x z dt dz ∂∂+∂∂=,有dy yzdx x z dv v z du u z dt dz ∂∂+∂∂=∂∂+∂∂=,称此性质为全微分形式不变性. 事实上:dy y z dx x z dt dz ∂∂+∂∂=dy y v v z y u u z dx x v v z x u u z ⎪⎪⎭⎫ ⎝⎛∂∂⋅∂∂+∂∂⋅∂∂+⎪⎭⎫⎝⎛∂∂⋅∂∂+∂∂⋅∂∂= ⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂=dy y v dx x u v z dy y u dx x u u z dv v z du uz∂∂+∂∂=. 例4. 利用全微分形式不变性求xu∂∂与y u ∂∂,其中v e z u sin =,xy u =,y x v +=. 解:由于vdv e vdu e v e d dz u u u cos sin )sin (+==, 而 xdy ydx xy d du +==)(,dy dx y x d dv +=+=)(, 于是dy v e x v e dx v e y v e dz u u u u )cos sin ()cos sin (+⋅++⋅=,即dy y x y x x e dx y x y x y e dy yzdx x z xy xy )]cos()sin([)]cos()sin([+++++++=∂∂+∂∂, 比较两端dx 、dy 的系数得:)]cos()sin([y x y x y e xzxy +++=∂∂,)]cos()sin([y x y x x e xzxy +++=∂∂.第五节 隐函数的求导公式一、隐函数:称对应关系不明显,而是隐含在方程(方程组)中的函数(函数组)为由方程(方程组)确定的隐函数(隐函数组).注:并不是每一个方程都能确定一个隐函数,例如:01242=+++z y x . 二、隐函数存在定理定理1.若函数),(y x F 在点),(00y x P 的某一邻域内具有连续偏导数,且0),(00=y x F ,0),(00≠y x F y ,则方程0),(=y x F 在点),(00y x P 的某一邻域内恒能唯一确定一个连续可导的函数)(x f y =,满足)(00x f y =,且yx F F dx dy -=. 注:若),(y x F 的二阶偏导数也连续,则有 dxdy F F y dx dx F F x dx y d y x y x ⎪⎪⎭⎫ ⎝⎛-∂∂+⎪⎪⎭⎫ ⎝⎛-∂∂=22---=xyy xyx y xx F F F F F F 2322y y x xy y xx F F F F F F +--=.定理2. 若函数),,(z y x F 在点),,(000z y x P 的某一邻域内具有连续偏导数,且0),,(000=z y x F ,0),,(000≠z y x F z ,则方程0),,(=z y x F 在点),,(000z y x P 的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数),(y x f z =,满足),(000y x f z =,且zx F Fx z -=∂∂,z y F F y z -=∂∂. 例1. 设0122=-+y x ,求dxdy及22dx y d .解:令1),(22-+=y x y x F ,则x F x 2=,y F y 2=,从而yxF F dx dy y x -=-=. 33222221'yy x y y xy y y x dx d dx y d -=+-=--=⎪⎪⎭⎫ ⎝⎛-=. 例2.设04222=-++z z y x ,求22xz∂∂.解:设z z y x z y x F 4),,(222-++=,则x F x 2=,42-=z F z ,于是zx F F x z z x -=-=∂∂2,从而 3222222)2()2()2(2)2()2()2(z x z z z x x z z x z x z x z -+-=--⋅+-=-⎪⎭⎫ ⎝⎛∂∂---=∂∂.定理3. 若函数),,,(v u y x F 与),,,(v u y x G 在点),,,(0000v u y x P 的某一邻域内具有对各个变量的连续偏导数,又0),,,(0000=v u y x F ,0),,,(0000=v u y x G ,且函数行列式vu v uG G F F v u G F J =∂∂=),(),(在点),,,(0000v u y x P 不等于零,则方程组⎩⎨⎧==0),,,(0),,,(v u y x G v u y x F 在点),,,(0000v u y x P 的某一邻域内恒能确定唯一一组连续且具有连续偏导数的函数组⎩⎨⎧==),(),(y x v v y x u u ,且v u v u v xvxG G F F G G F F v x G F J x u -=∂∂-=∂∂),(),(1,vuv u xu x uG G F F G G F F x u G F J x v -=∂∂-=∂∂),(),(1; vuv u v y v yG G F F G G F F v y G F J y u -=∂∂-=∂∂),(),(1,vuv u y uy u G G F F G G F F y u G F J y v -=∂∂-=∂∂),(),(1.例3. 设0=-yv xu ,1=+xv yu ,求xu ∂∂、y u ∂∂、xv∂∂、和y v ∂∂.解:设方程组⎩⎨⎧=+=-1xv yu yv xu ,两端对x 求导得:⎪⎪⎩⎪⎪⎨⎧=+∂∂+∂∂=∂∂-∂∂+00v x v x x u y x v y x u x u 或⎪⎪⎩⎪⎪⎨⎧-=∂∂+∂∂-=∂∂-∂∂v x v x xu y u xv y x u x , 在022≠+=-=y x xyy x J 的条件下,有22y x yv xu x y y x x v yu x u ++-=-----=∂∂,22y x xvyu xy y x v y ux x v +--=----=∂∂;同理可得22y x yu xv y u +-=∂∂,22y x yvxu y v ++-=∂∂.