08高考试题分类 06 直线和圆

合集下载

北京市高考数学分项精华版 专题08 直线与圆(含解析)(1

北京市高考数学分项精华版 专题08 直线与圆(含解析)(1

【备战2015】(十年高考)北京市高考数学分项精华版 专题08 直线与圆(含解析)1. 【2005高考北京理第2题】“21=m ”是“直线03)2()2(013)2(=-++-=+++y m x m my x m 与直线相互垂直”的( )A .充分必要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件 2.【2005高考北京理第4题】从原点向圆0271222=+-+y y x 作两条切线,则该圆夹在两条切线间的劣弧长为( )A .πB .2πC .4πD .6π 【答案】B 【解析】试题分析:将圆的方程配方得:22(6)9x y +-=圆心在(0,6)半径为3,如图:在图中Rt PAO ∆中,62OP PA ==,从而得到30o AOP ∠=,即60.o AOB ∠=可求120.o BPA ∠=P e 的周长为236ππ⨯=劣弧长为周长的13,可求得劣弧长为2π. 考点:直线和圆的位置关系。

3. 【2008高考北京理第7题】过直线y x =上的一点作圆22(5)(1)2x y -+-=的两条切线12l l ,,当直线12l l ,关于y x =对称时,它们之间的夹角为( )A .30o B .45o C .60o D .90o4. 【2007高考北京理第17题】(本小题共14分)如图,矩形ABCD 的两条对角线相交于点(20)M ,,AB 边所在直线的方程为360x y --=,点(11)T -,在AD 边所在直线上.(I )求AD 边所在直线的方程;(II )求矩形ABCD 外接圆的方程;(III )若动圆P 过点(20)N -,,且与矩形ABCD 的外接圆外切,求动圆P 的圆心的轨迹方程. D T N O A B C M xy。

历年高考直线与圆真题以及解析

历年高考直线与圆真题以及解析
(2)假设存在满足题意的直线l,设M(x1,y1)N(x2,y2),联立直线与圆的方程,由直线与圆相交可得△=(2k+4)2﹣16(1+k2)>0,由数量积的计算公式可得 • =(1+k2) + +4=6,解可得k的值,验证是否满足△>0,即可得答案.
【详解】(1)根据题意,圆C:(x﹣a)2+(y﹣b)2=1(a>0)关于直线3x﹣2y=0对称,
【详解】(1) 直线 与直线 垂直,
,解得 .
(2)当 时,直线 化为: 不满足题意.
当 时,可得直线 与坐标轴的交点 , .
直线 在两轴上的截距相等,
,解得: .
该直线的方程为 ,即 .
11.
(1) ;(2)存在,理由见解析
【分析】
(1)根据题意得到 ,再解不等式即可得到答案.
(2)首先假设存在得以 为直径的圆过原点,设 , ,直线与圆联立得到 ,再根据韦达定理和圆的性质即可得到答案.
化简可得: 即为点Q的轨迹方程.
【点睛】本题考查直线与圆的位置关系,考查直线被圆截得的弦长公式的应用,考查直线恒过定点问题和轨迹问题,属于中档题.
10.
(1) ;(2) .
【分析】
(1)利用两条直线垂直的条件列方程,解方程求得 的值.
(2)分成 和 两种情况,结合直线 在两轴上的截距相等求得 ,由此求得所求直线方程.
②当切线斜率存在时,设切线斜率为 ,
则切线方程为 ,即
因为圆心到切线距离等于半径,
所以 ,解得 ,此时切线方程为 ,
综上所述,过点 的圆的切线方程为 和 .
(2)因为 即 , 为圆上任意一点,
所以 即原点到圆上一点的直线的斜率,
令 ,则原点到圆上一点的直线的方程为 ,即

2008年全国高考数学试题汇编直线与圆的方程

2008年全国高考数学试题汇编直线与圆的方程

2008年全国高考数学试题汇编——直线与圆的方程(二)28.(上海理科15)如图,在平面直角坐标系中,Ω是一个与x 轴的正半轴、y 轴的正半轴分别相切于点C 、D 的定圆所围成区域(含边界),A 、B 、C 、D 是该圆的 四等分点,若点P (x ,y )、P ’(x ’,y ’)满足x ≤x ’ 且y ≥y ’, 则称P 优于P ’,如果Ω中的点Q 满足:不存在Ω中的其 它点优于Q ,那么所有这样的点Q 组成的集合是劣弧( D ) A .AB ︵B .BC ︵C .CD ︵D .DA ︵二、填空题29.(广东文科12)若变量x 、y 满足24025000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥,则32z x y =+的最大值是 .答案:7030.(全国I 卷理科13)若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .答案:931.(山东文科16)设x y ,满足约束条件20510000x y x y x y ⎧-+⎪--⎪⎨⎪⎪⎩,,,,≥≤≥≥则2z x y =+的最大值为 .答案:1132.(安徽理科15)若A 为不等式组002x y y x ⎧⎪⎨⎪-⎩≤≥≤表示的平面区域,则当a 从-2连续变化到1时,动直线x y a +=扫过A 中的那部分区域的面积为 . 答案:7433.(浙江理科17)若a ≥0,b ≥0,且当0,0,1x y x y ⎧⎪⎨⎪+⎩≥≥≤时,恒有ax +by ≤1,则以a 、b 为坐标的点P (a ,b )所形成的平面区域的面积等于_________. 答案:134.(福建理科14)若直线3x +4y +m =0与圆⎩⎨⎧x =1+cos θy =-2+sin θ(θ为参数)没有公共点,则实数m 的取值范围是 . 答案:(,0)(10,)-∞⋃+∞(福建文科14)若直线3x+4y +m =0与圆x 2+y 2-2x +4y +4=0没有公共点,则实数m 的取值范围是 . 答案:(,0)(10,)-∞⋃+∞35.(山东文科13)已知圆22:6480C x y x y +--+=.以圆C 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为 .答案:221412x y -= 36.(江苏9)如图,在平面直角坐标系xOy 中,设△ABC 的顶点分别为(0)(0)(0)A a B b C c ,,,,,,点(0)P p ,是线段OA 上一点(异于端点),a b c p ,,,均为 非零实数.直线BP 、CP 分别交AC 、AB 于点E ,F .一同学已 正确地求出直线OE 的方程为11110x y b c p a ⎛⎫⎛⎫-+-= ⎪⎪⎝⎭⎝⎭,请你 完成直线OF 的方程:( ▲ )110x y p a ⎛⎫+-= ⎪⎝⎭. 答案:11c b- 37.(广东理科11)经过圆2220x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是________________.【解析】易知点C 为(1,0)-,而直线与0x y +=垂直,我们设待求的直线的方程为y x b =+,将点C 的坐标代入马上就能求出参数b 的值为1b=,故待求的直线的方程为10x y -+=.38.(重庆理科15)直线l 与圆x 2+y 2+2x -4y +a =0(a <3)相交于两点A ,B ,弦AB 的中点为(0,1),则直线l 的方程为 . 答案:x -y +1=0(重庆文科15)已知圆C :22230xy x ay +++-=(a 为实数)上任意一点关于直线l :x -y +2=0的对称点都在圆C 上,则a = . 答案:-239.(天津理科13)已知圆C 的圆心与抛物线x y 42=的焦点关于直线x y =对称.直线0234=--y x与圆C 相交于B A ,两点,且6=AB ,则圆C 的方程为 .. 答案:22(1)10x y +-=40.(天津文科15)已知圆C 的圆心与点(21)P -,关于直线1y x =+对称.直线34110x y +-=与 圆C 相交于A B ,两点,且6AB =,则圆C 的方程为 . 答案:22(1)18x y ++=41.(湖南文科14)将圆x 2+y 2=1沿x 轴正向平移1个单位后得到圆C ,则圆C 的方程是 ;若过点(3,0)的直线l 和圆C 相切,则直线l 的斜率是 . 答案:(x -1)2+y 2=133-42.(四川文、理科14)已知直线:40l x y -+=与圆22:(1)(1)2C x y -+-=,则C 上各点到l 距离的最小值为 .解析:由数想形,所求最小值=圆心到到直线的距离-圆的半径.圆心(1,1)到直线60x y -+=的距离d三、解答题 43.(宁夏海南文科第20题)已知,m ∈R 直线m y m mx l 4)1(:2=+-和圆01648:22=++-+y x y x C . (Ⅰ)求直线l 斜率的取值范围;(Ⅱ)直线l 能否将圆C 分割成弧长的比值为21的两段圆弧?为什么? 解:(Ⅰ)22,0()1mk km m k m =∴-+=*+ , ,m ∈R ∴当k ≠0时0∆≥,解得1122k -≤≤且k ≠0又当k =0时,m =0,方程()*有解,所以,综上所述1122k -≤≤(Ⅱ)假设直线l 能否将圆C 分割成弧长的比值为21的两段圆弧.设直线l 与圆C 交于A ,B 两点 则∠ACB =120°.∵圆22:(4)(2)4C x y -++=,∴圆心C (4,-2)到l 的距离为1.1=,整理得423530m m ++=.∵254330∆=-⨯⨯<,∴423530m m ++=无实数解. 因此直线l 不可能将圆C 分割成弧长的比值为21的两段圆弧.44.(江苏18)在平面直角坐标系xOy 中,二次函数2()2f x x x b =++(x ∈R )与两坐标轴有三个交点.记过三个交点的圆为圆C . (Ⅰ)求实数b 的取值范围; (Ⅱ)求圆C 的方程;(Ⅲ)圆C 是否经过定点(与b 的取值无关)?证明你的结论. 解:(Ⅰ)令x =0,得抛物线于y 轴的交点是(0,b )令f (x )=0,得x 2+2x +b =0,由题意b ≠0且△>0,解得b <1且b ≠0 (Ⅱ)设所求圆的一般方程为x 2+ y 2+D x +E y +F=0令y =0,得x 2+D x +F=0,这与x 2+2x +b =0是同一个方程,故D=2,F=b 令x =0,得y 2+ E y +b =0,此方程有一个根为b ,代入得E=-b -1 所以圆C 的方程为x 2+ y 2+2x -(b +1)y +b =0 (Ⅲ)圆C 必过定点(0,1),(-2,1)证明如下:将(0,1)代入圆C 的方程,得左边= 02+ 12+2×0-(b +1)×1+b =0,右边=0 所以圆C 必过定点(0,1); 同理可证圆C 必过定点(-2,1).。

2008年高考数学理科试题汇编 直线和圆

2008年高考数学理科试题汇编 直线和圆

2008年高考数学试题分类汇编直线与圆一.选择题:?xyC、是一个与轴的正半轴分别相切于点轴的正半轴、1,(上海卷)如图,在中,y)yP(x,DCABD、点、、、的定圆所围成的区域(含边界),是该圆的四等分点.若点A≥≤??????yyxxQ)P,(xy???P满足:不存在中的点.如果且,则称优于满BDQQ中的其它点优于D ,那么所有这样的点)组成的集合是劣弧(xOCBC B.弧A.弧ABDACD D.弧C.弧yx??1??)(cossin,M)若直线102.)通过点(全国一,则( D ba1111≥≤≥≤22221a?bb1a?11??A. D B.C..2222baba≥?,yx?≤yx,y?3z?x,yx?22满足约束条件: D 3.(全国二)设,则)的最小值(??≥.?x2?8??64??2. B. D CA..04??x?7yx?y?2?0则4.(全国二)两腰所在直线的方程分别为,原点在等腰三角形的底边上,与 A )底边所在直线的斜率为(11??.2CAD.. 3B.32≥?,x?y?10?≥yx?2yx,3z?,y0x? B )5.(北京卷5)若实数则的最小值是(满足??≤,0x?39. C .DBA.0.122l,lll,2??(x?5)?(y1)xyy?x?关于当直线上的一点作圆,的两条切线过直线(6.北京卷7)2121 C )对称时,它们之间的夹角为(90456030.. B C.A.D090xy?3 ) A,再向右平移1个单位,所得到的直线为(四川卷4)直线( 绕原点逆时针旋转7.11111?y?1???xx?xy??y33y?x?(A)(C)(D)(B)33330??yx??1?x?y yx,yx?z?5D8.的最大值为)设变量(天津卷2,则目标函数满足约束条件??x?2y?1?5C)4 (D)( A)2 (B)3 (221y?x?2)?((4,0)A ll的斜率的取值范围为的直线有公共点,则直线与曲线9.(安徽卷8).若过点 C )(3333 )?[?(,,]3)3]3,(?[?3, BD....C A 3333220y?6x?8x?y?)的最长弦和最短弦分别为,510.(山东卷11)已知圆的方程为.设该圆过点(3ABCDACBD B 和,则四边形的面积为6666(A)D1030(B))2040(C)(,?0x?2y?19??x,0?x?y8?aaMya≠>0所表示的平面区域为(,使函数,=11.(山东卷12)设二元一次不等式组??0?2x?y?14?aM C的的取值范围是1)的图象过区域1010,9][1,3] (B)[2,A)] (C)[2,9] (D)[(220??4y?164x?y?2x(11,2)A C 作圆)过点12.(湖北卷9的弦,其中弦长为整数的共有条 C. 32条 D. 34条A.16条 B. 171,x???0,y?x?yx?yx( C )的最大值是3)已知变量满足条件、则13.(湖南卷??0,9??2y?x?D.8C.6A.2B.5220?2x?2x?y?0y??m3x?m相切,则实数)14.与圆(陕西卷)直线等于( C333?3333?3?3333? D或或A..或 C B..或,y≥1??,x?1y≤2y?xx,y?z m1?等于如果目标函数的最小值为1015.(陕西卷)已知实数满足,则实数??.≤mx?y? B )(3 D.C.47 A. B.522220??4yx?2x?0+yx+y OO B的位置关系是: 圆16.(重庆卷3)和圆:21 (D)内切相离(B)相交 (C)外切(A)221y?x?2kx?y? C )与直线(辽宁卷3)圆没有公共点的充要条件是(17...)∞2(,??2)?k2k?(?,2)?(∞,B.A.kk?(?∞,(3?3),?(?33),?∞).CD.二.填空题:011??4y?y?x?13xP(?2,1)相交对称.直线与圆1.(天津卷15)已知圆C的圆心与点关于直线C226AB?18?1)?x?(yB,A __________________.于两点,且,则圆C的方程为≥?,0x?y?≥y,x yx?z?2,0y?3x?913)若.则满足约束条件的最大值为(全国一2.??≤≤,03x?22????Cl21?C:yx?1??0?4?l:x?y的距离的最小值(四川卷14)已知直线,则上各点到与圆3.2。

