信号与系统实验1

合集下载

信号与系统实验报告(一) 大二下

信号与系统实验报告(一) 大二下

电气学科大类级《信号与控制综合实验》课程实验报告(基本实验一:信号与系统基本实验)姓名学号专业班号同组者1 学号专业班号同组者2 学号专业班号指导教师日期实验成绩评阅人综合实验和实验报告要求信号与控制综合实验,是集多门技术基础课程以及其它延伸课程理论于一体的综合性实验课程,需要综合多门学科理论知识和实验方法来体现,因此,实验目的不是简单的课程理论验证和练习,而是综合应用、研究开发、设计创新。

应采用尽可能好的设计,使所设计的电路和系统达到要实现的功能,步骤和方案自行拟定,实现对设计思路的实验验证。

完成多个实验项目的,应将实验内容整理综合后写成一份总报告,以利于锻炼整理归纳和总结能力,在总报告中以第二级标题形式依次写下所完成的实验项目、内容及实验设计过程。

实验报告按“题目、目录、正文(分所完成的各实验项目)、结论、心得与自我评价、参考文献”6个部分撰写;正文主要包括以下几个内容:任务和目标、总体方案设计(原理分析与方案设计特点,选择依据和确定)、方案实现和具体设计(过程)、实验设计与实验结果、结果分析与讨论。

(格式方面请注意:每个图应该有图号和图名,位于图的下方,同一图号的分图应在同一页,不要跨页;每个表应该有表号和表名,位于表的上方,表号表名与表(数据)也应在同一页,不要跨页;建议各部分题目采用四号黑体、设计报告内容文字采用小四号宋体)注:报告中涉及实验指导书或教材内容,只需注明引用位置,不必在报告中再加以阐述。

不得不加引用标记地抄袭任何资料。

每一基本实验部分按计划学时100分成绩计算(100%),需要完成60分的实验项目;实验报告、设计部分和创新研究内容另外计分(分别为10%、20%和10%)。

再按照学时比例与本课程其它部分实验综合成为总实验成绩。

每一部分实验均为:基本实验:0~60分,考核基本理论的掌握和基本操作技能、实验室道德规范;实验报告:0~10分,考核思考和总结表述能力;完成设计性实验:0~20分,评价设计能力;完成创新性实验:0~10分,鼓励创新。

信号与系统实验一连续时间信号分析实验报告

信号与系统实验一连续时间信号分析实验报告

实验一 连续时间信号分析一、实验目的(一)掌握使用Matlab 表示连续时间信号1、学会运用Matlab 表示常用连续时间信号的方法2、观察并熟悉常用信号的波形和特性(二)掌握使用Matlab 进行连续时间信号的相关运算1、学会运用Matlab 进行连续时间信号的时移、反褶和尺度变换2、学会运用Matlab 进行连续时间信号微分、积分运算3、学会运用Matlab 进行连续时间信号相加、相乘运算4、学会运用Matlab 进行连续时间信号卷积运算二、实验条件装用Matlab R2015a 的电脑。

三、实验内容1、利用Matlab 命令画出下列连续信号的波形图。

(1))4/3t (2cos π+ 程序:t=-3:0.01:3; ft=2*cos(3*t+pi/4); plot(t,ft)图像:(2))t (u )e 2(t--程序:t=-6:0.01:6; ut=(t>=0);ft=(2-1*exp(-t)).*ut; plot(t,ft)图像:(3))]2()(u )][t (cos 1[--+t u t π 程序:t=-6:0.01:6; ut=(t>=0); ut2=(t>=2);ft=(1+cos(pi*t)).*(ut-ut2); plot(t,ft)图像:2、利用Matlab 命令画出复信号)4/t (j 2e )t (f π+=的实部、虚部、模和辐角。

程序:t=0:0.01:20;ft=2*exp(1j*(t+pi/4));subplot(2,2,1);plot(t,real(ft));title('ʵ²¿');axis([-0.5,20,-2.5,2.5]); subplot(2,2,2);plot(t,imag(ft));title('Ð鲿');axis([-0.5,20,-2.5,2.5]); subplot(2,2,3);plot(t,abs(ft));title('Ä£');axis([-0.5,20,-0.5,2.5]); subplot(2,2,4);plot(t,angle(ft));title('·ø½Ç');axis([-0.5,20,-3.5,3.5]);图像:3、已知信号的波形如下图所示:试用Matlab 命令画出()()()()2332----t f t f t f t f ,,,的波形图。