第六节 多元函数微分学的几何应用一、一元向量值函数及其导数1. 一元向量值函数的定义: )(t f r =,D t ∈(数集),n R r ∈. 注:1°. 在3R 中,))(),(),(()()()()(321321t f t f t f k t f j t f i t f t f r =++==.2°. 向量值函数)())(),(),(()(321D t t f t f t f t f r ∈==称为曲线⎪⎩⎪⎨⎧===)()()(:321t f z t f y t f x Γ的向量方程.2. 一元向量值函数的极限:设向量值函数)(t f 在点0t 的某一去心邻域内有定义,若存在常向量0r ,0>∀ε,0>∃δ,t ∀:满足δ<-<||00t t ,总有ε<-|)(|0r t f ,则称0r 为)(t f 当0t t → 时的极限,记作0)(lim 0r t f t t =→.注:)(lim 0t f t t →存在⇔)(lim 10t f t t →、)(lim 20t f t t →、)(lim 30t f t t →都存在.⎪⎭⎫ ⎝⎛=→→→→)(lim ),(lim ),(lim )(lim 3210000t f t f t f t f t t t t t t t t . 3. 一元向量值函数的连续性:设向量值函数)(t f 在点0t 的某一邻域内有定义,若)()(lim 00t f t f t t =→,则称向量值函数)(t f 在点0t 连续.注:)(t f 在点0t 连续⇔)(1t f 、)(2t f 、)(3t f 点0t 连续.4.一元向量值函数的导数(导向量):设向量值函数)(t f r =在点0t 的某一邻域内有定义,若tt f t t f t r t t ∆∆∆∆∆∆)()(lim lim0000-+=→→存在,则称此极限值为)(t f 在点0t 的导数或导向量,记作)('t f 或x t dtr d =.注:1°. )(t f 在点0t 可导⇔)(1t f 、)(2t f 、)(3t f 点0t 都可导.k t f j t f i t f t f )()()()(''3'2'1++=.2°. 一元向量值函数的导向量的几何意义:trt f t ∆∆∆00lim)('→=是向量值函数)(t f r =的终端曲线Γ在点)(0t M 处的一个切向量,其指向与t 的增长方向一致.例1.设k t j t i t t f ++=)(sin )(cos )(,求)(lim 4/t f t π→.解:k t j t i t t f t t t t )lim ()sin lim ()cos lim ()(lim 4/4/4/4/ππππ→→→→++=k j i 42222π++=. 例2.设空间曲线Γ的向量方程为R t t t t t t f r ∈--+==),62,34,1()(22,求曲线Γ在点20=t 相应的点处的单位切向量.解:由于)64,4,2()('-=t t t f ,有)2,4,4()2('=f ,进而6244|)2('|222=++=f ,于是⎪⎭⎫⎝⎛==31,32,32)2,4,4(611n 为指向与t 的增长方向一致的单位切向量.⎪⎭⎫⎝⎛---=31,32,322n 为指向与t 的增长方向相反的单位切向量.二、空间曲线的切线与法平面1. 参数式情形:设空间曲线Γ的参数方程为⎪⎩⎪⎨⎧===)()()(t z t y t x ωψϕ,],[βα∈t ,假设)(t ϕ、)(t ψ以及)(t ω在],[βα上可导,且三个导数不同时为零.(1). 切线:曲线Γ上的一点),,(000z y x M 处的切线方程为:)(')(')('000t z z t y y t x x ωψϕ-=-=-,参数0t 对应点),,(000z y x M .推导:由于曲线Γ的参数方程为⎪⎩⎪⎨⎧===)()()(t z t y t x ωψϕ,记向量值函数))(),(),(()(t t t t f ωψϕ=,由向量值函数导数的几何意义知:向量)('),('),('()('0000t t t t f T ωψϕ==即为曲线Γ在其上的点),,(000z y x M 处的一个切向量,从而曲线Γ在其上的点),,(000z y x M 处的切线方程为:)(')(')('000000t z z t y y t x x ωψϕ-=-=-. (2). 法平面:通过曲线Γ上的点),,(000z y x M 而与曲线Γ在点M 处的切线垂直的平面方程称为曲线Γ在点M 处的法平面,方程为0))(('))(('))(('000000=-+-+-z z t y y t x x t ωψϕ.其中法向量为))('),('),('()('0000t t t t f T ωψϕ==.2. 特殊式情形:设空间曲线Γ的方程为⎩⎨⎧==)()(x z x y ψϕ,且)(x ϕ、)(x ψ在点0x x =处可导,曲线Γ的方程可改写为⎪⎩⎪⎨⎧===)()(x z x y x x ψϕ,x 为参数,从而曲线Γ在点),,(000z y x M 处的切线与法平面方程分别为: (1). 切线方程:)(')('100000x z z x y y x x ψϕ-=-=-. (2). 法平面方程:0))(('))((')(00000=-+-+-z z x y y x x x ψϕ.3. 一般式(隐函数)情形:设曲线Γ的方程为⎩⎨⎧==0),,(0),,(z y x G z y x F ,),,(000z y x M 为曲线Γ上的一点,又设F 、G 有对各个变量的连续偏导数,且0),(),(≠∂∂Mz y G F ,这时方程组在点),,(000z y x M 的某一邻域内确定了一组隐函数⎩⎨⎧==)()(x z x y ψϕ,从而曲线Γ的参数方程为⎪⎩⎪⎨⎧===)()(x z x y xx ψϕ,x 为参数,于是切向量为))('),(',1(00x x T ψϕ=⎪⎪⎭⎫ ⎝⎛=M z yzy Myxy x Mzyz y Mx z x z G G F F G G F F G G F F G G F F ,,1 ⎪⎪⎭⎫ ⎝⎛=M yxy x M x zxzM z y z y Mzyzy G G F F G G F FG G F F G G F F ,,1. (1). 