抗菌医药左氧氟沙星在有机电致发光二极管中的应用

合集下载

左氧氟沙星的研究报告

左氧氟沙星的研究报告

左氧氟沙星的研究报告左氧氟沙星的研究报告(1)近年来,随着细菌耐药性的不断增强,寻找新的抗菌药物成为了科研人员的重要任务。

左氧氟沙星作为一种广谱抗菌药物,被广泛应用于临床治疗。

本文将对左氧氟沙星的化学成分、药理作用以及临床应用进行探讨。

首先,左氧氟沙星是一种喹诺酮类抗菌药物,化学名为(±)-9-氟-3-羟基-2-氧代-10(2,8,9三甲基-6-氨基-10-氟喹诺[3,2-a]吡啶-4-羧酸酯。

它的化学结构具有两个光学异构体,分别为左旋体和右旋体,但临床上常使用的是左旋体。

左氧氟沙星在人体内通过抑制DNA旋转酶从而阻碍DNA双链合成,进而抑制细菌的增殖。

其次,左氧氟沙星具有广谱的抗菌活性,对多种革兰阳性和革兰阴性菌均有较好的杀菌效果。

其作用机制主要是通过与细菌DNA结合,阻断DNA复制和转录过程,从而使细菌无法进行正常代谢和增殖。

此外,左氧氟沙星还能抑制细菌的DNA修复机制,增加了其对细菌的杀菌效果。

这些独特的药理作用使得左氧氟沙星成为广泛应用于呼吸道感染、泌尿系统感染等临床治疗的首选用药之一。

左氧氟沙星的临床应用还包括消化道感染、性传播感染等多种疾病的治疗。

例如,左氧氟沙星在治疗胃肠道感染中起到了积极的作用。

它能迅速杀灭引起感染的细菌,缩短疾病的病程,并减少了并发症的发生。

此外,左氧氟沙星还可用于治疗性传播感染,如淋病等。

利用其广谱的抗菌活性,左氧氟沙星能有效杀灭感染的细菌,帮助患者恢复健康。

总之,左氧氟沙星作为一种广谱抗菌药物,具有较好的药理作用和临床应用价值。

因此,在合适的条件下,合理使用左氧氟沙星是治疗各类感染疾病的重要手段之一。

左氧氟沙星的研究报告(2)然而,尽管左氧氟沙星作为一种广泛使用的抗菌药物,但其应用中也存在一些潜在的风险和注意事项。

首先,左氧氟沙星的长期使用可能导致细菌对其产生耐药性。

这是由于抗菌药物的滥用和不适当使用导致的,因此,在使用左氧氟沙星时应遵循医嘱,避免滥用和过量使用。

盐酸左氧氟沙星的临床应用探究

盐酸左氧氟沙星的临床应用探究
( 2 ) : 1 1 0 .
甲 氨蝶呤是一种二氢叶酸还原酶抑制剂 ,通过抑制 嘌呤合成而阻断 中性粒细 胞趋化过程和 炎性 因子释放 ,改善骨质破坏 。来氟米特 是一 种免疫抑 制剂 ,在 胃肠黏 膜吸收后 经黏膜和肝代谢产 生活性产 物 ,抑 制蛋 白酷 氨酸激酶和 嘧啶从头生物合 成途径 中的二氢 乳清酸脱氢酶 的 活性 ,从而发挥抗炎作用 。沙利度胺是谷氨酸的一种衍生物 ,可以通 过抑制碱性成 纤维细胞 因子 ( b F G F )、胰 岛素样生长 因子. 1 等表达 , 抑制血管 新生相关性 内皮粘附分子表 达 ,从而达 到抑 制血管形成 的作 用 ;此外 ,沙利度胺对外周血单核细胞 的促凋亡作用可减 少T N F . o 【 、
染3 3 例 ,皮肤软 组织感染 1 4 例 ,结 核9 例 ,骨 关节感 染5 例 ,其 他感染
表 1 两组患者 关节疼痛 、肿 胀个 数及 晨僵 、E S R 、C R P  ̄ n 性率 比较
表2 两组患 者治疗 效 果比较 【 %( n / n ) ]
实验 组 2 5 . 8 ( 1 6 / 6 2 )3 8 . 7 ( 2 4 / 6 2 )2 4 . 2 ( 1 5 / 6 2 ) 1 1 . 3 ( 7 / 6 2 )8 8 . 7 ( 5 5 / 6 2 ) 对 照组 1 1 . 3 ( 7 / 6 2 )3 3 . 9 ( 2 1 / 6 2 )3 2 . 3 ( 2 0 / 6 2 )2 2 . 6 ( 1 4 / 6 2 )7 1 . 0 ( 4 4 / 6 2 )
P <0 . 0 5 >0 . 0 5 > 0 ห้องสมุดไป่ตู้ 0 5 <0 . 0 5 <0 . O 5
研 究显示 ,两组 患者经过治疗 后症状均得 到一 定程度缓解 ,但实验组