2008年高考试题分类汇编(数学文)—直线和圆

2008年高考试题分类汇编(数学文)—直线和圆

直线与圆一、选择题1.(安徽 10)若过点A(4,0) 的直线l与曲线 (x2) 2y21有公共点,则直线l 的斜率的取值范围为(D)A.[ 3, 3] B.(3, 3)C.[3, 3]D.( 3 , 3 )3333x02.(安徽 11)若A为不等式组y0表示的平面地区,则当 a 从-2连续变化到1时,y x 2动直线A.x y a 扫过 A 中的那部分地区的面积为( C )37D. 5B. 1C.44x≥ ,y 1 0x y,则 z x 2y 的最小值是(A)3.(北京 6)若实数知足x y ≥ 0,x ≤ 0,A.01C. 1D. 2 B.2x y 10,4.(福建 10)若实数 x、y 知足x0,则y的取值范围是( D )x2,xA.( 0, 2)B.( 0,2)C.(2,+∞ )D.[2, +∞ )5.(广东 6)经过圆22的圆心 G,且与直线x+y=0 垂直的直线方程是( C )x +2x+y =0A.x-y+1=0B.x-y-1=0C.x+y-1=0D.x+y+1=06.(宁夏 10)点P( x,y)在直线4 x 3 y0 上,且x,y知足 14 ≤ x y ≤ 7 ,则点P到坐标原点距离的取值范围是(B)A.0,5B.010,C.510,D.515,x1,7.(湖南 3)已条变量x, y知足y2,则 x y 的最小值是( C )x y0,A. 4 B.3 C.2 D.18.(辽宁)圆x2y21与直线 y kx 2 没有公共点的充要条件是( B )..A . k ( 2, 2)B . k ( 3,3)C . k ( ∞, 2) ( 2, ∞)D . k( ∞, 3) ( 3,∞)y x 1≤ 0,9.(辽宁)已知变量 x ,y 知足拘束条件y 3x 1≤ 0,则 z 2x y 的最大值为(B )y x 1≥ 0,A . 4B . 2C . 1D . 410.(全国Ⅰ 10)若直线xy 1与圆 x 2 y 21有公共点,则(D )ab1111A . a 22B . a 2 2≥ 1 C .≤ 1D .≥ 1b ≤ 1ba 22a 2b 2b11.(全国Ⅱ)原点到直线 x 2y 5 0 的距离为(D)A .1B . 3C .2D . 5y ≥ ,x ,yx12.(全国Ⅱ 6) 设变量 知足拘束条件:x2y ≤ 2,x 3 y 的最小值为,则 z x ≥ 2.( D )A . 2B . 4C . 6D . 8 . 山东 11)若圆 C 的半径为 1,圆心在第一象限,且与直线4x 3 y 0 和 x 轴相切,则13 ( 该圆的标准方程是(B )y72A . ( x 3)21B . ( x 2) 2( y 1)21332C . ( x 1)2( y 3) 21D . x( y 1)2 1214.(上海)如图,在中, 是一个与 x 轴的正半轴、 y 轴的正半轴分别相切于点 C 、D 的定圆所围成的地区(含界限) , A 、B 、C 、D 是该圆的四平分点.若点 P( x , y) 、点 P ( x , y )知足 x ≤ x 且 y ≥ y ,则称 P 优于 P .假如 中的点 Q 知足: 不存在 中的其余点优于Q ,那么全部这样的点 Q 构成的会合是劣弧(D )yA. AB B .C . CDD .BCADADBO xC15.(四川 6)直线 y3x 绕原点逆时针旋转 900 ,再向右平移1个单位,所获得的直线为 ( A )(A) y1 x 1 (B)3 3(C) y3x 3(D)y1x 1 31yx 1 3x y ≥ 0,16. (天津 2) 设变量 x ,y 知足拘束条件x y ≤ 1, 则目标函数 z 5x y 的最大值为x 2 y ≥ 1.( D )A .2B .3C . 4D . 5x0,17.(浙江 10)若 a0, b 0 ,且当y 0, 时,恒有 ax by 1 ,则以 a ,b 为坐标点x y 1P( a,b) 所形成的平面地区的面积等于( C )(A )1( B )(C )1( D )224x cos 1.( C )18. (重庆 3)曲线 C:sin( 为参数 )的一般方程为y12222(A)(x-1) +(y+1) =1 (B) (x+1) +(y+1) =1 (C) (x-1)2+(y-1)2 =1(D) (x-1)2+(y-1)2 =119.(重庆 4)若点 P 分有向线段 AB 所成的比为 -1,则点 B 分有向线段 PA 所成的比是 ( A )33(B)-1 1 (D)3(A)-2(C)22x y , 20. (湖北 5).在平面直角坐标系xOy 中,知足不等式组的点 ( x, y) 的会适用暗影x1表示为以下图中的 ( C )21. (陕西 ) 直线3x y m 0 与圆 x2y 22x 2 0 相切,则实数 m 等于(A)A.3或3B.3或3 3C.33或3D.33或33二、填空题1.(福建 14)若直线 3x+4y+m=0 与圆 x2+y2-2x+4y+4=0 没有公共点,则实数 m 的取值范围是______________. (,0)(10,)2x y40,2.(广东x2y50,12)若变量 x,y 知足0,则 z=3x+2y 的最大值是 ________. 70xy0,3.(湖南 14)将圆x2y 2 1 沿x轴正向平移1个单位后所获得圆C,则圆C的方程是________,若过点( 3, 0)的直线l和圆 C 相切,则直线l的斜率为 _____________.( x 1)2y21;334.(江苏 9)在平面直角坐标系中,设三角形ABC 的极点分别为A(0, a), B(b,0), C (c,0),点(P 0,p)在线段 AO 上(异于端点),设a,b, c, p均为非零实数,直线BP, CP分别交AC , AB于点 E, F ,一起学已正确算的OE 的方程:11110 ,请你求 OF 的方bxpyc a程: () x 110 (11pyc)a bx y≥ ,x y,则 z2x y 的5.(全国Ⅰ 13)若知足拘束条件x y3≥ 0,0 ≤ x≤ 3,最大值为. 9x y≥,205x y10≤ 0,6.(山东 16) 设x,y知足拘束条件≥ ,x0y ≥ 0,则 z 2x y 的最大值为.117.(上海)在平面直角坐标系中,点A,B,C的坐标分别为(0,1),(4,2),(2, 6) .假如 P( x, y)是△ ABC 围成的地区(含界限)上的点,那么当w xy 取到最大值时,点P 的坐标是______.5,528.(四川 14)已知直线 l : x y 42y 20 与圆 C : x 112 ,则 C 上各点到 l 的距离的最小值为 _______ 2 ______ 。

2008年高考(直线和圆的方程)(圆锥曲线方程)试题集

2008年高考(直线和圆的方程)(圆锥曲线方程)试题集

2008年高考数学第七章(直线和圆的方程)第八章(圆锥曲线方程)试题集锦2008年普通高等学校招生全国统一考试文科数学(必修+选修I) 3.原点到直线052=-+y x 的距离为 A.1 B.3 C. 2 D.56.设变量y x ,满足约束条件:⎪⎩⎪⎨⎧-≥≤+≥222x y x x y ,则y x z 3-=的最小值A.-2B. -4C. -6D. -87设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=aA. 1B.21 C. -21 D.-115.已知F 是抛物线C:x y 42=的焦点,A 、B 是C 上的两个点,线段AB 的中点为M(2,2),则ABF ∆的面积等于22. (本大题满分12分)设椭圆中心在坐标原点,)1,0(),0,2(B A 是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点 Ⅰ若DF 6ED =,求k 的值Ⅱ求四边形AEBF 面积的最大值。