切线方程:)(')('100000x z z x y y x x ψϕ-=-=-. (2). 法平面方程:0))(('))((')(00000=-+-+-z z x y y x x x ψϕ.例3. 求曲线⎩⎨⎧=++=++06222z y x z y x 在点)1,2,1(-处的切线与法平面方程.解:在方程组⎩⎨⎧=++=++06222z y x z y x 两端对x 求导,得⎪⎪⎩⎪⎪⎨⎧=++=++010222dx dz dx dy dx dz z dx dy y x ,整理得⎪⎪⎩⎪⎪⎨⎧-=+-=+1dxdz dx dy x dxdz z dx dyy , 于是z y xz z y z x dx dy --=--=1111,0)1,2,1(=-dxdy;z y y x z y xy dx dz --=--=1111,1)1,2,1(=-dxdz ,故切向量为)1,0,1(=T ,从而所求切线方程为:110211--=+=-z y x ,或⎪⎩⎪⎨⎧-=--=-21111y z x .法平面方程为0)1()2(0)1(=--++-z y x 或0=-z x .三、曲面的切平面与法线 1.定义(1). 切平面:若曲面∑上通过点M 的一切曲线在点M 的切线都在同一个平面上,则称此平面为曲面∑在点M 的切平面.(2). 法线:通过点M 且与切平面垂直的直线称为曲面∑在点M 的法线. 2. 切平面与法线方程(1). 一般式情形:设曲面∑的方程为0),,(=z y x F ,点),,(000z y x M 为其上一点,且函数),,(z y x F 的偏导数在点M 连续.切平面方程:0))(())(())((000=-+-+-z z M F y y M F x x M F z y x ; 法线方程:)()()(000M F z z M F y y M F x x z y x -=-=-. 推导:在曲面∑上过点M 任意引一条曲线Γ,设其参数方程为⎪⎩⎪⎨⎧===)()()(t z t y t x ωψϕ,且函数)(t x ϕ=、)(t y ψ=以及)(t z ω=在0t t =都可导,0t t =对应点),,(000z y x M ,有方程0))(),(),((=t t t F ωψϕ, 两端对x 求导,在0t t =处,有0)('),,()('),,,()('),,(000000000000=++t z y x F t z y x F t z y x F z y x ωψϕ. 记()),,(),,,(),,,(000000000z y x F z y x F z y x F N z y x =.又))('),('),('(000t t t T ωψϕ=为曲线Γ在点),,(000z y x M 处的切向量,由上式可知0=⋅T N ,即曲面∑上通过点),,(000z y x M 的任意一条曲线的切向量都垂直于同一个向量,从而这些切线都在同一平面上,即曲面∑在点),,(000z y x M 的且平面存在,该切平面以向量()),,(),,,(),,,(000000000z y x F z y x F z y x F N z y x =为一法线向量.(2). 特殊式 (显函数) 情形:曲面∑:),(y x f z =,且函数),(y x f 的偏导数在点),(00y x 连续. 切平面方程:0)())(,())(,(0000000=---+-z z y y y x f x x y x f y x .法线方程:1),(),(0000000--=-=-z z y x f y y y x f x x •y x .推导:记0),(),,(=-=z y x f z y x F ,有),(),,(y x f z y x F x x =,),(),,(y x f z y x F y y =,1),,(-=z y x F z ,故有法向量()1),,(),,(0000-=y x f y x f N y x .例4. 求球面14222=++z y x 在点)3,2,1(处的且平面及法线方程.解:设14),,(222-++=z y x z y x F ,有x z y x F x 2),,(=,y z y x F y 2),,(=,z z y x F z 2),,(=,故所求切平面的法向量为())6,4,2(2,2,2)3,2,1(==z y x N ,于是所求切平面方程为:0)3(6)2(4)1(2=-+-+-z y x ,即01432=-++z y x ,法线方程为:332211-=-=-z y x •,即321zy x •==. 例5. 求旋转抛物面122-+=y x z 在点)4,1,2(处的切平面即法线方程.解:设1),(22-+=y x y x f ,有x y x f x 2),(=,y y x f y 2),(=,于是所求切平面的法向量为())1,2,4(1,2,2)4,1,2(-=-=y x N .从而所求切平面方程为0)4()1(2)2(4=---+-z y x ,即0624=--+z y x ,法线方程为142142--=-=-z y x •.第七节 方向导数与梯度引入:由函数),(y x f 在点),(000y x P 的偏导数的几何意义可知:偏导数),(00y x f x 、),(00y x f y 只是函数),(y x f 过点),(000y x P 沿平行坐标轴法线的变化率.但在实际应用中,往往要求我们知道函数),(y x f 在点),(000y x P 沿任意确定的方向的变化率,以及沿什么方向函数的变化率最大,这就涉及到函数的方向导数和梯度. 一、方向导数1. 