左氧氟沙星的功效与作用

左氧氟沙星的功效与作用

左氧氟沙星的功效与作用左氧氟沙星,作为一种广泛应用的抗菌药物,已经在临床实践中发挥了重要作用。

本文将深入探讨左氧氟沙星的功效、作用机制、适应症以及使用注意事项,帮助读者更全面地了解这一药物。

一、左氧氟沙星的功效左氧氟沙星属于氟喹诺酮类抗生素,具有广谱抗菌作用。

它主要作用于细菌的DNA旋转酶和拓扑异构酶Ⅳ,从而抑制细菌DNA的合成和复制,达到杀菌的目的。

左氧氟沙星的抗菌谱广泛,对革兰氏阳性菌、革兰氏阴性菌以及部分厌氧菌均有良好的抗菌活性,特别是对革兰氏阴性菌的抗菌作用较强。

二、左氧氟沙星的作用1.呼吸系统感染:左氧氟沙星可用于治疗由敏感细菌引起的呼吸系统感染,如急性支气管炎、慢性支气管炎急性发作、肺炎等。

2.泌尿系统感染:左氧氟沙星在泌尿系统感染的治疗中也具有显著疗效,包括肾盂肾炎、复杂性尿路感染等。

3.生殖系统感染:对于由敏感细菌引起的前列腺炎、附睾炎、盆腔炎等生殖系统感染,左氧氟沙星同样具有良好的治疗效果。

4.皮肤软组织感染:左氧氟沙星还可用于治疗由敏感细菌引起的皮肤软组织感染,如蜂窝织炎、脓疱病等。

5.其他感染:此外,左氧氟沙星还可用于治疗肠道感染、腹腔感染、败血症等全身性感染。

三、使用注意事项1.过敏反应:部分患者在使用左氧氟沙星后可能出现过敏反应,如皮疹、瘙痒、呼吸困难等。

一旦出现过敏症状,应立即停药并就医。

2.肝功能损害:长期大量使用左氧氟沙星可能对肝功能造成损害,建议定期监测肝功能。

3.肾功能损害:左氧氟沙星在肾功能不全的患者中需调整剂量,以免加重肾脏负担。

4.孕妇及哺乳期妇女:孕妇及哺乳期妇女在使用左氧氟沙星前应咨询医生,权衡利弊后再决定是否使用。

5.药物相互作用:左氧氟沙星与其他药物可能存在相互作用,如与抗酸药、铁剂等合用时可能影响吸收。

因此,在使用左氧氟沙星期间,如需同时使用其他药物,请务必咨询医生。

四、结语左氧氟沙星作为一种高效、广谱的抗菌药物,在临床应用中具有重要地位。

然而,在使用过程中,我们需关注其可能带来的不良反应和药物相互作用,确保用药安全有效。

盐酸左氧氟沙星

盐酸左氧氟沙星

盐酸左氧氟沙星盐酸左氧氟沙星是一种广谱抗生素,属于氟喹诺酮类药物。

它可以用于治疗多种感染,包括呼吸道感染、尿路感染、皮肤和软组织感染等。

盐酸左氧氟沙星具有快速起效的特点,并且对许多常见的细菌感染具有很高的疗效。

在本文中,我们将对盐酸左氧氟沙星的药理作用、适应症、用法用量、不良反应和注意事项进行详细介绍。

首先,让我们来了解一下盐酸左氧氟沙星的药理作用。

盐酸左氧氟沙星通过抑制细菌DNA代谢酶的活性,从而抑制细菌的生长和繁殖。

它对革兰氏阳性菌和革兰氏阴性菌都具有杀菌作用。

经过吸收后,盐酸左氧氟沙星在体内广泛分布,包括肺组织、尿液、皮肤和软组织等部位,具有较长的半衰期,使得它可以维持治疗浓度的时间较长。

盐酸左氧氟沙星适应症包括呼吸道感染、尿路感染、皮肤和软组织感染等。