2008年普通高等学校招生全国统一考试理科数学(全国Ⅱ) (5)同文科第6题 (9)设1>a ,则双曲线1)1(2222=++a yax 的离心率e 的取值范围是A .)2,2( B. )5,2( C. )5,2( D. )5,2((11)等腰三角形两腰所在直线的方程分别为02=-+y x 和047=--y x ,原点在等腰三角形的底边上,则底边所在直线的斜率为A .3 B. 2 C. 31- D. 21-(14)设曲线axey =在点(0,1)处的切线与直线012=++y x 垂直,则a= .(15)已知F 为抛物线C :x y 42=的焦点,过F 且斜率为1的直线交C 于A 、B 两点.设FB FA >.则FA 与FB 的比值等于 .(21) 同文科第22题2008年普通高等学校招生全国统一考试文科数学(必修1+选修Ⅰ) (4)曲线y =x 3-2x +4在点(1,3)处的切线的倾斜角为 (A)30° (B)45° (C)60° (D)12°(10)若直线by a x +=1与图122=+y x 有公共点,则(A)122≤+b a(B) 122≥+b a (C)11122≤+ba(D)11122≥+ba(13)若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .(14)已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 (15)在△ABC 中,∠A =90°,tan B =34.若以A 、B 为焦点的椭圆经过点C ,则该椭圆的离心率e = .(22)(本小题满分12分) 双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知O A AB O B 、、成等差数列,且BF与FA 同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设A B 被双曲线所截得的线段的长为4,求双曲线的方程.2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ) 7.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2B .12C .12-D .2-10.若直线1x y a b+=通过点(cos sin )M αα,,则( )A .221a b +≤ B .221a b +≥C .22111ab+≤D .22111ab+≥13.同文科第13题14.同文科第14题15.在A B C △中,A B B C =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = . 21.同文科第22题2008年普通高等学校招生全国统一考试(四川)数 学(文史类) 6、同理科第4题 11、已知双曲线22:1916x y C-=的左右焦点分别为F 1、F 2 ,P 为C 的右支上一点,且||||212P F F F =,则△PF 1F 2 的面积等于(C ) (A )24 (B )36 (C )48 (D )96 14、同理科第14题 22.(本小题满分14分) 设椭圆22221(0)x y a b ab+=>>的左、右焦点分别是F 1和F 2 ,离心率e=,点F 2到右准线l的距离为(Ⅰ)求a b 、的值;(Ⅱ)设M 、N 是右准线l 上两动点,满足0.12F M F M ∙=证明:当.M N 取最小值时,02122F F F M F N ++=. 解:(1)因为c e a=,F 2到l 的距离2ad c c=-,所以由题设得22c a a c c⎧=⎪⎪⎨⎪-=⎪⎩解得,2.c a ==由2222,b a c b =-==得(Ⅱ)由c =,a =2得12(0),0).F F l的方程为x =.故可设12),).M y N y 由120F M F M ∙=知12)0,y y -=得y 1y 2=-6,所以y 1y 2≠0,216y y =-,12112166||||||||||M N y y y y y y =-=+=+≥当且仅当1y =y 2=-y 1,所以,212212(0)))F F F M F N y y ++=-++=(0,y 1+y 2)2008年普通高等学校招生全国统一考试(四川卷)理科数学说明:2008年是四川省高考自主命题的第三年,因突遭特大地震灾害,四川六市州40县延考,本卷为非延考卷. 一、选择题:(5'1260'⨯=)4.直线3y x =绕原点逆时针旋转90︒,再向右平移1个单位后所得的直线为( )A .1133y x =-+ B .113yx =-+C .33y x =-D .113yx =+解析:本题有新意,审题是关键.旋转90︒则与原直线垂直,故旋转后斜率为13-.再右移1得1(1)3y x =--.选A .本题一考两直线垂直的充要条件,二考平移法则.辅以平几背景之旋转变换.12.设抛物线2:8C y x =的焦点为F ,准线与x 轴相交于点K ,点A 在C 上且AK =,则AFK ∆的面积为( )A .4B .8C .16D .32解析:解几常规题压轴,不怕.边读题边画图.28y x =的焦点(2,0)F ,准线2x =-,(2,0)K -.设(,)A x y ,由A K =,即2222(2)2[(2)]x y x y++=-+.化简得:22124y x x =-+-,与28y x =联立求解,解得:2x =,4y =±.1144822AFKA S FK y ∆=⋅⋅=⋅⋅=,选B .本题的难度仅体现在对运算的准确性和快捷性上.14.已知直线:60l x y -+=,圆22:(1)(1)2C x y -+-=,则圆C 上各点到直线l 的距离的最小值(1,1)到直线60x y -+=的距离d =21.(本小题满分12分)设椭圆22221x y ab+= (0)a b >>的左、右焦点分别为1F 、2F ,离心率2e =,右准线为l ,M 、N 是l 上的两个动点,120F M F N =.(Ⅰ)若12||||F M F N ==a 、b 的值;(Ⅱ)证明:当||M N取最小值时,12F M F N + 与12F F 共线.解析: (Ⅰ)由已知, 1(,0)F c -,2(,0)F c .由2e =2212ca=,∴222a c =. 又222a b c =+,∴22b c =,222a b =. ∴l :2222ac x c cc===,1(2,)M c y ,2(2,)N c y .延长2N F 交1M F 于P ,记右准线l 交x 轴于Q . ∵120F M F N ⋅=,∴12F M F N ⊥.12F M F N ⊥ 由平几知识易证1Rt M Q F ∆≌2Rt F Q N ∆ ∴13QN F Q c ==,2QM F Q c==即1y c =,23y c =.∵12F M F N ==∴22920c c +=,22=,22b =,24a =. ∴2a =,b =(Ⅰ)另解:∵120F M F N ⋅=,∴12(3,)(,)0c y c y ⋅=,21230y y c =-<.又12F M F N ==联立212221222392020y y c c y c y ⎧=-⎪+=⎨⎪+=⎩,消去1y 、2y 得:222(209)(20)9c c c--=,整理得:4292094000c c -+=, 22(2)(9200)0c c --=.解得22c =. 但解此方程组要考倒不少人.(Ⅱ)∵1212(3,)(,)0F M F N c y c y ⋅=⋅=, ∴21230y y c =-<.22221212122121212222412M Ny y y y y y y y y y y y c=-=+-≥--=-=  .当且仅当12y y =-=或21y y =-=时,取等号.此时MN取最小值.此时1212(3,)(,)(4,0)2F M F N c c c F F +=+==. ∴12F M F N + 与12F F共线.(Ⅱ)另解:∵120F M F N ⋅=,∴12(3,)(,)0c y c y ⋅=,2123y y c=-.设1M F ,2N F 的斜率分别为k ,1k-.由1()32y k x c y kc x c=+⎧⇒=⎨=⎩,由21()2y x c c y k kx c ⎧=--⎪⇒=-⎨⎪=⎩1213M N y y c k k=-=⋅+≥ .当且仅当13kk=即213k =,3k=±即当M N最小时,3k=此时1212(3,3)(,(3,)(,)(4,0)2c F M F N c kc c kc c c F F +=+-=+== ∴12F MF N+与12F F共线.点评:本题第一问又用到了平面几何.看来,与平面几何有联系的难题真是四川风格啊.注意平面几何可与三角向量解几沾边,应加强对含平面几何背景的试题的研究.本题好得好,出得活,出得妙!均值定理,放缩技巧,永恒的考点.2008年普通高等学校招生全国统一考试(重庆卷)数学试题卷(文史类) (3)曲线C :cos 1.sin 1x y θθ=-⎧⎨=+⎩(θ为参数)的普通方程为 (A)(x -1)2+(y +1)2=1 (B) (x +1)2+(y +1)2=1 (C) (x -1)2+(y -1)2=1(D) (x -1)2+(y -1)2=1(8)若双曲线2221613xy p-=的左焦点在抛物线y 2=2px 的准线上,则p 的值为(A)2 (B)3 (C)4(15)已知圆C : 22230x y x ay +++-=(a 为实数)上任意一点关于直线l :x -y +2=0 的对称点都在圆C 上,则a = .(21)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.) 如题(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足:2.PM PN -=(Ⅰ)求点P 的轨迹方程;(Ⅱ)设d 为点P 到直线l : 12x =的距离,若22PM PN=,求PMd的值. 解:(I )由双曲线的定义,点P 的轨迹是以M 、N 为焦点,实轴长2a=2的双曲线. 因此半焦距c =2,实半轴a =1,从而虚半轴b所以双曲线的方程为x2-23y=1.(II)解法一:由(I )由双曲线的定义,点P 的轨迹是以M 、N 为焦点,实轴长2a=2的双曲线.因此半焦距e=2,实半轴a=1,从而虚半轴R 所以双曲线的方程为x 2-23y=1.(II)解法二:由(I )及答(21)图,易知|PN|≥1,因|PM|=2|PN|2, ① 知|PM|>|PN|,故P 为双曲线右支上的点,所以|PM|=|PN|+2. ②将②代入①,得2||PN|2-|PN|-2=0,解得44舍去,所以|PN|=14+.因为双曲线的离心率e=c a=2,直线l:x =12是双曲线的右准线,故||P N d=e=2,所以d=12|PN |,因此 2||2||4||4||1||||PM PM PN PN dPN PN ====+(II)解法三:设P (x,y ),因|PN |≥1知|PM |=2|PN |2≥2|PN|>|PN |,故P 在双曲线右支上,所以x ≥1. 由双曲线方程有y 2=3x 2-3. 因此||PN ===从而由|PM |=2|PN |得2x+1=2(4x 2-4x +1),即8x 2-10x+1=0.所以x 8(舍去x 8有4d=x-12=18+.故||14P M d=-=+2008年普通高等学校招生全国统一考试(重庆卷)数学试题卷(理工农医类) (3)圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系是(A)相离 (B)相交(C)外切 (D)内切(8)已知双曲线22221x y ab-=(a >0,b >0)的一条渐近线为y =kx (k >0),离心率e ,则双曲线方程为 (A )22x a-224ya=1 (B)222215x yaa -=(C)222214x yb b -= (D)222215xyb b-= (15)直线l 与圆x 2+y 2+2x-4y+a=0(a<3)相交于两点A ,B ,弦AB 的中点为(0,1),则直线l 的方程为 . (21)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.) 如图(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 6.PM PN +=(Ⅰ)求点P 的轨迹方程; (Ⅱ)若2·1cos P M P N M P N-=,求点P 的坐标.解:(Ⅰ)由椭圆的定义,点P 的轨迹是以M 、N 为焦点,长轴长2a =6的椭圆. 因此半焦距c =2,长半轴a =3,从而短半轴b ==所以椭圆的方程为221.95xy+=(Ⅱ)由2,1cos P M P N M P N=- 得cos 2.PM PN M PN PM PN =- ①因为cos 1,MPN P ≠不为椭圆长轴顶点,故P 、M 、N 构成三角形.在△PMN中,4,M N =由余弦定理有2222cos .M NPMPNPM PN M PN =+- ②将①代入②,得 22242(2).PMPNPM PN =+--故点P 在以M 、N 为焦点,实轴长为2213xy -=上.由(Ⅰ)知,点P 的坐标又满足22195xy+=,所以由方程组22225945,3 3.x y x y ⎧+=⎪⎨+=⎪⎩解得22x y ⎧=±⎪⎪⎨⎪=±⎪⎩即P 点坐标为22222222-、-、(-或(-.2008年普通高等学校招生全国统一考试(天津卷)数学(文史类)2.设变量x y ,满足约束条件⎪⎩⎪⎨⎧≥+≤+≥-1210y x y x y x 则目标函数5z x y =+的最大值为( )A .2B .3C .4D .57.设椭圆22221(00)x y m n mn+=>>,的右焦点与抛物线28y x =的焦点相同,离心率为12,则此椭圆的方程为( ) A .2211216xy+= B .2211612xy+= C .2214864xy+= D .2216448xy+=15.已知圆C 的圆心与点(21)P -,关于直线1y x =+对称.直线34110x y +-=与圆C 相交于A B ,两点,且6AB =,则圆C 的方程为 . 22.(本小题满分14分)同理科第21题2008年普通高等学校招生全国统一考试(天津卷)数学(理工农医类) (2)同文科第2题 (5)设椭圆()1112222>=-+m m ym x上一点P 到其左焦点的距离为3,到右焦点的距离为1,则P 点到右准线的距离为(A) 6 (B) 2 (C)21 (D)772(13)已知圆C 的圆心与抛物线x y 42=的焦点关于直线x y =对称.直线0234=--y x 与圆C 相交于B A ,两点,且6=AB ,则圆C 的方程为 . (21)(本小题满分14分)已知中心在原点的双曲线C 的一个焦点是1(30)F -,,一条渐近线的方程是20y -=.(Ⅰ)求双曲线C 的方程; (Ⅱ)若以(0)k k ≠为斜率的直线l 与双曲线C 相交于两个不同的点M N ,,且线段M N的垂直平分线与两坐标轴围成的三角形的面积为812,求k 的取值范围.[本小题主要考查双曲线的标准方程和几何性质、直线方程、两条直线垂直、线段的定比分点等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理运算能力.满分14分.](Ⅰ)解:设双曲线C 的方程为22221x y ab-=(0,0a b >>).由题设得2292a b b a⎧+=⎪⎨=⎪⎩,解得2245a b ⎧=⎪⎨=⎪⎩,所以双曲线方程为22145x y -=. (Ⅱ)解:设直线l 的方程为y kx m =+(0k ≠).点11(,)M x y ,22(,)N x y 的坐标满足方程组22145y kx mx y =+⎧⎪⎨-=⎪⎩将①式代入②式,得22()145xkx m +-=,整理得222(54)84200k x km x m ----=.此方程有两个一等实根,于是2504k -≠,且222(8)4(54)(420)0k m k m ∆=-+-+>.整理得22540m k+->. ③ 由根与系数的关系可知线段M N 的中点坐标00(,)x y 满足12024254x x km x k+==-,002554m y kx m k=+=-.从而线段M N 的垂直平分线方程为22514()5454mkm y x kkk-=----. 此直线与x 轴,y 轴的交点坐标分别为29(,0)54kmk-,29(0,54mk-.由题设可得2219981||||254542kmmk k ⋅=--.整理得222(54)||k m k -=,0k ≠.将上式代入③式得222(54)540||k k k -+->,整理得22(45)(4||5)0k k k --->,0k ≠.解得0||2k <<或5||4k >.所以k的取值范围是55,)(0)(0,(,)4224(∞-+--∞ . 2008年普通高等学校招生全国统一考试(安徽卷)数 学(文科)(11)若A 为不等式组 002x y y x ≤⎧⎪≥⎨⎪-≤⎩表示的平面区域,则当a 从-2连续变化到1时,动直线x+y =a 扫过A 中的那部分区域的面积为 (A )34(B)1 (C)74(D)2(14)已知双曲线2212xyn n--=1n =(22)(本小题满分14分)已知椭圆2222:1(0)xyC a b a b+=>>,其相应于焦点F (2,0)的准线方程为x =4.(Ⅰ)求椭圆C 的方程;(Ⅱ)已知过点F 1(-2,0)倾斜角为θ的直线交椭圆C 于A ,B 两点.求证:22cos AB =-θ;(Ⅲ)过点F 1(-2,0)作两条互相垂直的直线分别交椭圆C 于点A 、B 和D 、E ,求A B D E +的最小值.2008年普通高等学校招生全国统一考试(安徽卷)数 学(理科)(8).若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( )A .[B .(C .[33-D .(33-(15).同文科第11题,理科中为填空题 (22).(本小题满分13分)设椭圆2222:1(0)xyC a b a b+=>>过点M ,且焦点为1(0)F(Ⅰ)求椭圆C 的方程;(Ⅱ)当过点(4,1)P 的动直线l 与椭圆C 相交与两不同点,A B 时,在线段A B 上取点Q ,满足AP Q B AQ PB =,证明:点Q 总在某定直线上2008年普通高等学校招生全国统一考试数学(文史类)(北京卷) (3)“双曲线的方程为116922=-yx”是“双曲线的准线方程为x =59±”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )即不充分也不必要条件x -y +1≥0,(6)若实数x ,y 满足 x +y ≥0, 则z =x +2y 的最小值是x ≤0, (A)0 (B) 21(C) 1 (D)2(19)(本小题共14分)已知△ABC 的顶点A ,B 在椭圆2234x y +=上,C 在直线l :y =x +2上,且AB ∥l . (Ⅰ)当AB 边通过坐标原点O 时,求AB 的长及△ABC 的面积;(Ⅱ)当∠ABC =90°,且斜边AC 的长最大时,求AB 所在直线的方程. 解:(Ⅰ)因为AB ∥l ,且AB 边通过点(0,0),所以AB 所在直线的方程为y =x .设A ,B 两点坐标分别为(x 1,y 1),(x 2,y 2).由2234,x y y x ⎧+=⎨=⎩得1,x =±所以12AB x =-=又因为AB 边上的高h 等于原点到直线l 的距离,所以1 2.2A B C h S A B h ===(Ⅱ)设AB 所在直线的方程为y =x +m . 由2234,x y y x m⎧+=⎨=+⎩得2246340.x mx m ++-=因为A ,B 在椭圆上,所以212640.m ∆=-+>设A ,B 两点坐标分别为(x 1,y 1),(x 2,y 2).则21212334,,24m m x x x x -+=-=所以122AB x =-=又因为BC 的长等于点(0,m )到直线l 的距离,即BC =所以22222210(1)11.ACABBCm m m =+=--+=-++所以当m =-1时,AC 边最长.(这时12640=-+ >) 此时AB 所在直线的方程为y =x -1.2008年普通高等学校校招生全国统一考试数学(理工农医类)(北京卷) (4)若点P 到直线x =-1的距离比它到点(2,0)的大1,则点P 的轨迹为 (A )圆 (B )椭圆 (C )双曲线 (D )抛物线x -y +1≥0,(5)若实数x ,y 满足 x +y ≥0, 则z =3x +y的最小值是x ≤0,(A)0 (B)1 (C)3 (D)9(7)过直线y =x 上的一点作圆(x -5)2=2的两条切线l 1,l 2,当直线l 1,l 2关于y =x 对称时,综们之间的夹角为 (A )30° (B )45° (C)60° (D)90° (19)(本小题共14分)已知菱形ABCD 的顶点A ,C 在椭圆x 2+3y 2=4上,对角线BD 所在直线的斜率为l. (Ⅰ)当直线BD 过点(0,1)时,求直线AC 的方程; (Ⅱ)当∠ABC =60°,求菱形ABCD 面积的最大值. 解: (Ⅰ)由题意得直线BD 的方程为y =x +1. 因为四边形ABCD 为菱形,所以AC ⊥BD .于是可设直线AC 的方程为y =-x +n .由2234,x y y x n⎧+=⎨=-+⎩得2246340.x nx n -+-= 因为A ,C 在椭圆上,所以△=-12n 2+64>0,解得33n -<设A ,C 两点坐标分别为(x 1,y 1),(x 2,y 2), 则212121122334,,,.24n n x x x x y x n y x n -+===-+=-+所以12.2n y y +=所以AC 的中点坐标为3.44n n⎛⎫⎪⎝⎭由四边形ABCD 为菱形可知,点344n n ⎛⎫⎪⎝⎭在直线y =x +1上, 所以3144n n =+,解得n =-2.所以直线AC 的方程为2y x =--,即x +y +2=0.(Ⅱ)因为四边形ABCD 为菱形,且60A B C ∠=︒,所以.AB BC CA ==所以菱形ABCD的面积2.S =由(Ⅰ)可得22221212316()().2n AC x x y y -+=-+-=所以2316)(433S n n =-+-<所以当n =0时,菱形ABCD的面积取得最大值2008年普通高等学校招生全国统一考试数学卷(福建)数 学(文史类) (10)若实数x 、y 满足10,0,2,x y x x -+≤⎧⎪⎨⎪≤⎩则y x 的取值范围是(D )A.(0,2)B.(0,2)C.(2,+∞)D.[2,+∞)(12)双曲线22221xya b-=(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PE 2|,则双曲线离心率的取值范围为(B )A.(1,3)B.(1,3)C.(3,+∞)D. [3,+∞] (14)若直线3x+4y +m =0与圆x 2+y 2-2x +4y +4=0没有公共点,则实数m 的取值范围是 .(22)(本小题满分14分) 如图,椭圆2222:1xyC a b+=(a >b >0)的一个焦点为F (1,0),且过点(2,0). (Ⅰ)求椭圆C 的方程;(Ⅱ)若AB 为垂直于x 轴的动弦,直线l :x =4与x 轴交于点N ,直线AF 与BN 交于点M . (ⅰ)求证:点M 恒在椭圆C 上; (ⅱ)求△AMN 面积的最大值.(本小题主要考查直线与椭圆的位置关系、轨迹方程、不等式等基本知识,考查运算能力和综合解题能力,满分14分) 解法一:(Ⅰ)由题设a =2,c =1,从而b 2=a 2-c 2=3,所以椭圆C 前方程为13422=+yx.(Ⅱ)(i)由题意得F (1,0),N (4,0).设A (m,n ),则B (m ,-n )(n ≠0),3422nm+=1. ……①AF 与BN 的方程分别为:n (x -1)-(m -1)y =0,n (x -4)-(m -4)y =0.设M (x 0,y 0),则有 n (x 0-1)-(m -1)y 0=0, ……②n (x 0-4)+(m -4)y 0=0, ……③由②,③得x 0=523,52850-=--m ny m m .所以点M 恒在椭圆G 上. (ⅱ)设AM 的方程为x =xy +1,代入3422yx+=1得(3t 2+4)y 2+6ty -9=0.1)52(4936)85()52(412)85()52(3)52(4)85()52(3)52(4)85(34222222222222222020=--+-=-+-=-+--=-+--=+m mm m nm m nm m m nm m y x 由于设A (x 1,y 1),M (x 2,y 2),则有:y 1+y 2=.439,4362212+-=+-t y y x x|y 1-y 2|=.4333·344)(2221221++=-+t t y y y y令3t 2+4=λ(λ≥4),则 |y 1-y 2|=,+)--(=+)-(=- 412113411341·3432λλλλλ 因为λ≥4,0<时,,==所以当04411,41≤1=t λλλ|y 1-y 2|有最大值3,此时AM 过点F .△AMN 的面积S △AMN=.292323y ·212121有最大值y y y y y FN -=-=-解法二:(Ⅰ)问解法一: (Ⅱ)(ⅰ)由题意得F (1,0),N (4,0). 设A (m ,n ),则B (m ,-n )(n ≠0),.13422=+nm……①AF 与BN 的方程分别为:n (x -1)-(m -1)y =0, ……②n (x -4)-(m -4)y =0, ……③ 由②,③得:当≠523,528525-=--=x yn x x m 时,. ……④由④代入①,得3422yx+=1(y ≠0).当x=52时,由②,③得:3(1)023(4)0,2n m y n m y ⎧--=⎪⎪⎨⎪-++=⎪⎩解得0,0,n y =⎧⎨=⎩与a ≠0矛盾.所以点M 的轨迹方程为221(0),43xxy +=≠即点M 恒在锥圆C 上.(Ⅱ)同解法一.2008年普通高等学校招生全国统一考试数学卷(福建)数 学(理工农医类) (8) .同文科第10题(11) 同文科第12题x =1+cos θ(14)若直线3x+4y+m=0与圆 y =-2+sin θ(θ为参数)没有公共点,则实数m 的取值范围是 .(21)(本小题满分12分) 如图、椭圆22221(0)x y a b ab+= 的一个焦点是F (1,0),O 为坐标原点.(Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;(Ⅱ)设过点F 的直线l 交椭圆于A 、B 两点.若直线l 绕点F 任意转动,值有222OA OBAB + ,求a 的取值范围.(本小题主要考查直线与椭圆的位置关系、不等式的解法等基本知识,考查分类与整合思想,考查运算能力和综合解题能力.满分12分.) 解法一:(Ⅰ)设M ,N 为短轴的两个三等分点,因为△MNF 为正三角形, 所以32O F N =,即132, 3.23bb 解得 2214,a b =+=因此,椭圆方程为221.43xy+=(Ⅱ)设1122(,),(,).A x y B x y (ⅰ)当直线 AB 与x 轴重合时,2222222222,4(1),.O A O Ba ABa a O A O BAB +==>+<因此,恒有(ⅱ)当直线AB 不与x 轴重合时,设直线AB 的方程为:22221,1,x y x my ab=++=代入整理得22222222()20,a b m y b my b a b +++-= 所以222212122222222,b m b a b y y y y a b ma b m-+==++因为恒有222OA OB AB +<,所以∠AOB 恒为钝角.即11221212(,)(,)0OA OB x yx y x x y y ==+<恒成立.2121212121212(1)(1)(1)()1x x y y m y m y y y m y y m y y +=+++=++++2222222222222222222222(1)()210.m b a b b ma b ma b mm a b b a b aa b m+-=-+++-+-+=<+又a 2+b 2m 2>0,所以-m 2a 2b 2+b 2-a 2b 2+a 2<0对m ∈R 恒成立,即a 2b 2m 2> a 2 -a 2b 2+b 2对m ∈R 恒成立.当m ∈R 时,a 2b 2m 2最小值为0,所以a 2- a 2b 2+b 2<0. a 2<a 2b 2- b 2, a 2<( a 2-1)b 2= b 4,因为a >0,b >0,所以a <b 2,即a 2-a -1>0,解得a2或a2(舍去),即a2,综合(i )(ii),a的取值范围为(12+,+∞).解法二:(Ⅰ)同解法一, (Ⅱ)解:(i )当直线l 垂直于x 轴时, x =1代入22222221(1)1,A y b a y aba-+===1.因为恒有|OA |2+|OB |2<|AB |2,2(1+y A 2)<4 y A 2, y A 2>1,即21aa->1,解得a2或a2(舍去),即a2.(ii )当直线l 不垂直于x 轴时,设A (x 1,y 1), B (x 2,y 2). 设直线AB 的方程为y =k (x -1)代入22221,xy ab+=得(b 2+a 2k 2)x 2-2a 2k 2x + a 2 k 2- a 2 b 2=0,故x 1+x 2=222222222222222,.a ka k a bx x b a k b a k-=++因为恒有|OA |2+|OB |2<|AB |2,所以x 21+y 21+ x 22+ y 22<( x 2-x 1)2+(y 2-y 1)2, 得x 1x 2+ y 1y 2<0恒成立.x 1x 2+ y 1y 2= x 1x 2+k 2(x 1-1) (x 2-1)=(1+k 2) x 1x 2-k 2(x 1+x 2)+ k 2=(1+k 2)2222222222222222222222222()a k a ba ka ab b k a bk k b a k b a kb a k--+--+=+++.由题意得(a 2- a 2 b 2+b 2)k 2- a 2 b 2<0对k ∈R 恒成立. ①当a 2- a 2 b 2+b 2>0时,不合题意;②当a 2- a 2 b 2+b 2=0时,a2;③当a 2- a 2b 2+b 2<0时,a 2- a 2(a 2-1)+ (a 2-1)<0,a 4- 3a 2 +1>0,解得a 2>32+或a 2>32-(舍去),a>12+,因此a≥12+.综合(i )(ii ),a的取值范围为(12+,+∞).2008年普通高等学校统一考试(广东卷)数学(文科) 6、经过圆2220x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是( C )A. x + y + 1 = 0B. x + y - 1 = 0C. x - y + 1 = 0D. x - y - 1 = 0 12、若变量x 、y 满足24025000x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,则32z x y =+的最大值是____70___14、(坐标系与参数方程)已知曲线C 1、C 2的极坐标方程分别为cos 3ρθ=,4cos ρθ=(0ρ≥,02πθ≤<),则曲线C 1与C 2交点的极坐标为6π⎛⎫⎪⎝⎭,6π⎛⎫- ⎪⎝⎭20、(本小题满分14分)设b >0,椭圆方程为222212xy bb+=,抛物线方程为28()x y b =-。