定义:设函数),(y x f 在点),(000y x P 的某个邻域)(0P U 内有定义,)sin ,cos (000ααt y t x P ++为过点),(000y x P 的射线l ()sin ,(cos αα=l e )上另一点,且)(0P U P ∈.若极限ty x f t y t x f t ),()sin ,cos (lim 00000-+++→αα存在,则称此极限为函数),(y x f z =在点),(000y x P 沿方向l 的方向导数,记作),(00y x lf ∂∂.注:若函数),(y x f 在点),(000y x P 的偏导数存在,且i e l ==)0,1(,则),(),(),(lim 0000000),(00y x f ty x f y t x f lf x t y x =-+=∂∂+→.若函数),(y x f 在点),(000y x P 的偏导数存在,且j e l ==)1,0(,则),(),(),(lim 0000000),(00y x f ty x f t y x f lf y t y x =-+=∂∂+→.2. 方向导数的存在性定理:若函数),(y x f 在点),(000y x P 可微分,则函数),(y x f 在点),(000y x P 沿任意方向l 的方向导数都存在,且有βαcos ),(cos ),(0000),(00y x f y x f lf y x y x +=∂∂,其中αcos 、βcos 的方向余弦.注:1°. 可推广:若函数),,(z y x f 在点),,(0000z y x P 可微分,则),,(z y x f 在点0P 沿方向)cos ,cos ,(cos γβα=l e 的方向导数为γβαcos ),,(cos ),,(cos ),,(000000000),,(000z y x f z y x f z y x f lfz y x z y x ++=∂∂.2°. 方向导数存在,函数未必可微分.例如:22),(y x y x f +=在点)0,0(沿方向)cos ,(cos βα=l e 的方向导数都存在,但),(y x f 在点)0,0(不可微分.事实上:由于1lim )0,0()cos 0,cos 0(lim 00==-++++→→t ttf t t f t t βα,从而22),(y x y x f +=在点)0,0(沿方向l e 的方向导数都存在.但22),(y x y x f +=在点)0,0(的两个偏导数都不存在,从而不可微分. 例1. 求函数y xe z 2=在点)0,1(P 处从点)0,1(P 到)1,2(-Q 方向的方向导数.解:由题可知方向l 就是向量)1,1(-=PQ 的方向,有⎪⎭⎫ ⎝⎛-=21,21l e .又1)0,1(2)0,1(==∂∂ye xz,22)0,1(2)0,1(==∂∂yxe yz ,故所求方向导数为22212211)0,1(-=⎪⎭⎫ ⎝⎛-⋅+⋅=∂∂lz . 例2.求zx yz xy z y x f ++=),,(在点)2,1,1(沿方向l 的方向导数,其中l 的方向角分别为o o o 60,45,60.解:由题可知与方向l 同向的单位向量为⎪⎪⎭⎫⎝⎛==21,22,21)60cos ,45cos ,60(cos o o o l e ,又3)()2,1,1()2,1,1(=+=z y f x ,3)()2,1,1()2,1,1(=+=z x f y ,2)()2,1,1()2,1,1(=+=x y f z , 故所求方向导数为)235(21212223213)2,1,1(+=⋅+⋅+⋅=∂∂lf.二、梯度1.梯度的定义:设函数),(y x f 在平面区域D 内具有一阶连续偏导数,对每一个点D y x P ∈),(000,称向量j y x f i y x f y x ),(),(0000+为函数),(y x f 在点),(000y x P 的梯度,记作),(00y x f grad ,或),(00y x f ∇,即j y x f i y x f y x f y x f grad y x ),(),(),(),(00000000+=∇=. 注:可推广:k z y x f j z y x f i z y x f z y x f z y x f grad z y x ),,(),,(),,(),,(),,(000000000000000++=∇=. 2.梯度与方向导数的关系(1).沿梯度方向,方向导数达到最大值; (2).梯度的模为方向导数的最大值.推导:设)cos ,(cos βα=l e ,若函数),(y x f 在点),(000y x P 可微分,则),(y x f 在点0P 沿方向l 的方向导数为βαcos ),(cos ),(0000),(00y x f y x f lfy x y x +=∂∂)),,((cos |||),(|),(000000∧⋅⋅=⋅=l l l e y x f grad e y x f grad e y x f gradθ∆cos |||),(|00⋅⋅=l e y x f grad .1. 当0=θ时,|),(|00),(00y x f grad lf y x =∂∂.这说明函数),(y x f 在一点),(y x 的梯度),(y x f grad 是这样一个向量,它的方向是),(y x f 在这点的方向导数取得最大值的方向,它的模等于方向导数的最大值.2. 当πθ=时,有l e 与),(00y x f grad 的方向相反,函数),(y x f 减小最快,),(y x f 在这个方向上的方向导数达到最小值,|),(|00),(00y x f grad lfy x -=∂∂.3. 当2πθ=时,有l e 与),(00y x f grad 的方向正交,函数),(y x f 的变化率为零,即0cos |),(|00),(00==∂∂θy x f grad lf y x .例3. 求221y x grad+.