信号与系统实验一、二

信号与系统实验一、二

chapter1实验内容:1、画出以下连续时间信号的波形1-0)f(t)=cos(2πt)代码如下:pi=3.14159;t=0:0.01:8;fa=cos(2*pi*t);plot(t,fa);1-1)f (t)=sin(2πt)代码如下:pi=3.14159;t=0:0.01:8;fa=sin(2*t*pi); plot(t,fa);2-0)f (t)=Sa(t/π) 代码如下:pi=3.14159;t=0:0.01:8;fa=sinc(t/pi); plot(t,fa);3-0)f (t)=2[u(t 3)- u(t 5)] 代码如下:t=-1:0.01:10;ft=2*((t>=3)-(t>=5)); plot(t,ft);axis([-1,10,0,3]);4-1)f (t)=e t 代码如下:t=0:0.01:10; ft=exp(t); plot(t,ft);4-2)f (t)=e-t u(t) 代码如下:t=0:0.01:10;f1=(t>=0);f2=exp(-t); plot(t,f1.*f2);5-0)f(t)=2e j(π/4)t,画出实部、虚部、模和相角的波形代码如下:t=0:0.01:10;ft=2*exp(j*(pi/4)*t);h=real(ft); %实部g=imag(ft); %虚部r=abs(ft); %模a=angle(ft); %相角subplot(2,2,1),plot(t,h),title('实部') subplot(2,2,3),plot(t,g),title('虚部') subplot(2,2,2),plot(t,r),title('模')subplot(2,2,4),plot(t,a),title('相角')7)f (t) = u(t)代码如下:t=-1:0.01:5ft=(t>=0);plot(t,ft);axis([-1,5,0,1.5]);8)f (t) =δ(t)代码如下:t=-1:0.01:5;ft=(t>=0)-(t>=0.1); plot(t,ft);axis([-1,1,0,1.1]);9)f9为周期矩形信号,其幅度从-1 到1,占空比为75% 代码如下:pi=3.14159;t=-10:0.01/pi:10;ft=square(t,75);plot(t,ft);2、信号本身运算画出f1(t)为宽度是4,高为1,斜度为0.5 的三角脉冲,然后画出f1(-t),f1(2t),f1(2-2t)的波形以及f1(t)的微分和积分波形。

信号与系统实验报告1抽样定理

信号与系统实验报告1抽样定理

本科实验报告课程名称:信号与系统实验项目:抽样定理实验地点:北区博学楼机房专业班级:电信1201 学号: ******** 学生姓名:指导教师:***一、实验目的:1、了解电信号的采样方法与过程以及信号恢复的方法。

2、验证抽样定理,加深对抽样定理的认识和理解。

二、原理说明:离散时间信号可以从离散信号源获得,也可以从连续时间信号经抽样而获得。

抽样信号fs(t)可以看成是连续信号f(t)和一组开关函数s(t)的乘积。

即:fs(t)=f(t)×s(t)对抽样信号进行傅里叶分析可知,抽样信号的频谱包含了原连续信号以及无限个经过平移的原信号频谱。

平移后的频率等于抽样频率fs及其各次谐波频率2fs、3fs、4fs、5fs......。

正如测得了足够的实验数据以后,我们可以在坐标纸上把一系列数据点连接起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复为原信号。

只要用一个截止频率等于原信号频谱中最高频率fmax的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器的输出可以得到恢复后的原信号。

但原信号得以恢复的条件是fs>2B,其中fs为抽样频率,B为原信号占有的频带宽度。

而fmin=2B为最低的抽样频率,又称为“奈奎斯特抽样率”。

当fs<2B 时,抽样信号的频谱会发生混叠,从发生混叠后的频谱中,我们无法用低通滤波器获得原信号频谱的全部内容。

在实际使用中,仅包含有限频谱的信号是极少的,因此即使fs=2B,恢复后的信号失真还是难免的。

为了实现对连续信号的抽样和抽样信号的复原,可用以下实验原理方案:图1-3 抽样定理实验方框图三、实验内容及步骤:1、方波信号的抽样与恢复。

1)观察方波信号的抽样。

调节函数信号发生器,使其输出频率分别为1KHZ、3KHZ,s(t)的频率分别置3.9KHz、15.6KHz、62.5KHz,观察抽样后的波形,并记录之。

方波原始图62.5KHz的抽样图2)观察恢复后的波形。

《信号与系统》课程实验报告

《信号与系统》课程实验报告

《信号与系统》课程实验报告《信号与系统》课程实验报告一图1-1 向量表示法仿真图形2.符号运算表示法若一个连续时间信号可用一个符号表达式来表示,则可用ezplot命令来画出该信号的时域波形。