高考数学直线与圆的位置关系选择题

高考数学直线与圆的位置关系选择题1. 直线l与圆O的方程分别为x-y+1=0和x^2+y^2-2x-2y+2=0,直线l与圆O的位置关系是()A. 相离B. 相切C. 相交D. 重合2. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合3. 已知圆的方程为x^2+y^2-2x+2y+1=0,直线l的方程为x+y+1=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合4. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合5. 已知圆的方程为x^2+y^2-2x+2y+1=0,直线l的方程为x+y+1=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合6. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合7. 已知圆的方程为x^2+y^2-2x+2y+1=0,直线l的方程为x+y+1=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合8. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合9. 已知圆的方程为x^2+y^2-2x+2y+1=0,直线l的方程为x+y+1=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合10. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合11. 已知圆的方程为x^2+y^2-2x+2y+1=0,直线l的方程为x+y+1=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合12. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合13. 已知圆的方程为x^2+y^2-2x+2y+1=0,直线l的方程为x+y+1=0,则直线l与圆的位置关系是()B. 相切C. 相交D. 重合14. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合15. 已知圆的方程为x^2+y^2-2x+2y+1=0,直线l的方程为x+y+1=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合16. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离C. 相交D. 重合17. 已知圆的方程为x^2+y^2-2x+2y+1=0,直线l的方程为x+y+1=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合18. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合19. 已知圆的方程为x^2+y^2-2x+2y+1=0,直线l的方程为x+y+1=0,则直线l与圆的位置关系是()A. 相离B. 相切D. 重合20. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合21. 已知圆的方程为x^2+y^2-2x+2y+1=0,直线l的方程为x+y+1=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合22. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交23. 已知圆的方程为x^2+y^2-2x+2y+1=0,直线l的方程为x+y+1=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合24. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合25. 已知圆的方程为x^2+y^2-2x+2y+1=0,直线l的方程为x+y+1=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合26. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合27. 已知圆的方程为x^2+y^2-2x+2y+1=0,直线l的方程为x+y+1=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合28. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合29. 已知圆的方程为x^2+y^2-2x+2y+1=0,直线l的方程为x+y+1=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合30. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合31. 已知圆的方程为x^2+y^2-2x+2y+1=0,直线l的方程为x+y+1=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合32. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合33. 已知圆的方程为x^2+y^2-2x+2y+1=0,直线l的方程为x+y+1=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合34. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合35. 已知圆的方程为x^2+y^2-2x+2y+1=0,直线l的方程为x+y+1=0,则直线l与圆的位置关系是()B. 相切C. 相交D. 重合36. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合37. 已知圆的方程为x^2+y^2-2x+2y+1=0,直线l的方程为x+y+1=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合38. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离C. 相交D. 重合39. 已知圆的方程为x^2+y^2-2x+2y+1=0,直线l的方程为x+y+1=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合40. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合41. 已知圆的方程为x^2+y^2-2x+2y+1=0,直线l的方程为x+y+1=0,则直线l与圆的位置关系是()A. 相离B. 相切D. 重合42. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合43. 已知圆的方程为x^2+y^2-2x+2y+1=0,直线l的方程为x+y+1=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合44. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交45. 已知圆的方程为x^2+y^2-2x+2y+1=0,直线l的方程为x+y+1=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合46. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合47. 已知圆的方程为x^2+y^2-2x+2y+1=0,直线l的方程为x+y+1=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合48. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合49. 已知圆的方程为x^2+y^2-2x+2y+1=0,直线l的方程为x+y+1=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合50. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合。