解:令221),(y x y x f +=,有222)(2),(y x x y x f x +-=,222)(2),(y x yy x f x +-=,于是 j y x yi y x x y x grad22222222)(2)(21+-++-=+.例4.设)(21),(22y x y x f +=,)1,1(0P ,求(1). ),(y x f 在0P 处增加最快的方向以及),(y x f 沿这个方向的方向导数; (2). ),(y x f 在0P 处减少最快的方向以及),(y x f 沿这个方向的方向导数; (3). ),(y x f 在0P 处变化率为零的方向.解:(1). ),(y x f 在点)1,1(0P 处沿)1,1(f ∇的方向增加最快,由于j i j y i x f +=+=∇)1,1()()1,1(,故所求方向可取为j i f n 2121)1,1(+=∇∇=2|)1,1(|)1,1(=∇=∂∂f n f . (2). ),(y x f 在点)1,1(0P 处沿)1,1(f ∇-的方向减少最快,故所求方向可取为j i n n 21211--=-=2|)1,1(|)1,1-=∇-=∂∂f nf.(3). ),(y x f 在点)1,1(0P 处沿垂直于)1,1(f ∇的方向变化率为零,故所求方向为j i n 21212+-=或j i n 21213-=.第八节 多元函数的极值及其求法引入:在一元函数微分学中,我们讨论了一元函数的极值和最值问题,但在许多实际问题中,往往会遇到多元函数的极值和最值问题,我们以二元函数为例来讨论多元函数的极值与最值问题.一、二元函数的极值与最值1. 极值:二元函数),(y x f 的定义域为D ,),(000y x P 为D 的内点,若存在0P 的某个邻域DP U ⊂)(0,)(),(0P U y x P ∈∀,且),(),(0y x P y x P ≠,都有),(),(00y x f y x f <(),(),(00y x f y x f >),则称),(y x f 在点0P 有极大值(极小值).点),(000y x P 称为函数),(y x f 的极大值点(极小值点). 统称极大值、极小值为极值;使函数取得极值的点称为函数的极值点.2. 最值:设函数),(y x f 的定义域为D ,若存在D y x P ∈),(000,D y x P ∈∀),(,都有),(),(00y x f y x f ≤(),(),(00y x f y x f ≥),则称),(00y x f 为),(y x f 在D 上的最大值(最小值). 注:1°. 极值是一个局部概念,最值是一个整体概念.2°. 极值与最值的关系:极值可以是最值,但最值未必是极值. 例1. 函数2243y x z +=在点)0,0(取得极小值,也是最小值.例2. 函数22y x z +-=在点)0,0(取得极大值,也是最大值. 例3.函数xy z =在点)0,0(既不取得极大值,也不取得极小值.由此可见,并不是每一个函数在其定义域上都有极值点,那么什么样的点可能是函数的极值点呢?又如何判断函数在该极值点处取得极大值还是极小值呢?下面我们来学习极值点的必要条件和充分条件,从中得到这些问题的答案. 二、极值点的条件定理1. 若函数),(y x f z =在点),(000y x P 具有偏导数,且在点),(000y x P 处取得极值,则有0),(00=y x f x ,0),(00=y x f y .注:1°.称使⎩⎨⎧==0),(0),(0000y x f y x f y x 成立的点),(00y x 为),(y x f 的驻点或稳定点.2°. 可偏导函数的极值点一定是其驻点,但反之未必.例如:函数xy z =,在点)0,0(是其驻点,但xy z =在点)0,0(却不取得极值.那么什么样的驻点才能是极值点呢?下面的极值点的充分条件回答这一问题,并给出求极值的方法.定理2. 设函数),(y x f z =在点),(00y x 的某一邻域内连续且具有一阶以及二阶连续偏导数,又0),(00=y x f x ,0),(00=y x f y ,令A y x f xx =),(00,B y x f xy =),(00,C y x f yy =),(00,则),(y x f 在),(00y x 处是否取得极值的条件如下:(1). 02>-B AC 时具有极值,且当0<A 时有极大值,当0>A 时有极小值. (2). 02<-B AC 时没有极值.(3). 02=-B AC 时是否取得极值不定,需另行讨论. 3.求极值的步骤第一步:求偏导数,解方程组⎩⎨⎧==0),(0),(y x f y x f y x ,得),(y x f z =的所有驻点.第二步:对每一驻点),(i i y x ,求二阶偏导数的值A 、B 、C .第三步:考察2B AC -的符号,判断),(i i y x f 是否为极值,若是极值,判断出是极大值还是极小值.例4.求函数x y x y x y x f 933),(2233-++-=的极值.解:解方程组⎪⎩⎪⎨⎧=+-==-+=063),(0963),(22y y y x f x x y x f y x ,得驻点)0,1(,)2,1(,)0,3(-,)2,3(-. 又66),(+=x y x f xx ,0),(=y x f xy ,66),(+-=y y x f yy .(1). 在点)0,1(处,0726122>=⨯=-B AC ,且012>=A ,故),(y x f 在)0,1(处取得极小值5)0,1(-=f .(2). 在点)2,1(处,0726122<-=⨯-=-B AC ,故)2,1(f 不是极值. (3). 在点)0,3(-处,072)6(122>=-⨯-=-B AC ,故)0,3(-f 不是极值.(4). 在点)2,3(-处,0726122>=⨯=-B AC ,且012<-=A ,故),(y x f 在)0,1(处取得极大值31)2,3(=-f .例5. 求函数27227)(2),(y x x y y x f ---=的极值.