对于革兰氏阳性菌和革兰氏阴性菌引起的感染都具有很好的疗效。

在治疗呼吸道感染方面,盐酸左氧氟沙星可以用于治疗细菌性肺炎、慢性支气管炎和鼻窦炎等。

对于尿路感染,盐酸左氧氟沙星可以用于治疗膀胱炎、肾盂肾炎和尿道感染等。

在皮肤和软组织感染方面,它可以用于治疗蜂窝组织炎、疖和脓皮病等。

盐酸左氧氟沙星的用法用量根据病情和患者的特点而定。

一般情况下,成人每日口服剂量为200-400毫克,分2次或3次口服。

对于严重感染或医院获得性肺炎,剂量可以增加到每日800毫克。

对于尿路感染,剂量可以更低,每日100-200毫克即可。

用药时间一般为7-14天,但需要根据具体情况决定是否延长治疗时间。

盐酸左氧氟沙星的不良反应主要包括胃肠道反应、皮肤反应和神经系统反应等。

常见的胃肠道反应包括恶心、呕吐、腹泻和胃不适等。

皮肤反应可表现为皮疹、瘙痒和光敏感等。

少数患者可能会出现头晕、头痛和失眠等神经系统反应。

此外,盐酸左氧氟沙星还可能引起肝功能异常和血液学变化等不良反应。

在使用盐酸左氧氟沙星时,需要注意一些事项。

首先,盐酸左氧氟沙星不适用于对氟喹诺酮类药物过敏的患者。

对于孕妇、哺乳期妇女和儿童,应特别谨慎使用。

左氧氟沙星鉴别方法的原理

左氧氟沙星鉴别方法的原理

左氧氟沙星鉴别方法的原理
左氧氟沙星(Levofloxacin)鉴别方法的原理主要基于药物分子在不同条件下的物理化学特性或化学反应的差异。

以下为常用的左氧氟沙星鉴别方法以及其原理:
1. 紫外光谱法:利用左氧氟沙星在紫外光谱区域(200-400 nm)的最大吸收波长区别其他物质。

左氧氟沙星在波长区域280-285 nm处吸收较强,可以通过测量样品溶液的吸光度与标准品溶液进行比较,从而鉴别左氧氟沙星。

2. 红外光谱法:通过测量左氧氟沙星在红外光谱区域的特征吸收峰,来进行鉴别。

不同的化学物质会在红外光谱中产生不同的吸收峰,因此可以通过比较待测样品与标准品的红外光谱图谱,来判断是否含有左氧氟沙星。

3. 高效液相色谱法:利用左氧氟沙星在特定条件下的保留时间与其他物质进行比较,来进行鉴别。

该方法基于物质在高效液相色谱柱中的相互作用不同,因此根据左氧氟沙星的保留时间能够确定待测样品是否含有该药物。

4. 薄层色谱法:通过将左氧氟沙星与其他物质进行分离,然后根据其在薄层色谱板上的移动距离和颜色变化等特征,来进行鉴别。

薄层色谱法常用于药物或化合物混合物的分离和鉴别。

需要注意的是,以上方法仅介绍了常见的鉴别方法原理,具体实施过程中可能还需要结合不同的实验条件和仪器设备。

同时,为了确保鉴别的准确性,建议在实验中使用标准物质进行对照和比较。

有机电致发光材料的研究进展及应用

有机电致发光材料的研究进展及应用

有机电致发光材料的研究进展及应用材化1111班王蒙 1120213122摘要:简要论述有机电致发光设备的发光机理、器件结构及彩色显示方法,详细介绍有机电致发光材料的种类、组成、特点和研究近况,并对其用途和前景,尤其在军事领域的应用作了一定介绍。