上例可用下面的命令来实现(在命令窗口中输入,每行结束按回车键)。

t=-10:0.5:10;f=sym('sin((pi/4)*t)');ezplot(f,[-16,16]);仿真图形如下:图1-2 符号运算表示法仿真图形三、实验内容利用MATLAB实现信号的时域表示。

三、实验步骤该仿真提供了7种典型连续时间信号。

用鼠标点击图0-3目录界面中的“仿真一”按钮,进入图1-3。

图1-3 “信号的时域表示”仿真界面图1-3所示的是“信号的时域表示”仿真界面。

界面的主体分为两部分:1) 两个轴组成的坐标平面(横轴是时间,纵轴是信号值);2) 界面右侧的控制框。

控制框里主要有波形选择按钮和“返回目录”按钮,点击各波形选择按钮可选择波形,点击“返回目录”按钮可直接回到目录界面。

图1-4 峰值为8V,频率为0.5Hz,相位为180°的正弦信号图1-4所示的是正弦波的参数设置及显示界面。

在这个界面内提供了三个滑动条,改变滑块的位置,滑块上方实时显示滑块位置代表的数值,对应正弦波的三个参数:幅度、频率、相位;坐标平面内实时地显示随参数变化后的波形。

在七种信号中,除抽样函数信号外,对其它六种波形均提供了参数设置。

矩形波信号、指数函数信号、斜坡信号、阶跃信号、锯齿波信号和抽样函数信号的波形分别如图1-5~图1-10所示。

图1-5 峰值为8V,频率为1Hz,占空比为50%的矩形波信号图1-6 衰减指数为2的指数函数信号图1-7 斜率=1的斜坡信号图1-8 幅度为5V,滞后时间为5秒的阶跃信号图1-9 峰值为8V,频率为0.5Hz的锯齿波信号图1-10 抽样函数信号仿真途中,通过对滑动块的控制修改信号的幅度、频率、相位,观察波形的变化。

信号与系统实验一

信号与系统实验一

实验一 基本运算单元一、 实验目的1.熟悉由运算放大器为核心元件组成的基本运算单元; 2.掌握基本运算单元的测试方法。

二、 实验设备与仪器1.THKSS-A/B/C/D/E 型信号与系统实验箱; 2.实验模块SS12; 3.双踪示波器。

三、 实验内容1.设计加法器、比例运算器、积分器、微分器四种基本运算单元电路; 2.测试基本运算单元特性。

四、 实验原理1.运算放大器运算放大器实际就是高增益直流放大器,当它与反馈网络连接后,就可实现对输入信号的求和、积分、微分、比例放大等多种数学运算,运算放大器因此而得名。

运算放大器的电路符号如图1-1所示:图1-1 运算放大器的电路符号由图可见,它具有两个输入端和一个输出端:当信号从“-”端输入时,输出信号与输入信号反相,因此称“-”端为反相输入端;而从“+”端输入时,输出信号与输入信号同相,因此称“+”端为同相输入端。

运算放大器有以下的特点:(1)高增益运算放大器的电压放大倍数用下式表示:)1(0+--=u u u A式中,u o 为运放的输出电压;u +为“+”输入端对地电压;u -为“-”输入端对地电压。