解:由方程组⎪⎩⎪⎨⎧=--==---=02)(4),(0)(8),(262y x y y x f x x y x y x f y x 得两个驻点)8,2(-,)0,0( . 又526248),(x x y y x f xx -+-=;x y x f xy 8),(-=;2),(=y x f yy ;(1). 在点)8,2(-处,0224)8,2(>=-=xx f A , 16)8,2(=-=xy f B ,2)8,2(=-=yy f C ,有01922>=-B AC ,故),(y x f 在点)8,2(-取极小值7/352)8,2(-=-f .(2). 在点)0,0(处,0)0,0(==xx f A ,0)0,0(==xy f B ,2)0,0(==yy f C ,有02=-B AC ,由于0)0,0(=f ,而),(y x f 在)0,0(的某个邻域内既有大于0的值,也有小于0的值,例如0),(<y y f ,而0),0(>y f .故),(y x f 在)0,0(取不到极值.注:可偏导函数的极值点一定是其驻点,但函数的极值点也可以在其不可偏导点处取得, 例如:22y x z +-=在)0,0(取得极大值0,但)0,0(不是22y x z +-=的驻点. 三、函数最值的求法在一元函数微分学中,我们利用函数极值求函数的最值,这一方法仍然适用于多元函数. 设函数),(y x f 在有界闭区域D 上连续,在D 内可微且有有限多个驻点,则),(y x f 在D 上具有最大值和最小值,将),(y x f 在D 内的所有驻点的函数值与D 边界上的最大值和最小值。
高等数学第六版上下册(同济大学出版社)课件

不定积分的几何意义
不定积分表示的是一种曲线族 ,每一条曲线都有一个与之对
应的方程。
积分的应用场景
01
物理应用
积分在物理中有广泛的应用,例 如计算物体的质量、重心、转动 惯量等。
工程应用
02
03
经济应用
积分在工程中有广泛的应用,例 如计算曲线的长度、面积、体积 等。
积分在经济中有广泛的应用,例 如计算总成本、总收益、总利润 等。
05
多重积分与向量分析
二重积分的概念与性质
二重积分的定义
二重积分是定积分在二维平面上的推广,表示一个二元函数在某个区域上的累积值。
二重积分的性质
二重积分具有可加性、可减性、可交换性等性质,这些性质使得二重积分在解决实际问题中具有广泛的应用。
三重积分的概念与性质
三重积分的定义
三重积分是定积分在三维空间上的推广 ,表示一个三元函数在某个区域上的累 积值。
03
导数与微分
导数的概念与性质
导数的定义
导数描述了函数在某一点附近的变化率,是函数局部 性质的一种体现。
导数的几何意义
导数在几何上表示函数图像在某一点的切线的斜率。
导数的性质
导数具有一些基本的性质,如线性性质、乘积法则、 商的导数法则等。
微分的概念与性质
微分的定义
01
微分是函数在某一点附近的小变化量,用于近似计算函数的值
求函数的最值
导数可以用于求函数在一定区间内的最大值和最小值,这在优化问题中具有广泛的应用。
04
积分
定积分的概念与性质
01
定积分的定义
定积分是积分的一种,是函数在区间上与区间的乘积在区间的两个端点
高数课本-同济六版

第一章函数与极限〔考研必考章节,其中求极限是本章最重要的内容,要掌握求极限的集中方法〕第一节映射与函数〔一般章节〕一、集合〔不用看〕二、映射〔不用看)三、函数(了解〕注:P1--5 集合部分只需简单了解P5--7不用看P7--17 重点看一下函数的四大性态:单调、奇偶、周期、有界P17--20 不用看P21 习题1.11、2、3大题均不用做4大题只需做〔3〕〔5〕〔7〕〔8〕5--9 均做10大题只需做〔4〕〔5〕〔6〕11大题只需做〔3〕〔4〕〔5〕12大题只需做〔2〕〔4〕〔6〕13做14不用做15、16重点做17--20应用题均不用做第二节数列的极限〔一般章节本章用极限定义证的题目考纲不作要求,可不看〕一、数列极限的定义〔了解〕二、收敛极限的性质〔了解〕P26--28 例1、2、3均不用证p28--29 定理1、2、3的证明不用自己证但要会理解P30 定理4不用看P30--31 习题1-21大题只需做〔4〕〔6〕〔8〕2--6均不用做第三节〔一般章节〕〔标题不再写了对应同济六版教材标题〕一、〔了解〕二、〔了解〕P33--34 例1、2、3、4、5只需大概了解即可P35 例6 要会做例7 不用做P36--37 定理2、3证明不用看定理3’4〞完全不用看p37习题1--31--4 均做5--12 均不用做第四节〔重要〕一、无穷小〔重要〕二、无穷大〔了解〕p40 例2不用做 p41 定理2不用证p42习题1--41做 2--5 不全做 6 做 7--8 不用做第五节(注意运算法则的前提条件是各自存在)p43 定理1、2的证明要理解p44推论1、2、3的证明不用看p48 定理6的证明不用看p49 习题1--51题只需做(3)(6)(7)(8)(10)(11)(13)(14) 2、3要做4、5重点做6不做第六节极限存在准则(重要) 两个重要极限(重要两个重要极限要会证明p50 准则1的证明要理解p51 重要极限一定要会独立证明(经典重要极限)p53另一个重要极限的证明可以不用看p55--56柯西极限存在准则不用看p56习题1--71大题只做(1)(4)(6)2全做3不用做4全做,其中(2)(3)(5)重点做第七节(重要〕p58--59 定理1、2的证明要理解p59 习题1--7 全做第八节〔基本必考小题〕p60--64 要重点看第八节基本必出考题p64 习题1--81、2、3、4、5要做其中4、5要重点做6--8不用做第九节〔了解〕p66--67 定理3、4的证明均不用看p69 习题1--91、2要做3大题只做〔3〕——〔6〕4大题只做〔4〕——〔6〕5、6均要重点做第十节〔重要,不单独考大题,但考大题会用到〕一、〔重要〕二、〔重要〕p72三、一致连续性〔不用看〕p74习题1--101、2、3、5要做,要会用5的结论。
《高等数学》(同济六版)教学★

平行 ? 写出其切线方程.