高考数学复习 第七章 直线和圆的方程

2008高考数学复习 第七章 直线和圆的方程●考点阐释解析几何是用代数方法来研究几何问题的一门数学学科.在建立坐标系后,平面上的点与有序实数对之间建立起对应关系,从而使平面上某些曲线与某些方程之间建立对应关系;使平面图形的某些性质(形状、位置、大小)可以用相应的数、式表示出来;使平面上某些几何问题可以转化为相应的代数问题来研究.学习解析几何,要特别重视以下几方面:(1)熟练掌握图形、图形性质与方程、数式的相互转化和利用; (2)与代数、三角、平面几何密切联系和灵活运用. ●试题类编 一、选择题1.(2003北京春文12,理10)已知直线ax +by +c =0(abc ≠0)与圆x 2+y 2=1相切,则三条边长分别为|a |,|b |,|c |的三角形( )A.是锐角三角形B.是直角三角形C.是钝角三角形D.不存在2.(2003北京春理,12)在直角坐标系xOy 中,已知△AOB 三边所在直线的方程分别为x =0,y =0,2x +3y =30,则△AOB 内部和边上整点(即横、纵坐标均为整数的点)的总数是( )A.95B.91C.88D.753.(2002京皖春文,8)到两坐标轴距离相等的点的轨迹方程是( ) A.x -y =0 B.x +y =0 C.|x |-y =0D.|x |-|y |=04.(2002京皖春理,8)圆2x 2+2y 2=1与直线x sin θ+y -1=0(θ∈R ,θ≠2+k π,k∈Z )的位置关系是( )A.相交B.相切C.相离D.不确定的 5.(2002全国文)若直线(1+a )x +y +1=0与圆x 2+y 2-2x =0相切,则a 的值为( )A.1,-1B.2,-2C.1D.-16.(2002全国理)圆(x -1)2+y 2=1的圆心到直线y =33x 的距离是( ) A.21B.23 C.1D.37.(2002北京,2)在平面直角坐标系中,已知两点A (co s 80°,sin80°),B (co s 20°,sin20°),则|AB |的值是( )A.21B.22 C.23 D.18.(2002北京文,6)若直线l :y =kx 3-与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( )A.)3,6[ππB.)2,6(ππ C.)2,3(ππD.]2,6[ππ 9.(2002北京理,6)给定四条曲线:①x 2+y 2=25,②4922y x +=1,③x 2+42y =1,④42x +y 2=1.其中与直线x +y -5=0仅有一个交点的曲线是( )A.①②③B.②③④C.①②④D.①③④10.(2001全国文,2)过点A (1,-1)、B (-1,1)且圆心在直线x +y -2=0上的圆的方程是( )A.(x -3)2+(y +1)2=4B.(x +3)2+(y -1)2=4C.(x -1)2+(y -1)2=4D.(x +1)2+(y +1)2=411.(2001上海春,14)若直线x =1的倾斜角为α,则α( ) A.等于0B.等于4πC.等于2π D.不存在12.(2001天津理,6)设A 、B 是x 轴上的两点,点P 的横坐标为2且|P A |=|PB |,若直线P A 的方程为x -y +1=0,则直线PB 的方程是( )A.x +y -5=0B.2x -y -1=0C.2y -x -4=0D.2x +y -7=013.(2001京皖春,6)设动点P 在直线x =1上,O 为坐标原点.以OP 为直角边,点O 为直角顶点作等腰Rt △OP Q ,则动点Q 的轨迹是( )A.圆B.两条平行直线C.抛物线D.双曲线14.(2000京皖春,4)下列方程的曲线关于x =y 对称的是( )A.x 2-x +y 2=1B.x 2y +xy 2=1C.x -y =1D.x 2-y 2=115.(2000京皖春,6)直线(23-)x +y =3和直线x +(32-)y =2的位置关系是( )A.相交不垂直B.垂直C.平行D.重合16.(2000全国,10)过原点的直线与圆x 2+y 2+4x +3=0相切,若切点在第三象限,则该直线的方程是( )A.y =3x B.y =-3x C.y =33x D.y =-33x 17.(2000全国文,8)已知两条直线l 1:y =x ,l 2:ax -y =0,其中a 为实数,当这两条直线的夹角在(0,12π)内变动时,a 的取值范围是( ) A.(0,1)B.(3,33) C.(33,1)∪(1,3) D.(1,3)18.(1999全国文,6)曲线x 2+y 2+22x -22y =0关于( )A.直线x =2轴对称B.直线y =-x 轴对称C.点(-2,2)中心对称D.点(-2,0)中心对称19.(1999上海,13)直线y =33x 绕原点按逆时针方向旋转30°后所得直线与圆 (x -2)2+y 2=3的位置关系是( )A.直线过圆心B.直线与圆相交,但不过圆心C.直线与圆相切D.直线与圆没有公共点20.(1999全国,9)直线3x +y -23=0截圆x 2+y 2=4得的劣弧所对的圆心角为( )A.6π B.4πC .3πD.2π 21.(1998全国,4)两条直线A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0垂直的充要条件是( ) A.A 1A 2+B 1B 2=0 B.A 1A 2-B 1B 2=0 C.12121-=B B A AD.2121A A B B =1 22.(1998上海)设a 、b 、c 分别是△ABC 中∠A 、∠B 、∠C 所对边的边长,则直线sin A ·x +ay +c =0与bx -sin B ·y +sin C =0的位置关系是( )A.平行B.重合C.垂直D.相交但不垂直 23.(1998全国文,3)已知直线x =a (a >0)和圆(x -1)2+y 2=4相切,那么a 的值是( )A.5B.4C.3D.224.(1997全国,2)如果直线ax +2y +2=0与直线3x -y -2=0平行,那么系数a 等于( ) A.-3B.-6C.-23D.32 25.(1997全国文,9)如果直线l 将圆x 2+y 2-2x -4y =0平分,且不通过第四象限,那么直线l 的斜率的取值范围是( )A.[0,2]B.[0,1]C.[0,21]D.[0,21) 26.(1995上海,8)下列四个命题中的真命题是( )A.经过定点P 0(x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示B.经过任意两个不同的点P 1(x 1,y 1)、P 2(x 2,y 2)的直线都可以用方程(y -y 1)·(x 2-x 1)=(x -x 1)(y 2-y 1)表示C.不经过原点的直线都可以用方程1=+bya x 表示 D.经过定点A (0,b )的直线都可以用方程y =kx +b 表示27.(1995全国文,8)圆x 2+y 2-2x =0和x 2+y 2+4y =0的位置关系是( ) A.相离 B.外切 C.相交D.内切28.(1995全国,5)图7—1中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( )A.k 1<k 2<k 3B.k 3<k 1<k 2C.k 3<k 2<k 1D.k 1<k 3<k 229.(1994全国文,3)点(0,5)到直线y =2x 的距离是( ) A.25B.5 C.23D.25 二、填空题30.(2003上海春,2)直线y =1与直线y =3x +3的夹角为_____.31.(2003上海春,7)若经过两点A (-1,0)、B (0,2)的直线l 与圆(x -1)2+(y -a )2=1相切,则a =_____.32.(2002北京文,16)圆x 2+y 2-2x -2y +1=0上的动点Q 到直线3x +4y +8=0距离的最小值为 .33.(2002北京理,16)已知P 是直线3x +4y +8=0上的动点,P A ,PB 是圆x 2+y 2-2x -2y +1=0的两条切线,A 、B 是切点,C 是圆心,那么四边形P ACB 面积的最小值为 .34.(2002上海文,6)已知圆x 2+(y -1)2=1的圆外一点P (-2,0),过点P 作圆的切线,则两条切线夹角的正切值是 .35.(2002上海理,6)已知圆(x +1)2+y 2=1和圆外一点P (0,2),过点P 作圆的切线,则两条切线夹角的正切值是 .36.(2002上海春,8)设曲线C 1和C 2的方程分别为F 1(x ,y )=0和F 2(x ,y )=0,则点P (a ,b ) C 1∩C 2的一个充分条件为 .37.(2001上海,11)已知两个圆:x 2+y 2=1①与x 2+(y -3)2=1②,则由①式减去②式可得上述两圆的对称轴方程.将上述命题在曲线仍为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例.推广的命题为:38.(2001上海春,6)圆心在直线y =x 上且与x 轴相切于点(1,0)的圆的方程为 . 39.(2000上海春,11)集合A ={(x ,y )|x 2+y 2=4},B ={(x ,y )|(x -3)2+(y -4)2=r 2},其中r >0,若A ∩B 中有且仅有一个元素,则r 的值是_____.40.(1997上海)设圆x 2+y 2-4x -5=0的弦AB 的中点为P (3,1),则直线AB 的方程是 . 41.(1994上海)以点C (-2,3)为圆心且与y 轴相切的圆的方程是 . 三、解答题42.(2003京春文,20)设A (-c ,0),B (c ,0)(c >0)为两定点,动点P 到A 点的距离与到B 点的距离的比为定值a (a >0),求P 点的轨迹.43.(2003京春理,22)已知动圆过定点P (1,0),且与定直线l :x =-1相切,点C 在l 上.(Ⅰ)求动圆圆心的轨迹M 的方程;(Ⅱ)设过点P ,且斜率为-3的直线与曲线M 相交于A 、B 两点.(i )问:△ABC 能否为正三角形?若能,求点C 的坐标;若不能,说明理由; (ii )当△ABC 为钝角三角形时,求这种点C 的纵坐标的取值范围.44.(2002全国文,21)已知点P 到两个定点M (-1,0)、N (1,0)距离的比为2,点N 到直线PM 的距离为1.求直线PN 的方程.45.(1997全国文,25)已知圆满足:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的比为3∶1;③圆心到直线l :x -2y =0的距离为55,求该圆的方程. 46.(1997全国理,25)设圆满足: (1)截y 轴所得弦长为2;(2)被x 轴分成两段圆弧,其弧长的比为3∶1.在满足条件(1)、(2)的所有圆中,求圆心到直线l :x -2y =0的距离最小的圆的方程. 47.(1997全国文,24)已知过原点O 的一条直线与函数y =lo g 8x 的图象交于A 、B 两点,分别过点A 、B 作y 轴的平行线与函数y =lo g 2x 的图象交于C 、D 两点.(1)证明点C 、D 和原点O 在同一条直线上. (2)当BC 平行于x 轴时,求点A 的坐标.48.(1994上海,25)在直角坐标系中,设矩形OPQR 的顶点按逆时针顺序依次为O (0,0),P (1,t ),Q (1-2t ,2+t ),R (-2t ,2),其中t ∈(0,+∞).(1)求矩形OPQR 在第一象限部分的面积S (t ). (2)确定函数S (t )的单调区间,并加以证明.49.(1994全国文,24)已知直角坐标平面上点Q (2,0)和圆C :x 2+y 2=1,动点M 到圆C 的切线长与|MQ |的比等于常数λ(λ>0).求动点M 的轨迹方程,说明它表示什么曲线.●答案解析 1.答案:B解析:圆心坐标为(0,0),半径为 1.因为直线和圆相切.利用点到直线距离公式得:d =22||b a c =1,即a 2+b 2=c 2.所以,以|a |,|b |,|c |为边的三角形是直角三角形.评述:要求利用直线与圆的基本知识,迅速找到a 、b 、c 之间的关系,以确定三角形形状. 2.答案:B 解析一:由y =10-32x (0≤x ≤15,x ∈N )转化为求满足不等式y ≤10-32x (0≤x ≤15,x ∈N )所有整数y 的值.然后再求其总数.令x =0,y 有11个整数,x =1,y 有10个,x =2或x =3时,y 分别有9个,x =4时,y 有8个,x =5或6时,y 分别有7个,类推:x =13时y 有2个,x =14或15时,y 分别有1个,共91个整点.故选B.解析二:将x =0,y =0和2x +3y =30所围成的三角形补成一个矩形.如图7—2所示.对角线上共有6个整点,矩形中(包括边界)共有16×11=176.因此所求△AOB 内部和边上的整点共有26176+=91(个) 评述:本题较好地考查了考生的数学素质,尤其是考查了思维的敏捷性与清晰的头脑,通过不等式解等知识探索解题途径.3.答案:D解析:设到坐标轴距离相等的点为(x ,y ) ∴|x |=|y | ∴|x |-|y |=0 4.答案:C解析:圆2x 2+2y 2=1的圆心为原点(0,0)半径r 为22,圆心到直线x sin θ+y -1=0的距离为:1sin 11sin |1|22+=+=θθd∵θ∈R ,θ≠2π+k π,k ∈Z∴0≤sin 2θ<1 ∴d >22∴d >r ∴圆2x 2+2y 2=1与直线x sin θ+y -1=0(θ∈R ,θ≠2π+k π,k ∈Z )的位置关系是相离.5.答案:D解析:将圆x 2+y 2-2x =0的方程化为标准式:(x -1)2+y 2=1∴其圆心为(1,0),半径为1,若直线(1+a )x +y +1=0与该圆相切,则圆心到直线的距离d 等于圆的半径r∴11)1(|11|2=++++a a ∴a =-16.答案:A解析:先解得圆心的坐标(1,0),再依据点到直线距离的公式求得A 答案.解析:如图7—3所示,∠AOB =60°,又|OA |=|OB |=1 ∴|AB |=1 8.答案:B方法一:求出交点坐标,再由交点在第一象限求得倾斜角的范围⎪⎪⎩⎪⎪⎨⎧+-=++=⇒⎩⎨⎧=-+-=k k y k x y x kx y 3232632)32(306323 ∵交点在第一象限,∴⎩⎨⎧>>00y x∴⎪⎪⎩⎪⎪⎨⎧>+->++032326032)32(3kk k∴k ∈(33,+∞)∴倾斜角范围为(2,6ππ)方法二:如图7—4,直线2x +3y -6=0过点A (3,0),B (0,2),直线l 必过点(0,-3),当直线过A 点时,两直线的交点在x 轴,当直线l 绕C 点逆时针旋转时,交点进入第一象限,从而得出结果.