另外还指出了有机电致发光在商业化过程中一些急待解决的问题。

关键词:有机发光材料,进展,应用。

正文:信息技术的持续快速发展对信息显示系统的性能,如亮度、对比度、色彩变化、分辨率、成本、能量消耗、质量和厚度等均提出了高的要求。

在已有的成熟显示技术中,电致发光显示设备能够满足上述性能要求,另外它还具有宽视角、较宽的工作温度范围和固有的强度等优点。

电致发光显示设备一般包括发光二极管(LED)、粉末磷设备、薄膜电致发光设备(TFEL)和厚介质电致发光设备等。

目前的信息显示市场上真正的参与者主要是TFEL和有机LED (OLED)。

OELD技术的发展时间并不很长,但发展速度较快。

近几年,随着市场对高质量、高可靠性、大信息量显示器件的需求日益增加,OLED技术更是得到了长足的发展,目前已有多种OLED产品投入市场。

1997年,日本Pioneer公司推出配备有绿色点阵OLED的车载音响,并建立了世界上第一条OELD生产线。

1998年,日本NEC、Pioneer公司各自研制出5英寸无源驱动全彩色四分之一显示绘图阵列(QVGA)有机发光显示器。

2000年,Motorola公司推出了有机显示屏手机。

2002年,Toshiba公司推出了17英寸的全彩色显示器。

清华大学与北京维信诺公司共同开发出国内首款多色OLED手机模块。

2003年,台湾奇美电子公司与IBM合作推出加英寸的OELD显示器。

2004年5月,日本精工爱普生公司研制成功的40英寸大屏幕OLED显示器以全彩、超薄、动态影像显示流畅的特点成为OELD显示市场上最大的亮点。

2006年,首尔半导体株式会社的子公司SeoulOptodeviceCo.Lid.以控股方式与美国SensorElectronicTechnology公司共同开发生产的世界唯一的短波长紫外发光二极管(UVEL D)产品已开始量产。

有机电致发光二极管

有机电致发光二极管

有机电致发光二极管
1 什么是有机电致发光二极管
有机电致发光二极管(Organic Light Emitting Diode,简称OLED)是一种全新的发光原理,由有机材料层构成,在电场的作用下通过自发光辐射光来实现发光的功能。

其与传统的封闭式发光二极管工作原理不同,具有薄膜体积小、耐热性好、易被电解、寿命长、能效高等特点。

2 OLED特性
OLED相对传统发光技术,具有更灵活的制备条件,特别是不需要安装光源,开放式发光,直接利用有机物或聚合物在电场作用下发出明亮的光,所以有机电致发光二极管具有:
(1)明亮性好:有机电致发光材料的发光强度可以达到高于传统的白光EML管的效果;
(2)薄膜厚度小:有机电致发光的厚度可以比较薄;
(3)色温高:具有高色温发光材料既可以发出白光又有如同太阳一般的自然光;
(4)耐热性好:有机电致发光的耐热性高于传统的发光技术;
(5)寿命长:材料的使用寿命可以达到10万小时以上。

3 应用
有机电致发光二极管应用于新能源、能源改造、汽车产业、航空
航天等领域,可以用作汽车尾灯、便携式电子设备苹果面板,触摸式
智能手机等;医学检测,为医院检查和检验提供高质量的亮度和色彩。

此外,OLED可以用于航空航天技术,尤其是用于太阳能电池,可以有
效的发挥其彩色发光的特性,减少太阳能电池的体积并提高它的可靠
性和可用性。

从以上内容可以看出,有机电致发光二极管具有很多优点,被广
泛应用于科技技术。

未来,OLED将在大量的科技应用领域将会发挥重
要作用。

左氧氟沙星的临床应用

左氧氟沙星的临床应用

左氧氟沙星的临床应用左氧氟沙星具有抗菌谱广、抗菌作用强的特点。

该药物对多种急慢性感染均有良好效果。

临床上左氧氟沙星可与其他药物配伍用于治疗各种疾病。

通过总结左氧氟沙星的研究进展和临床应用,可为临床合理用药提供参考。

标签:左氧氟沙星;临床应用;文献分析;研究进展左氧氟沙星是人工合成的氟喹诺酮类抗菌药,该药物为氧氟沙星的左旋体。

左氧氟沙星抗菌的主要机制是作用于细菌DNA旋转酶,通过抑制细菌旋转酶的活性,阻碍细菌DNA复制起到抗菌作用。

左氧氟沙星口服吸收较快,生物利用度高,用药100mg,1h后血药浓度的峰值能达到1.35mg/L;在扁桃体、胆汁、痰液等组织体液中浓度比较高,血浆半衰期(t1/2)4~6h,24h内80%~85%以原形可由肾脏排出体外[1]。

由于左氧氟沙星抗菌活性较强,所以,临床应用广泛,对敏感菌引起的各种急慢性感染、难治性感染均有良好效果[2],对革兰阳性、革兰阴性临床常见致病菌具有较强的抗菌作用,对衣原体、支原体、军团菌及结核杆菌也有较强的作用。

1呼吸道感染左氧氟沙星对葡萄球菌、肺炎球菌等革兰阳性菌作用增强,其抗菌活性高。

丁连明等[3]用左氧氟沙星治疗呼吸道感染的患者,治疗组61例和对照组56例,包括呼吸道感染、慢性支气管炎急性发作、支气管扩张伴感染、急性气管炎、肺恶性肿瘤伴感染患者。