解:
令
得
相应
则在点(1,1) , (–1,–1) 处与直线
平行旳切线方程分别为
即
故在原点 (0 , 0) 有铅直切线
四、 函数旳可导性与连续性旳关系
定理1.
证:
设
在点 x 处可导,
存在 ,
所以必有
其中
故
所以函数
在点 x 连续 .
注意: 函数在点 x 连续,但在该点未必可导.
证明中利用了两个主要极限
初等函数求导问题
本节内容
一、四则运算求导法则
定理1.
旳和、
差、
积、
商 (除分母
为 0旳点外) 都在点 x 可导,
且
下面分三部分加以证明,
并同步给出相应旳推论和
例题 .
此法则可推广到任意有限项旳情形.
证: 设
则
故结论成立.
例如,
(2)
证: 设
则有
故结论成立.
推论:
( C为常数 )
反例:
在 x = 0 处连续 , 但不可导.
即
在点
旳某个右 邻域内
五、 单侧导数
若极限
则称此极限值为
记作
即
(左)
(左)
例如,
在 x = 0 处有
定义2 . 设函数
有定义,
存在,
定理2. 函数
在点
且
简写为
定理3. 函数
(左)
(左)
若函数
与
都存在 ,
则称
显然:
在闭区间 [a , b] 上可导
可导, 且
则
时, 有
高数(同济第六版)第九章总结

4
③当 AC
时,不能判断
2、条件极值,拉格朗日乘数法:
①构造 L(x,y)=f(x,y)+ (x,y)[其中,f 为原函数, 为条件]
② (x0,y0)+
=0
(x0,y0)+
=0
(x0,y0)=0
5
1、方向导:
2、梯度:
=
3、 =(
) 其中 为方向角,
记某点
处的方向导为 记梯度为
则
[其中
]
① =0 时,f 增长最快
② = 时,f 增长最慢
③ = 时,f 不变
第八节 多元函数的极值及其求法
1、极值存在 必要条件: ,
充要条件:有
C
①当 AC
A>0 时,有极小值
A<0 时, 有极大值
②当 AC <0 时,无极值
1、 偏导的符号不可拆
2、 偏导数的几何意义
第三节 全微分
1、 全增量: z=f(x+ x,y+ y)-f(x,y)
可表示为: z=A x+B y+o( )[其中 o( )=
]
2、全微分:
[其中
]
3、全微分存在条件: 4、各个关系
函数连续
互推不出
推不出
推不出
函数可导
推得出
函数可导
推
推
得
不
出
出
推得出
偏导连续
记 Jacobi 式:J=
(在解方程组式的隐函数时,可用可不用 Jacobi 式) 第六节 多元函数微分学几何应用
1、
3
[称其为一元向量值函数] 2、空间曲线的切线与法平面
高等数学(同济大学第六版)第9章多元函数微分法小结

法平面方程为
⎧x = x ⎧ F ( x, y , z ) = 0 ⎪ 情况 2.若空间曲线的方程为: ⎨ ,可化为情况 1 的形式为 ⎨ y = y ( x ) , 可得曲线在 ⎩G (x, y, z ) = 0 ⎪ z = z (x ) ⎩
y 0 = f ( x0 ) ,并有
F' dy = − x' . dx Fy
高等数学 -4-
高等数学阶段小结
第九章多元函数的微分法及其应用
2)一个三元方程确定一个二元隐函数的情形 设 函 数 F ( x, y , z ) 在 点 P ( x 0 , y 0 , z 0 ) 的 某 一 邻 域 内 具 有 连 续 的 偏 导 数 , 且
Fy' Fx' ∂z ∂z =− ' , =− ' . ∂x Fz ∂y Fz
3)一个四元方程组确定两个二元隐函数的情形 设 F ( x, y , u , v ) 、 G ( x, y , u , v ) 在点 P ( x 0 , y 0 , u 0 , v0 ) 的某一邻域内具有对各个变量的连续偏导数 , 又
Gu' Gv'
Gu' Gv'
Fy' Fv'
' Gy Gv' 1 ∂ (F , G ) ∂u =− =− ' ' ∂y J ∂ ( y, v ) Fu Fv
Fu' Fy
,
' Gu' G y ∂v 1 ∂ (F , G ) =− =− ' ' ∂y J ∂ (u, y ) Fu Fv
'
Gu' Gv'
Gu' Gv'
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求 z , z . x y
z
解: z z u z v x u x v x
eu sin v y eu cos v 1
uv x yx y
ex y[ y sin( x y) cos(x y)]
z z u z v y u y v y
eu sin v x eu cos v 1
u v
z z u z v o ( )
t u t v t t 3
z z u z v o( ) ( (u)2 (v)2 )
t u t v t t
z
令 t ,则0 有 u 0, v 0,
u du , v dv
uv
t dt t dt
tt
o ( ) o( ) t
( u )2 ( v)2 0
求 2z . xy
解 : 令u y , v xy,
x
z x2 f (u, v)
f
uv
x yx y
z x
2 xf
x2
[ uf
u x
f v
v x
]
2xf
x2
f1 (
y x2
)
x2
f2
y
12
x
2xf yf1 x2 yf2
f1( f2)
u
v
y
x
2z xy
y
2x
y
(
f
)
y
(
yf1)
x2
y
z f (u, v) 在点 (u, v) 处可微, 则复合函数
z
z f ( (t), (t)) 在点 t可导, 且有链式法则
dz z du z dv dt u dt v dt
uv
tt
证: 设 t 取增量 t , 则相应中间变量有增量 u , v z z u z v o ( ) ( (u)2 (v)2 )
fvv )
14
二. 复合函数的全微分
设函数 z f (u, v), u (x, y), v (x, y) 都可微,
则复合函数 z f ( (x, y) , (x, y)) 的全微分为
dz z dx z d y x y
(z u z v ) d x ( z u z v )d y
(
yf2)
2x[f u f v ] u y v y
f1
y[ f1 u
u y
f1 v
v ] y
x2
f 2
x2
y[ f2 u
u y
f 2 v
v y
]
f1 3x2
f2
y x
f11 x3 yf22
13
课堂练习
设z
f
xy,
1
(
x
2
2
y2
),其中f ( u,v )具有二阶连续偏导数,
求 2z x 2
解: d z d ( eu sin v )
x y
eu sin v du eu cos v d v
ex y[sin( x y)d (x y) cos(x y)d (x y)]
ex y[sin( x y) ( ydx xd y) cos(x y)(d x d y)]
ex y[ y sin( x y) cos(x y)]dx
u x v x
u y v y
z ( u d x
u
d y)
z
( v d x
v d y)
u x y
v x y
z du z dv
u
v
这说明,无论 u , v 是自变量还是中间变量, 其全微分表
达式一样, 这性质叫做全微分形式不变性 .