评述:解法一利用曲线与方程的思想,利用点在象限的特征求得,而解法二利用数形结合的思想,结合平面几何中角的求法,可迅速、准确求得结果.9.答案:D解析:联立方程组,依次考查判别式,确定D. 10.答案:C解析一:由圆心在直线x +y -2=0上可以得到A 、C 满足条件,再把A 点坐标(1,-1)代入圆方程.A 不满足条件.∴选C.解析二:设圆心C 的坐标为(a ,b ),半径为r ,因为圆心C 在直线x +y -2=0上,∴b =2-a . 由|CA |=|CB |,得(a -1)2+(b +1)2=(a +1)2+(b -1)2,解得a =1,b =1 因此所求圆的方程为(x -1)2+(y -1)2=4评述:本题考查圆的方程的概念,解法一在解选择题中有广泛的应用,应引起重视. 11.答案:C解析:直线x =1垂直于x 轴,其倾斜角为90°.解析:由已知得点A (-1,0)、P (2,3)、B (5,0),可得直线PB 的方程是x +y -5=0. 评述:本题考查直线方程的概念及直线的几何特征. 13.答案:B解析一:设P =1+bi ,则Q =P (±i ), ∴Q =(1+bi )(±i )=±b i ,∴y =±1解析二:设P 、Q 点坐标分别为(1,t ),(x ,y ), ∵OP ⊥OQ ,∴1t·xy=-1,得x +ty =0 ①∵|OP |=|OQ |,∴2221y x t +=+,得x 2+y 2=t 2+1②由①得t =-y x ,将其代入②,得x 2+y 2=22yx +1,(x 2+y 2)(1-21y )=0.∵x 2+y 2≠0,∴1-21y=0,得y =±1. ∴动点Q 的轨迹为y =±1,为两条平行线. 评述:本题考查动点轨迹的基本求法. 14.答案:B解析:∵点(x ,y )关于x =y 对称的点为(y ,x ),可知x 2y +xy 2=1的曲线关于x =y 对称. 15.答案:B 解析:直线(23-)x +y =3的斜率k 1=32-,直线x +(32-)y =2的斜率k 2=23+,∴k 1·k 2=)23)(32(+-=-1.16.答案:C解析一:圆x 2+y 2+4x +3=0化为标准式(x +2)2+y 2=1,圆心C (-2,0).设过原点的直线方程为y =kx ,即kx -y =0.由1|2|2+-k k =1,解得k =±33,∵切点在第三象限, ∴k >0,所求直线方程为y =33x . 解析二:设T 为切点,因为圆心C (-2,0),因此CT =1,OC =2,△OCT 为Rt △.如图7—5,∴∠CO T=30°,∴直线OT 的方程为y =33x . 评述:本题考查直线与圆的位置关系,解法二利用数与形的完美结合,可迅速、准确得到结果.17.答案:C解析:直线l 1的倾斜角为4π,依题意l 2的倾斜角的取值范围为(4π-12π,4π)∪(4π,4π+12π)即:(6π,4π)∪(4π,3π),从而l 2的斜率k 2的取值范围为:(33,1)∪(1,3). 评述:本题考查直线的斜率和倾斜角,两直线的夹角的概念,以及分析问题、解决问题的能力.18.答案:B解析:由方程(x +2)2+(y -2)2=4如图7—6所示,故圆关于y =-x 对称 故选B.评述:本题考查了圆方程,以及数形结合思想.应注意任何一条直径都是圆的对称轴.19.答案:C 解析:直线y =33x 绕原点逆时针旋转30°所得的直线方程为:y =3x .已知圆的圆心(2,0)到y =3x 的距离d =3,又因圆的半径r =3,故直线y =3x 与已知圆相切.评述:本题考查直线的斜率和倾斜角以及直线与圆的位置关系. 20.答案:C解析:如图7—7所示,由⎪⎩⎪⎨⎧=+=-+4032322y x y x消y 得:x 2-3x +2=0 ∴x 1=2,x 2=1 ∴A (2,0),B (1,3)∴|AB |=22)30()12(-+-=2又|OB |=|OA |=2∴△AOB 是等边三角形,∴∠AOB =3π,故选C. 评述:本题考查直线与圆相交的基本知识,及正三角形的性质以及逻辑思维能力和数形结合思想,同时也体现了数形结合思想的简捷性.如果注意到直线AB 的倾斜角为120°.则等腰△OAB 的底角为60°.因此∠AOB =60°.更加体现出平面几何的意义.21.答案:A解法一:当两直线的斜率都存在时,-11B A ·(22B A-)=-1,A 1A 2+B 1B 2=0. 当一直线的斜率不存在,一直线的斜率为0时,⎩⎨⎧==⎩⎨⎧==00001221B A B A 或,同样适合A 1A 2+B 1B 2=0,故选A. 解法二:取特例验证排除.如直线x +y =0与x -y =0垂直,A 1A 2=1,B 1B 2=-1,可排除B 、D. 直线x =1与y =1垂直,A 1A 2=0,B 1B 2=0,可排除C ,故选A.评述:本题重点考查两直线垂直的判定、直线方程的一般式等基本知识点,重点考查分类讨论的思想及逻辑思维能力.22.答案:C解析:由题意知a ≠0,s i n B ≠0,两直线的斜率分别是k 1=-a A sin ,k 2=Bbsin . 由正弦定理知k 1·k 2=-a A sin ·Bbsin =-1,故两直线垂直. 评述:本题考查两直线垂直的条件及正弦定理. 23.答案:C解析:方程(x -1)2+y 2=4表示以点(1,0)为圆心,2为半径的圆,x =a 表示与x 轴垂直且与圆相切的直线,而此时的切线方程分别为x =-1和x =3,由于a >0,取a =3.故选C.评述:本题考查圆的方程、圆的切线方程及图象.利用数形结合较快完成此题. 24.答案:B解析一:若两直线平行,则22123-≠-=a , 解得a =-6,故选B.解析二:利用代入法检验,也可判断B 正确.评述:本题重点考查两条直线平行的条件,考查计算能力. 25.答案:A解析:圆的标准方程为:(x -1)2+(y -2)2=5.圆过坐标原点.直线l 将圆平分,也就是直线l 过圆心C (1,2),从图7—8看到:当直线过圆心与x 轴平行时,或者直线同时过圆心与坐标原点时都不通过第四象限,并且当直线l 在这两条直线之间变化时都不通过第四象限.当直线l 过圆心与x 轴平行时,k =0, 当直线l 过圆心与原点时,k =2. ∴当k ∈[0,2]时,满足题意.评述:本题考查圆的方程,直线的斜率以及逻辑推理能力,数形结合的思想方法. 26.答案:B解析:A 中过点P 0(x 0,y 0)与x 轴垂直的直线x =x 0不能用y -y 0=k (x -x 0)表示,因为其斜率k 不存在;C 中不过原点但在x 轴或y 轴无截距的直线y =b (b ≠0)或x =a (a ≠0)不能用方程bya x +=1表示;D 中过A (0,b )的直线x =0不能用方程y =kx +b 表示. 评述:本题考查直线方程的知识,应熟练掌握直线方程的各种形式的适用范围. 27.答案:C解析:将两圆方程分别配方得(x -1)2+y 2=1和x 2+(y -2)2=4,两圆圆心分别为O 1(1,0),O 2(0,2),r 1=1,r 2=2,|O 1O 2|=52122=+,又1=r 2-r 1<5<r 1+r 2=3,故两圆相交,所以应选C.评述:本题考查了圆的一般方程、标准方程及圆的关系以及配方法. 28.答案:D解析:直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2、α3均为锐角,且α2>α3,所以k 2>k 3>0,因此k 2>k 3>k 1,故应选D.评述:本题重点考查直线的倾斜角、斜率的关系,考查数形结合的能力. 29.答案:B解析:直线方程可化为2x -y =0,d =55|5|=-. 评述:本题重点考查直线方程的一般式及点到直线的距离公式等基本知识点,考查运算能力.30.答案:60° 解析:因为直线y =3x +3的倾斜角为60°,而y =1与x 轴平行,所以y =1与y =3x +3的夹角为60°.评述:考查直线方程的基本知识及几何知识,考查数形结合的数学思想. 31.答案:a =4±5解析:因过A (-1,0)、B (0,2)的直线方程为:2x -y +2=0.圆的圆心坐标为C (1,a ),半径r =1.又圆和直线相切,因此,有:d =5|22|+-a =1,解得a =4±5. 评述:本题考查直线方程、直线和圆的位置关系及点到直线的距离公式等知识. 32.答案:2解析:圆心到直线的距离d =5|843|++=3∴动点Q 到直线距离的最小值为d -r =3-1=2 33.答案:22解法一:∵点P 在直线3x +4y +8=0上.如图7—9. ∴设P (x ,432-- x ),C 点坐标为(1,1), S 四边形P ACB =2S △P AC=2·21·|AP |·|AC |=|AP |·|AC |=|AP |∵|AP |2=|PC |2-|AC |2=|PC |2-1∴当|PC |最小时,|AP |最小,四边形P ACB 的面积最小. ∴|PC |2=(1-x )2+(1+2+43x )2=9)145(1025162522++=++x x x ∴|PC |min =3 ∴四边形P ACB 面积的最小值为22.解法二:由法一知需求|PC |最小值,即求C 到直线3x +4y +8=0的距离,∵C (1,1),∴|PC |=5|843|++=3,S P ACD =22.34.答案:34 解法一:圆的圆心为(0,1)设切线的方程为y =k (x +2).如图7—10. ∴kx +2k -y =0 ∴圆心到直线的距离为1|12|2+-k k =1∴解得k =34或k =0,∴两切线交角的正切值为34. 解法二:设两切线的交角为α∵tan212=α,∴tan α=3441112tan 12tan22=-=-αα. 35.答案:34解析:圆的圆心为(-1,0),如图7—11. 当斜率存在时,设切线方程为y =kx +2 ∴kx -y +2=0 ∴圆心到切线的距离为1|2|2++-k k =1 ∴k =43, 即tan α=43 当斜率不存在时,直线x =0是圆的切线 又∵两切线的夹角为∠α的余角 ∴两切线夹角的正切值为34 36.答案:F 1(a ,b )≠0,或F 2(a ,b )≠0,或F 1(a ,b )≠0且F 2(a ,b )≠0或C 1∩C 2=∅或P ∉C 1等解析:点P (a ,b )∉C 1∩C 2,则 可能点P 不在曲线C 1上; 可能点P 不在曲线C 2上;可能点P 既不在曲线C 1上也不在曲线C 2上; 可能曲线C 1与曲线C 2不存在交点.37.答案:可得两圆对称轴的方程2(c -a )x +2(d -b )y +a 2+b 2-c 2-d 2=0 解析:设圆方程(x -a )2+(y -b )2=r 2 ① (x -c )2+(y -d )2=r 2 ②(a ≠c 或b ≠d ),则由①-②,得两圆的对称轴方程为: (x -a )2-(x -c )2+(y -b )2-(y -d )2=0, 即2(c -a )x +2(d -b )y +a 2+b 2-c 2-d 2=0.评述:本题考查圆的方程、圆的公共弦方程的概念,考查抽象思维能力和推广数学命题的能力.38.答案:(x -1)2+(y -1)2=1解析一:设所求圆心为(a ,b ),半径为r . 由已知,得a =b ,r =|b |=|a |.∴所求方程为(x -a )2+(y -a )2=a 2又知点(1,0)在所求圆上,∴有(1-a )2+a 2=a 2,∴a =b =r =1. 故所求圆的方程为:(x -1)2+(y -1)2=1. 解析二:因为直线y =x 与x 轴夹角为45°.又圆与x 轴切于(1,0),因此圆心横坐标为1,纵坐标为1,r =1.评述:本题考查圆的方程等基础知识,要注意利用几何图形的性质,迅速得到结果. 39.答案:3或7解析:当两圆外切时,r =3,两圆内切时r =7,所以r 的值是3或7.评述:本题考查集合的知识和两圆的位置关系,要特别注意集合代表元素的意义. 40.答案:x +y -4=0解析一:已知圆的方程为(x -2)2+y 2=9,可知圆心C 的坐标是(2,0),又知AB 弦的中点是P (3,1),所以k CP =2301--=1,而AB 垂直CP ,所以k AB =-1.故直线AB 的方程是x +y -4=0.解析二:设所求直线方程为y -1=k (x -3).代入圆的方程,得关于x 的二次方程:(1+k 2)x 2-(6k 2-2k +4)x +9k 2-6k -4=0,由韦达定理:x 1+x 2=221426kk k ++-=6,解得k =1.A 、B 两点,其坐标分别为A (x 1,y 1)、B (x 2,y 2),则有⎪⎩⎪⎨⎧=+-=+-9)2(9)2(22222121y x y x ②-①得(x 2+x 1-4)(x 2-x 1)+(y 2-y 1)(y 2+y 1)=0 又AB 的中点坐标为(3,1),∴x 1+x 2=6,y 1+y 2=2. ∴1212x x y y --=-1,即AB 的斜率为-1,故所求方程为x +y -4=0.评述:本题考查直线的方程与圆的有关知识.要特别注意圆所特有的几何性质. 41.答案:(x +2)2+(y -3)2=4解析:因为圆心为(-2,3),且圆与y 轴相切,所以圆的半径为2.故所求圆的方程为(x +2)2+(y -3)2=4.42.解:设动点P 的坐标为P (x ,y )由||||PB PA =a (a >0),得2222)()(yc x y c x +-++=a ,化简,得:(1-a 2)x 2+2c (1+a 2)x +c 2(1-a 2)+(1-a 2)y 2=0.当a ≠1时,得x 2+221)1(2aa c -+x +c 2+y 2=0.整理, 得:(x -1122-+a a c )2+y 2=(122-a ac )2当a =1时,化简得x =0.所以当a ≠1时,P 点的轨迹是以(1122-+a a c ,0)为圆心,|122-a ac |为半径的圆;当a =1时,P 点的轨迹为y 轴.评述:本题考查直线、圆、曲线和方程等基本知识,考查运用解析几何的方法解决问题的能力.43.(Ⅰ)解法一,依题意,曲线M 是以点P 为焦点,直线l 为准线的抛物线,所以曲线M 的方程为y 2=4x .解法二:设M (x ,y ),依题意有|MP |=|MN |, 所以|x +1|=22)1(y x +-.