不加反馈(开环)时,直流电压放大倍数高达104~106。

(2)高输入阻抗运算放大器的输入阻抗一般在106Ω~1011Ω范围内。

(3)低输出阻抗运算放大器的输出阻抗一般为几十到一、二百欧姆。

当它工作于深度负反馈状态时,其闭环输出阻抗更小。

为使电路的分析简化,人们常把上述的特性理想化,即认为运算放大器的电压放大倍数和输入阻抗均为无穷大,输出阻抗为零。

据此得出下面两个结论:1)由于输入阻抗为无穷大,因而运放的输入电流等于零。

2)运放的电压放大倍数为无穷大,输出电压为一有限值,由式(1)可知,差动输入电压(u +-u -)趋于零值,即u + =u -。

2.基本运算单元在系统中,常用的基本运算单元有加法器、比例运算器、积分器和微分器四种,现简述如下:(1)加法器图1-2为加法器的电路原理图:u -u +R P =R//R//R//R Fi pR P =2.4K R=R F =10K图1-2 加法器基于运算放大器的输入电流为零,则由图1-2得:R 3-3---==u R u i p--=-=u R i u u F p 40)2(41o u u =-同理得:R u u R u u R u u R u ++++-+-+-=321由上式求得:)3(4321uu u u ++=+因为 u -=u +所以 u o =u 1+u 2+u 3 (4)即运算放大器的输出电压等于输入电压的代数和。

信号与系统实验1

信号与系统实验1

实验一:连续信号和离散信号的表示与卷积一.实验目的1. 学习MATLAB 软件产生信号和实现信号的可视化2. 学习和掌握连续和离散信号的时域表示方法3. 学习和掌握连续信号和离散信号卷积方法二.实验原理1. 信号的表示方法● 常用信号:➢ 连续函数()θω+=t t f sin )(, atAe t f =)(,ttt Sa sin )(=➢ 离散信号()n n f 0sin )(ω=,njw e n f 0)(=,)()(n u a n f n=● 奇异信号:➢ 连续函数:冲激函数)(t δ,阶跃函数)(t u ,斜坡函数)(t R ➢ 离散信号:冲激函数)(n δ,阶跃函数)(n u ,斜坡函数)(n R2.卷积连续函数的卷积:⎰∞∞--=τττd t f f t g )()()(21离散函数的卷积:∑∞-∞=-=m m n fm f n g )()()(21三.实验内容1. 熟悉matlab 工作环境(1) 运行matlab.exe ,进入matlab 工作环境,如图(1)所示。

图1 matlab工作环境(2)matlab工作环境由Command Window(命令窗口)、Current Direcroty(当前目录)、workspace (工作空间)、command History(历史命令)和Editor(文件编辑器)5部分组成。

其中所有文件的编辑和调试、运行在Editor编辑窗口下进行。

程序的运行也可以在命令窗口进行。

程序调试的信息显示在命令窗口。

(3)程序文件的产生:点击菜单file下的New下的M_files,进入编辑器界面,如图2。

图2 M 文件编辑器(4) 在matlab 软件中,程序分为脚本和函数文件,两者的差别在于函数文件有形参和返回的结果,而脚本文件中的变量全部返回到工作空间。

在m 文件编辑器下键入程序代码,保存程序文件(命名规则同C 语言)。

如果所定义的是函数文件,则要求函数名为M 文件名。

信号与系统实验报告材料(实验一)连续时间信号地采样

信号与系统实验报告材料(实验一)连续时间信号地采样

实验一 连续时间信号的采样一、实验目的进一步加深对采样定理和连续信号傅立叶变换的理解。

实验步骤1.复习采样定理和采样信号的频谱采样定理如果采样频率s F 大于有限带宽信号)(t x a 带宽0F 的两倍,即02F F s > (1)则该信号可以由它的采样值)()(s a nT x n x =重构。

否则就会在)(n x 中产生混叠。

该有限带宽模拟信号的02F 被称为乃魁斯特频率。

必须注意,在)(t x a 被采样以后,)(n x 表示的最高模拟频率为2/s F Hz (或πω=)。

2.熟悉如何用MATLAB 语言实现模拟信号表示严格地说,除了用符号处理工具箱(Symbolics)外,不可能用MATLAB 来分析模拟信号。

然而如果用时间增量足够小的很密的网格对()a x t 采样,就可得到一根平滑的曲线和足够长的最大时间来显示所有的模态。

这样就可以进行近似分析。

令t ∆是栅网的间隔且s t T ∆<<,则()()G a x m x m t ∆=∆ (2)可以用一个数组来仿真一个模拟信号。

不要混淆采样周期s T 和栅网间隔t ∆,因为后者是MATLAB 中严格地用来表示模拟信号的。

类似地,付利叶变换关系也可根据(2)近似为:∑∑∆Ω-∆Ω-∆=∆≈Ωmt m j G m t m j G a e m x t t em x j X )()()( (3) 现在,如果)(t x a (也就是)(m x G )是有限长度的。