15
例 6. z eu sinv, u xy, v x y,求 z , z .
ex y[xsin( x y) cos(x y) ]d y
所以
z ex y[ y sin( x y) cos(x y)] x
z ex y[x sin( x y) cos(x y)]
y
16
内容小结
一. 复合函数求导的链式法则
“分段用 分叉用加, 单路全导, 叉路偏导”
乘 例如, , u f (x, y,v), v (x, y),
u
u x
f1
f 3 1
u y
f2
f 3 2
x
yv xy
二. 全微分形式不变性
z f (u , v), 不论 u , v 是自变量还是因变量,
d z fu (u ,v) du fv (u ,v) dv
17
习题9 4 P82
2,5,7,8(1)(2),11,12(2)(4)
18
2z y 2
解
z x fu y fv x
z y fu x fv y
2z x 2 ( fuu y fuv x) y ( fvu y fvv x)x fv
2z y 2
( fuu
x
f uv
y)x ( fvux
fvv y)y
fv
2z x 2
2z y 2
(x2
y 2 )( fuu
记
f1
f
(u,v) , u
f12
2 f (u,v) , uv
w
u
v
同理有 f2, f11, f22 .
x y zx y z
w x
f u f v u x v x
f1 yzf2;
10
2w xz
z
(
f1
f1 f1 u z u z
yzf2)
f1 z
yf2
yz
f1 v v z
f11
ex y[x sin( x y) cos(x y)]
7
例2. u f (x, y, z) ex2 y2 z2 , z x2sin y ,
求 u , u
u
x y
解: u f f z
xyz
x x z x
xy
2 x ex2 y2 z2 2z ex2 y2 z2 2 x sin y
求全导数 d z .
dt
z
解:
dz z du z dv z dt u dt v dt t
tt
vet u sin t cost
et (cos t sin t) cost
9
例 4 设w f ( x y z, xyz),f 具有二阶 连续偏导数,求w 和 2w . x xz
解 令 u x y z, v xyz; w f (u, v)
2 x (1 2 x2 sin 2 y) ex2 y2 x4 sin2 y
u f f z y y z y
2yex2 y2 z2
2ze
x2
y
2
z
2
x
2
cos
y
2 ( y x4 sin y cos y ) ex2 y2 x4 sin2 y 8
例 3. 设 z u v sin t , u et ,
xyf12;
f2; z
u
f1
,
f2
v
f2 z
f2 u f2 v u z v z
f21 xyf22;
x
y
z
x
y
z
于是2w xzf11来自xyf12yf2
yz(
f21
xyf22 )
f11 y( x z) f12 xy2zf22 yf2.
11
例5 设z x2 f ( y , xy),其中f具有二阶连续偏导, x
f1 f2 f3
2)中间变量是多元函数的情形。例如
z
uvw ttt
z f (u,v) , u (x, y), v (x, y)
则在它们都可微的条件下
z z u z v x u x v x
z y
z u u y
z v
v y
f12
f2 2
z
uv x yx y
5
又如 z f (x,v), v (x, y)
t t
(t 0 时,根式前加“–”
dz z du z dv dt u dt v dt
号)
( 全导数公式 )
4
推广: 1)中间变量多于两个的情形。例如
z f (u,v, w) , u (t), v (t), w (t)
则在它们都可微的条件下
dz z du z dv z dw dt u dt v dt w dt
当它们 都具有可微条件时,则有
z x
f x
f v
v x
f1
f 2 1
z y
f v
v y
f2 2
注意:
这里 z
x
与
f x
不同
z x
表示固定 y 对 x 求导
f 表示固定 v 对 x 求导
x
z f
xv
xy
口诀 : 分段用乘, 分叉用加, 单路全导, 叉路偏导6
例1. 设 z eu sin v , u x y , v x y
第四节 多元复合函数的求导法则
一元复合函数 y f (u), u (x)
求导法则 d y d y du dx du dx
微分法则 dy f (u) du f (u) (x) dx
推广 (1)多元复合函数求导的链式法则 (2)多元复合函数的全微分
2
一. 复合函数求导的链式法则
定理 如果函数 u (t), v (t) 都在点 t可导,函数