化简得:y 2=4x .(Ⅱ)(i )由题意得,直线AB 的方程为y =-3(x -1).由⎪⎩⎪⎨⎧=--=.4),1(32x y x y 消y 得3x 2-10x +3=0,解得x 1=31,x 2=3. 所以A 点坐标为(332,31),B 点坐标为(3,-23), |AB |=x 1+x 2+2=316. 假设存在点C (-1,y ),使△ABC 为正三角形,则|BC |=|AB |且|AC |=|AB |,即⎪⎪⎩⎪⎪⎨⎧=-++=+++.)316()32()131()316()32()13(222222y y 由①-②得42+(y +23)2=(34)2+(y -332)2, 解得y =-9314. 但y =-9314不符合①, 所以由①,②组成的方程组无解.因此,直线l 上不存在点C ,使得△ABC 是正三角形.(ii )解法一:设C (-1,y )使△ABC 成钝角三角形,由⎩⎨⎧-=--=.1),1(3x x y 得y =23,即当点C 的坐标为(-1,23)时,A 、B 、C 三点共线,故y ≠23.又|AC |2=(-1-31)2+(y -332)2=334928y -+y 2,|BC |2=(3+1)2+(y +23)2=28+43y +y 2,|AB |2=(316)2=9256. 当∠CAB 为钝角时,co sA =||||2||||||222AC AB BC AC AB ⋅-+<0.即|BC |2 >|AC |2+|AB |2,即9256334928342822++->++y y y y ,即 y >392时,∠CAB 为钝角. 当|AC |2>|BC |2+|AB |2,即9256342833492822+++>+-y y y y ,即y <-3310时,∠CBA 为钝角. 又|AB |2>|AC |2+|BC |2,即2234283349289256y y y y++++->, 即0)32(,03433422<+<++y y y. 该不等式无解,所以∠ACB 不可能为钝角.因此,当△ABC 为钝角三角形时,点C 的纵坐标y 的取值范围是)32(9323310≠>-<y y y 或. 解法二:以AB 为直径的圆的方程为(x -35)2+(y +332)2=(38)2. 圆心(332,35-)到直线l :x =-1的距离为38,所以,以AB 为直径的圆与直线l 相切于点G (-1,-332). 当直线l 上的C 点与G 重合时,∠ACB 为直角,当C 与G 点不重合,且A 、B 、C 三点不共线时,∠ACB 为锐角,即△ABC 中,∠ACB 不可能是钝角.因此,要使△ABC 为钝角三角形,只可能是∠CAB 或∠CBA 为钝角. 过点A 且与AB 垂直的直线方程为)31(33332-=-x y . 令x =-1得y =932. 过点B 且与AB 垂直的直线方程为y +2333=(x -3). 令x =-1得y =-3310. 又由⎩⎨⎧-=--=.1),1(3x x y 解得y =23,所以,当点C 的坐标为(-1,23)时,A 、B 、C 三点共线,不构成三角形.因此,当△ABC 为钝角三角形时,点C 的纵坐标y 的取值范围是y <-3310或y >932(y ≠23).评述:该题全面综合了解析几何、平面几何、代数的相关知识,充分体现了“注重学科知识的内在联系”.题目的设计新颖脱俗,能较好地考查考生综合运用数学知识解决问题的能力.比较深刻地考查了解析法的原理和应用,以及分类讨论的思想、方程的思想.该题对思维的目的性、逻辑性、周密性、灵活性都进行了不同程度的考查.对运算、化简能力要求也较高,有较好的区分度.44.解:设点P 的坐标为(x ,y ),由题设有2||||=PN PM ,即2222)1(2)1(y x y x +-⋅=++.整理得 x 2+y 2-6x +1=0.①因为点N 到PM 的距离为1,|M N|=2, 所以∠PMN =30°,直线PM 的斜率为±33, 直线PM 的方程为y =±33(x +1).② 将②式代入①式整理得x 2-4x +1=0. 解得x =2+3,x =2-3.代入②式得点P 的坐标为(2+3,1+3)或(2-3,-1+3);(2+3,-1-3)或(2-3,1-3). 直线PN 的方程为y =x -1或y =-x +1. 45.解:设圆的方程为(x -a )2+(y -b )2=r 2. 令x =0,得y 2-2by +b 2+a 2-r 2=0. |y 1-y 2|=222122124)(a r y y y y -=-+=2,得r 2=a 2+1①令y =0,得x 2-2ax +a 2+b 2-r 2=0, |x 1-x 2|=r b r x x x x 224)(2221221=-=-+,得r 2=2b 2②由①、②,得2b 2-a 2=1又因为P (a ,b )到直线x -2y =0的距离为55, 得d =555|2|=-b a ,即a -2b =±1. 综上可得⎩⎨⎧=-=-;12,1222b a a b 或⎩⎨⎧-=-=-121222b a a b 解得⎩⎨⎧-=-=11b a 或⎩⎨⎧==11b a于是r 2=2b 2=2.所求圆的方程为(x +1)2+(y +1)2=2或(x -1)2+(y -1)2=2.46.解:设所求圆的圆心为P (a ,b ),半径为r ,则P 到x 轴、y 轴的距离分别为|b |、|a |. 由题设圆P 截x 轴所得劣弧所对圆心角为90°,圆P 截x 轴所得弦长为2r ,故r 2=2b 2,又圆P 截y 轴所得弦长为2,所以有r 2=a 2+1, 从而有2b 2-a 2=1又点P (a ,b )到直线x -2y =0距离为d =5|2|b a -, 所以5d 2=|a -2b |2=a 2+4b 2-4ab ≥a 2+4b 2-2(a 2+b 2)=2b 2-a 2=1 当且仅当a =b 时上式等号成立,此时5d 2=1,从而d 取得最小值,由此有⎩⎨⎧=-=1222a b b a 解方程得⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a 由于r 2=2b 2,知r =2,于是所求圆的方程为(x -1)2+(y -1)2=2或(x +1)2+(y +1)2=2评述:本题考查了圆的方程,函数与方程,求最小值问题,进一步考查了待定系数法、函数与方程思想.题中求圆的方程给出的三个条件比较新颖脱俗,灵活运用几何知识和代数知识将条件恰当转化,推演,即合乎逻辑、说理充分、陈述严谨.47.(1)证明:设A 、B 的横坐标分别为x 1,x 2,由题设知x 1>1,x 2>1,点A (x 1,lo g 8x 1),B (x 2,lo g 8x 2).因为A 、B 在过点O 的直线上,所以228118log log x x x x =, 又点C 、D 的坐标分别为(x 1,lo g 2x 1),(x 2,lo g 2x 2) 由于lo g 2x 1=2log log 818x =3lo g 8x 1,lo g 2x 2=2log log 828x =3lo g 8x 2,所以OC 的斜率和OD 的斜率分别为228222118112log 3log ,log 3log x x x x k x x x x k OD OC ====. 由此得k OC =k OD ,即O 、C 、D 在同一条直线上.(2)解:由BC 平行于x 轴,有lo g 2x 1=lo g 8x 2,解得 x 2=x 13将其代入228118log log x x x x =,得x 13lo g 8x 1=3x 1lo g 8x 1. 由于x 1>1,知lo g 8x 1≠0,故x 13=3x 1,x 1=3,于是点A 的坐标为(3,lo g 83).评述:本小题主要考查对数函数图象、对数换底公式、对数方程、指数方程等基础知识,考查运算能力和分析问题的能力.48.解:(1)当1-2t >0即0<t <21时,如图7—13,点Q 在第一象限时,此时S (t )为四边形OPQK 的面积,直线QR 的方程为y -2= t (x +2t ).令x =0,得y =2t 2+2,点K 的坐标为(P ,2t 2+2).t t t S S S OKR OPQR OPQK 2)22(21)1(2222⋅+-+=-=)1(232t t t -+-=当-2t +1≤0,即t ≥21时,如图7—14,点Q 在y 轴上或第二象限,S (t )为△OP L的面积,直线PQ 的方程为y -t =-t1(x -1),令x =0得y =t +t 1,点L 的坐标为(0,t +t 1),S △OPL =1)1(21⋅+tt)1(21tt += 所以S (t )=⎪⎪⎩⎪⎪⎨⎧≥+<<-+-21 )1(21210 )1(232t t t t t t t(2)当0<t <21时,对于任何0<t 1<t 2<21,有S (t 1)-S (t 2)=2(t 2-t 1)[1-(t 1+t 2)+(t 12+t 1t 2+t 22)]>0,即S (t 1)> S (t 2),所以S (t )在区间(0,21)内是减函数.当t ≥21时,对于任何21≤t 1≤t 2,有S (t 1)-S (t 2)=21(t 1-t 2)(1-211t t ), 所以若21≤t 1≤t 2≤1时,S (t 1)>S (t 2);若1≤t 1≤t 2时,S (t 1)<S (t 2),所以S (t )在区间[21,1]上是减函数,在区间[1,+∞)内是增函数,由2[121+(21)2-(21)3]=45=S (21)以及上面的证明过程可得,对于任何0<t 1<21≤t 2<1,S (t 2)<45≤S (t 1),于是S (t )的单调区间分别为(0,1]及[1,+∞),且S (t )在(0,1]内是减函数,在[1,+∞)内是增函数.49.解:如图7—15,设直线MN 切圆于N ,则动点M 组成的集合是:P ={M ||MN |=λ|MQ |},(λ>0为常数)因为圆的半径|ON |=1,所以|MN |2=|MO |2-|ON |2=|MO |2-1. 设点M 的坐标为(x ,y ),则2222)2(1y x y x +-=-+λ整理得(λ2-1)(x 2+y 2)-4λ2x +(1+4λ2)=0当λ=1时,方程化为x =45,它表示一条直线,该直线与x 轴垂直,交x 轴于点(45,0);当λ≠1时,方程化为(x -1222-λλ)2+y 2=)1(3122-+λλ它表示圆心在(1222-λλ,0),半径为|1|3122-+λλ的圆.评述:本题考查曲线与方程的关系、轨迹的概念等解析几何的基本思想以及综合运用知识的能力.●命题趋向与应试策略在近十年的高考中,对本章内容的考查主要分两部分:(1)以选择题题型考查本章的基本概念和性质,此类题一般难度不大,但每年必考,考查内容主要有以下几类:①与本章概念(倾斜角、斜率、夹角、距离、平行与垂直、线性规划等)有关的问题; ②对称问题(包括关于点对称,关于直线对称)要熟记解法;③与圆的位置有关的问题,其常规方法是研究圆心到直线的距离.(2)以解答题考查直线与圆锥曲线的位置关系,此类题综合性比较强,难度也较大. 预计在今后一、二年内,高考对本章的考查会保持相对稳定,即在题型、题量、难度、重点考查内容等方面不会有太大的变化.本章内容在高考中处于比较稳定状态,复习时应注意以下几点:1.抓好“三基”,把握重点,重视低、中档题的复习,确保选择题的成功率本章所涉及到的知识都是平面解析几何中最基础的内容.它们渗透到平面解析几何的各个部分,正是它们构成了解析几何问题的基础,又是解决这些问题的重要工具之一.这就要求我们必须重视对“三基”的学习和掌握,重视基础知识之间的内在联系,注意基本方法的相互配合,注意平面几何知识在解析几何中的应用,注重挖掘基础知识的能力因素,提高通性通法的熟练程度,着眼于低、中档题的顺利解决.2.在解答有关直线的问题时,应特别注意的几个方面(1)在确定直线的斜率、倾斜角时,首先要注意斜率存在的条件,其次要注意倾角的范围.(2)在利用直线的截距式解题时,要注意防止由于“零截距”造成丢解的情况.如题目条件中出现直线在两坐标轴上的“截距相等”“截距互为相反数”“在一坐标轴上的截距是另一坐标轴上的截距的m 倍(m >0)”等时,采用截距式就会出现“零截距”,从而丢解.此时最好采用点斜式或斜截式求解.(3)在利用直线的点斜式、斜截式解题时,要注意防止由于“无斜率”,从而造成丢解.如在求过圆外一点的圆的切线方程时或讨论直线与圆锥曲线的位置关系时,或讨论两直线的平行、垂直的位置关系时,一般要分直线有无斜率两种情况进行讨论.(4)要学会变形使用两点间的距离公式求直线l 上两点(x 1,y 1),(x 2,y 2)的距离时,一般使用d =212212)()(y y x x -+-;当已知直线l 的斜率k 时,可以将上述公式变形为|csc ||||sec |||||11||1))(1(12121222122212ααy y x x y y kx x k x x k d -=-=-+=-+=-+= (其中α为直线l 的倾斜角)特别地,当求直线l 被圆锥曲线所截得的弦长时,把直线的方程代入圆锥曲线的方程,整理成关于x 或y 的一元二次方程时,一是要充分考虑到“Δ≥0”的限制条件,二要注意运用韦达定理的转化作用,充分体现“设而不求法”的妙用.(5)灵活运用定比分点公式、中点坐标公式,在解决有关分割问题、对称问题时可以简化运算.掌握对称问题的四种基本类型的解法.即①点关于点对称②直线关于点对称③点关于直线对称④直线关于直线对称.(6)在由两直线的位置关系确定有关字母的值,或讨论直线Ax +By +C =0中各系数间的关系和直线所在直角坐标系中的象限等问题时,要充分利用分类讨论、数形结合、特殊值检验等基本的数学方法和思想.(7)理解用二元一次不等式表示平面区域,掌握求线性目标函数在线性约束下的最值问题,即线性规划问题,会求最优解,并注意在代数问题中的应用.3.加强思想方法训练,培养综合能力平面解析几何的核心是坐标法,它需要运用运动变化的观点,运用代数的方法研究几何问题,因此解析几何问题无论从知识上还是研究方法上都要与函数、方程、不等式、三角及平面几何内容相联系.在对本章复习中,应注意培养用坐标法分析问题观点,养成自觉运用运动变化的观点解决问题的能力.加强与正比例函数、一次函数等知识的联系,善于运用函数的观点方法处理直线方程问题.对本章知识的综合上,重点掌握直线方程的四种特殊形式与斜率、截距、已知点等特征量之间的关系,知道了特征量就能准确地写出方程,反之亦然.在平时要经常做这方面的训练.。