则公式(3)与离散付利叶变换关系相似,因而可以用同样的方式以MATLAB 来实现,以便分析采样现象。

3.根据提供的例子程序,按照要求编写实验用程序;三、实验内容(1)通过例一熟悉用MATLAB 语言实现描绘连续信号的频谱的过程,并在MATLAB 语言环境中验证例1的结果;例1、令t a et x 1000)(-=,求出并绘制其付利叶变换。

解:根据傅立叶变换公式有010*********.002()()1()1000j t t j t t j t a a X j x t e dt e e dt e e dt ∞∞-Ω-Ω--Ω-∞-∞Ω==+=Ω+⎰⎰⎰ (4) 因为)(t x a 是一个实偶信号,所以它是一个实值函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7.1利用matlab的向量表示法,给出下列连续信号的时域波形。

t=0:0.01:5;
f=(1-exp(-2*t)).*Heaviside(t);
plot(t,f)
t=-5:0.01:5;
f=exp(-2*abs(t));
plot(t,f)
7.3利用matlab绘出下列离散序列的时域波形先构建函数文件function x=lsxl(n)
x=(n>=0)
然后调用函数画离散波形
n=0:8;
x=lsxl(n-4);
stem(n,x,'filled')
title('离散序列时域波形')
xlabel('n')
此题仍然要调用函数function x=lsxl(n)
x=(n>=0)
n=0:8;
x=(-3/4).^n.*lsxl(n);
stem(n,x,'filled')
title('离散序列时域波形')
xlabel('n')
7.6已知连续时间信号,试用matlab编程绘出下列信号的时域波形(1)
function f=ncg(t)
f=pi*sinc(t)
t=-10:0.01:10;
f1=2*ncg(t-1);
plot(t,f1)
(3)
function f=ncg(t) f=pi*sinc(t)
t=-20:0.01:20;
f1=-ncg(0.25*t); plot(t,f1)
7.9已知离散序列如图7-28所示,试用MATLAB编程绘出满足下列要求的离散序列波形。

题图:略
(2)
function [x,n]=xlfz(x1,n1)
x=-fliplr(x1)
n=-fliplr(n1)
stem(n,x,'filled')
axis([min(n)-1,max(n)+1,min(x)-0.5,max(x)+0.5])
x1=[0,3,3,3,3,2,1,0,0];
n1=-4:4;
[x,n]=xlfz(x1,n1)
(4)
一.乘法函数
function [x,n]=cxl(x1,x2,n1,n2)
n=min(min(n1),min(n2)):max(max(n1),max(n2));
s1=zeros(1,length(n));s2=s1;
s1(find((n>=min(n1))&(n<=max(n1))==1))=x1;
s2(find((n>=min(n2))&(n<=max(n2))==1))=x2;
x=s1.*s2;
axis([min(min(n1),min(n2))-1,
(max(max(n1),max(n2))+1),(min(x)-0.5),(max(x)+0.5)])二.平移函数
function [x,n]=xlpy(x1,n1,n0)
n=n1+n0;
x=x1;
stem(n,x,'filled')
3.调用函数
x1=[0,3,3,3,3,2,1,0,0];
n1=-4:4;
[x2,n2]=xlpy(x1,n1,2);
[x3,n3]=xlpy(x1,n1,4);
[x4,n4]=cxl(x2,x3,n2,n3);
stem(n4,x4,'filled');
axis([-4,10,-0.5,10])
title('x(n-4)x(n-2)')
xlabel('n')
set(gcf,'color','w')
7.10试利用matlab生成并绘制如下信号波形(1)周期为2,峰值为5的周期方波信号(2)周期为,峰值为1的周期锯齿波
t=-5:0.01:5;
f=5*square(pi*t)
plot(t,f)
axis([-5,5,-5.5,5.5])
t=-5:0.01:5;
f=sawtooth(2*t)
plot(t,f)
axis([-5,5,-1.5,1.5])。

相关文档
最新文档