第08讲线性规划、直线与圆


公共点,则实数 m的取值范围是___________.
答案: ( ,0) (10, )
4/21
典例精析
例1 (2008山东卷)已知圆的方程为:
x2 y2 6x 8y 0
设该圆内过点(3,5)的最长弦和最短弦分别为AC和 BD,则四边形ABCD的面积为__________.
直线 lBC的方程为:
(b c)x y bc 2 0.
因为AB与圆 O相切,所以
ab 2 1,
(a b)2 1
15/21
得: (a2 1)b2 2ab 3 a2 0.
同理,AC与圆 O相切,得:
(a2 1)c2 2ac 3 a2 0,
x2 y2 2x 4 y 164 0的弦,其中
弦长为整数的共有__条.
【分析】点在圆内,求出最长、最短弦长,确定区间 内整数的个数,从而确定条数.
7/21
【解析】易知圆心坐标为(-1,2),半径13.
过点A(11,2)作弦,圆心到点A的距离为12,
最长弦长即直径为26,
最短弦长为: 2 132 122 10,
所以 b, c是方程
(a2 1)x2 2ax 3 a2 0.

的两根,
所以
b

c

2a 1 a2
,bc

a2 3. 1 a
16/21
代入 lBC 得:
2ax (a2 1) y a2 1 0,
圆心 O到 BC的距离:
d
a2 1

4a2 (a2 1)2
a2 1 1. (a2 1)2
8/21
典例精析
例2(2008北京卷)过直线 y x上的一点作圆

高考数学直线与圆常用二级结论

高考数学直线与圆常用二级结论1. 直线与圆的公共点直线与圆的公共点常常在高考数学中出现。

当我们给定一条直线和一个圆时,我们要确定直线与圆的公共点,可以利用以下两个定理:定理1:切线定理给定一条直线l与圆l,如果直线l与圆l的切点为l,切点处的切线为l1,那么直线l与圆l的公共点数量为1。

定理2:切线与弦定理给定一条直线l与圆l,直线l与圆l有两个交点l、l。

如果直线l的一个端点是圆l的切点l,那么直线l与圆l的公共点数量为2。

2. 相交与平行另一个常见的问题是判断直线和圆的相交情况。

当我们给定一条直线和一个圆时,我们要确定直线和圆之间的关系,可以利用以下两个定理:定理3:相交定理给定一条直线l与圆l,如果直线l不过圆心l,那么直线l 与圆的交点数量为2。

定理4:平行定理给定一条直线l与圆l,如果直线l过圆心l,那么直线l与圆没有公共点。

3. 应用实例实例1:判断直线与圆的位置关系已知直线l=2l+3和圆(l−2)2+(l−1)2=5,判断直线和圆的位置关系。

解:将直线代入圆的方程,得到:(2l+3−2)2+((2l+3)−1)2=5化简得:5l2+20l+15=5继续化简得:l2+4l+3=0将该二次方程配方得:(l+3)(l+1)=0解得:l=−3或l=−1将l的值代入直线的方程,得到对应的l值:当l=−3时,l=2(−3)+3=−3当l=−1时,l=2(−1)+3=1所以,直线与圆存在两个交点,即直线与圆的公共点数量为2。

实例2:判断直线与圆的位置关系已知直线l+l=2和圆(l−2)2+(l−1)2=5,判断直线和圆的位置关系。

解:将直线代入圆的方程,得到:(l+2−2)2+((2−l)−1)2=5化简得:2l2−10l+4=5继续化简得:2l2−10l−1=0判断该二次方程的判别式l=l2−4ll的值:l=(−10)2−4(2)(−1)=120由于判别式l>0,所以直线和圆有两个交点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

06 直线与圆一、选择题1.(安徽10)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( D ) A.[B.(C.[33-D.(33-2.(安徽11)若A 为不等式组002x y y x ≤⎧⎪≥⎨⎪-≤⎩表示的平面区域,则当a 从-2连续变化到1时,动直线x y a += 扫过A 中的那部分区域的面积为 ( C ) A .34B .1C .74D .53.(北京6)若实数x y ,满足1000x y x y x ⎧-+⎪+⎨⎪⎩,,,≥≥≤则2z x y =+的最小值是( A )A .0B .12C .1D .24.(福建10)若实数x 、y 满足10,0,2,x y x x -+≤⎧⎪>⎨⎪≤⎩则y x 的取值范围是( D )A.(0,2)B.(0,2)C.(2,+∞)D.[2,+∞)5.(广东6)经过圆x 2+2x +y 2=0的圆心G ,且与直线x +y =0垂直的直线方程是( C )A .x -y +1=0B .x -y -1=0C .x +y -1=0D .x +y +1=06.(宁夏10)点()P x y ,在直线430x y +=上,且x y ,满足147x y --≤≤,则点P 到坐标原点距离的取值范围是( B ) A .[]05,B .[]010,C .[]510,D .[]515,7.(湖南3)已条变量y x ,满足⎪⎩⎪⎨⎧≤-≤≥,0,2,1y x y x 则y x +的最小值是( C )A .4 B.3 C.2 D.18.(辽宁3)圆221x y +=与直线2y kx =+没有..公共点的充要条件是( B )A.(k ∈ B .(k ∈ C.()k ∈--+ ∞,∞D.()k ∈--+ ∞,∞9.(辽宁9)已知变量x y ,满足约束条件1031010y x y x y x +-⎧⎪--⎨⎪-+⎩≤,≤,≥,则2z x y =+的最大值为( B )A .4B .2C .1D .4-10.(全国Ⅰ10)若直线1x y ab+=与圆221x y +=有公共点,则( D )A .221a b +≤B .221a b +≥C .22111ab+≤ D .2211ab+≥111.(全国Ⅱ3)原点到直线052=-+y x 的距离为( D ) A .1B .3C .2D .512.(全国Ⅱ6) 设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值为( D ) A .2-B .4-C .6-D .8-13.(山东11) 若圆C 的半径为1,圆心在第一象限,且与直线430x y -=和x 轴相切,则该圆的标准方程是( B ) A .227(3)13x y ⎛⎫-+-= ⎪⎝⎭B .22(2)(1)1x y -+-=C .22(1)(3)1x y -+-=D .223(1)12x y ⎛⎫-+-= ⎪⎝⎭14.(上海15)如图,在平面直角坐标系中,Ω是一个与x 轴的正半轴、y 轴的正半轴分别相切于点C 、D 的定圆所围成的区域(含边界),A 、B 、C 、D 是该圆的四等分点.若点()P x y ,、点()P x y ''',满足x x '≤且y y '≥,则称P 优于P '.如果Ω中的点Q 满足:不存在Ω中的其它点优于Q ,那么所有这样的点Q 组成的集合是劣弧( D ) A. ABB . BCC . CD D . DA15.(四川6)直线3y x =绕原点逆时针旋转090,再向右平移1个单位,所得到的直线为( A )x(A)1133y x =-+(B)113y x =-+(C)33y x =- (D)113y x =+16.(天津2) 设变量x y ,满足约束条件012 1.x y x y x y -⎧⎪+⎨⎪+⎩≥,≤,≥则目标函数5z x y =+的最大值为( D ) A .2B .3C .4D .517.(浙江10)若0,0≥≥b a ,且当⎪⎩⎪⎨⎧≤+≥≥1,0,0y x y x 时,恒有1≤+by ax ,则以a ,b 为坐标点(,)P a b 所形成的平面区域的面积等于 ( C )(A )12(B )4π(C )1 (D )2π18.(重庆3)曲线C :cos 1.sin 1x y θθ=-⎧⎨=+⎩(θ为参数)的普通方程为 ( C )(A)(x -1)2+(y +1)2=1 (B) (x +1)2+(y +1)2=1 (C) (x -1)2+(y -1)2=1(D) (x -1)2+(y -1)2=119.(重庆4)若点P 分有向线段AB 所成的比为-13,则点B 分有向线段PA 所成的比是( A )(A)-32(B)-12(C)12(D)320.(湖北5).在平面直角坐标系xOy 中,满足不等式组,1x y x ⎧≤⎪⎨⎪⎩ 的点(,)x y 的集合用阴影表示为下列图中的 ( C )21.(陕西5)0y m -+=与圆22220x y x +--=相切,则实数m 等于( A ) A.B.C.-D.-二、填空题 1.(福建14)若直线3x+4y +m =0与圆x 2+y 2-2x +4y +4=0没有公共点,则实数m 的取值范围是 ______________. (,0)(10,)-∞⋃+∞2.(广东12)若变量x ,y 满足240,250,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩则z =3x +2y 的最大值是________.703.(湖南14)将圆122=+y x 沿x 轴正向平移1个单位后所得到圆C ,则圆C 的方程是________,若过点(3,0)的直线l 和圆C 相切,则直线l 的斜率为_____________.22(1)1x y -+=;3±4.(江苏9)在平面直角坐标系中,设三角形ABC 的顶点分别为)0,(),0,(),,0(c C b B a A ,点P (0,p )在线段AO 上(异于端点),设p c b a ,,,均为非零实数,直线CP BP ,分别交AB AC ,于点F E ,,一同学已正确算的OE 的方程:01111=⎪⎪⎭⎫⎝⎛-+⎪⎭⎫⎝⎛-y a p x c b,请你求OF 的方程: ( )011=⎪⎪⎭⎫⎝⎛-+y a p x (11c b -)5.(全国Ⅰ13)若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .96.(山东16) 设x y ,满足约束条件20510000x y x y x y ⎧-+⎪--⎪⎨⎪⎪⎩,,,,≥≤≥≥则2z x y =+的最大值为 .117.(上海11)在平面直角坐标系中,点A B C ,,的坐标分别为(01)(42)(26),,,,,.如果()P x y ,是A B C △围成的区域(含边界)上的点,那么当w xy =取到最大值时,点P 的坐标是 ______ .5,52⎛⎫⎪⎝⎭8.(四川14)已知直线:40l x y -+=与圆()()22:112C x y -+-=, 则C 上各点到l 的距离的最小值为。

9.(天津15) 已知圆C 的圆心与点(21)P -,关于直线1y x =+对称. 直线34110x y +-=与圆C 相交于A B ,两点,且6AB =,则圆C 的方程为 . 10.(重庆15)已知圆C : 22230x y x ay +++-=(a 为实数)上任意一点关于直线l :x -y +2=0的对称点都在圆C 上,则a = .-2 11.12.(湖北15).圆34cos ,()24sin x C y θθθ=+⎧⎨=-+⎩为参数的圆心坐标为 (3,-2),和圆C 关于直线0x y -=对称的圆C ′的普通方程是 . (x +2)2+(y -3)2=16三、解答题1.(宁夏20)(本小题满分12分)已知m ∈R ,直线l :2(1)4m x m y m -+=和圆C :2284160x y x y +-++=.(Ⅰ)求直线l 斜率的取值范围;(Ⅱ)直线l 能否将圆C 分割成弧长的比值为12的两段圆弧?为什么?解:(Ⅰ)直线l 的方程可化为22411m m y x m m =-++,直线l 的斜率21m k m =+, ···························································································· 2分因为21(1)2m m +≤,所以2112m k m =+≤,当且仅当1m =时等号成立.所以,斜率k 的取值范围是1122⎡⎤-⎢⎥⎣⎦,.········································································· 5分(Ⅱ)不能.················································································································ 6分22(1)18x y ++=由(Ⅰ)知l 的方程为(4)y k x =-,其中12k ≤.圆C 的圆心为(42)C -,,半径2r =. 圆心C 到直线l 的距离d =············································································································· 9分由12k ≤,得1d >≥,即2r d >.从而,若l 与圆C 相交,则圆C 截直线l 所得的弦所对的圆心角小于23π.所以l 不能将圆C 分割成弧长的比值为12的两段弧. 12分2.(江苏18)(16分)设平面直角坐标系xoy 中,设二次函数2()2()f x x x b x R =++∈的图像与两坐标轴有三个交点,经过这三个交点的圆记为C 。

相关文档
最新文档