治疗组用该药物注射液300mg加入5%葡萄糖注射液或0.9%氯化钠注射液250mL静滴,对照组采用头孢哌酮钠2.5g加入5%葡萄糖注射液或0.9%氯化钠注射液250mL静滴,两组用法均为2次/d,疗程为7~10d,治疗期间不使用其他抗菌素。

其结果显示,左氧氟沙星治疗呼吸道感染的有效率可达90.16%,细菌的清除率可达83.33%。

美国胸科学会与感染病学会2005年联合发布的医院获得性肺炎、呼吸机相关性肺炎和医疗保健相关性肺炎治疗指南中指出,初始抗菌药物经验治疗推荐使用左氧氟沙星[4]。

周忠明[5]用阿奇霉素联合左氧氟沙星治疗83例老年下呼吸道感染患者,阿奇霉素0.25g、左氧氟沙星0.3g分别加入250mL0.9%氯化钠注射液中静脉注射,1次/d,连用7~14d,结果显示总有效率为89.2%;表明左氧氟沙星治療呼吸道感染效果良好,可以作为临床治疗呼吸道感染的首选药物。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[Article]物理化学学报(Wuli Huaxue Xuebao )Acta Phys.-Chim.Sin .2015,31(3),552-558MarchReceived:October 27,2014;Revised:January 4,2015;Published on Web:January 5,2015.∗Corresponding authors.WANG Hua,Email:wanghua001@;Tel:+86-136********.JIA Hu-Sheng,Email:jia_husheng@126.con;Tel:+86-351-6014852.The project was supported by the Program for New Century Excellent Talents in University of Ministry of Education of China (NCET-13-0927),International Science &Technology Cooperation Program of China (2012DFR50460),National Natural Science Foundation of China (61307029,21101111),and Shanxi Provincial Key Innovative Research Team in Science and Technology,China (2012041011).教育部新世纪人才计划(NCET-13-0927),科技部国际科技合作专项项目(2012DFR50460),国家自然科学基金(61307029,21101111)和山西省科技创新重点团队项目(2012041011)资助©Editorial office of Acta Physico -Chimica Sinicadoi:10.3866/PKU.WHXB 201501051抗菌医药左氧氟沙星在有机电致发光二极管中的应用苗艳勤1,3高志翔2武钰铃1,3杜晓刚1,3李源浩1,3刘慧慧1,3贾虎生1,4,*王华1,3,*刘旭光5(1太原理工大学新材料界面科学与工程教育部重点实验室,太原030024;2山西大同大学物理与电子科学学院,山西大同037009;3太原理工大学新材料工程技术研究中心,太原030024;4太原理工大学材料科学与工程学院,太原030024;5太原理工大学化学化工学院,太原030024)摘要:左氧氟沙星(LOFX)是一种知名的抗菌药物,它的价格非常便宜,且有成熟的合成和纯化技术.本文中首次将LOFX 作为一种蓝光发光材料和电子传输材料应用于有机电致发光器件(OLED)中.通过热重分析、UV-Vis 吸收光谱、发射光谱以及循环伏安曲线详细地表征了LOFX 的热学及光物理特性.LOFX 有高的分解温度,为327°C;HOMO 、LUMO 能级分别为-6.2和-3.2eV,光学带隙为3.0eV.以LOFX 作为客体材料,掺杂在主体材料4,4'-二(9-咔唑)联苯(CBP)中制备了蓝光OLED,该器件的电致发光(EL)发射峰位于452nm,最大亮度为2315cd ∙m -2.进一步,选择8-羟基喹啉铝(Alq 3)作为参考材料,分别以LOFX 和Alq 3作为电子传输材料制备了结构相同的单载流子器件和绿色磷光OLED.在相同的电压下,以LOFX 作为电子传输材料的单载流子器件的电流密度比以Alq 3作为电子传输材料的单载流子器件更高.同时,以LOFX 作为电子传输材料的绿色磷光OLED 获得更高的器件效率.从这些EL 性能可以看出,LOFX 同时也是一很好的电子传输材料.关键词:有机电致发光器件;左氧氟沙星;蓝光发光材料;电子传输材料;电致发光光谱;电致发光性能中图分类号:O649Antimicrobial Drug Levofloxacin Applied to an OrganicLight-Emitting DiodeMIAO Yan-Qin 1,3GAO Zhi-Xiang 2WU Yu-Ling 1,3DU Xiao-Gang 1,3LI Yuan-Hao 1,3LIU Hui-Hui 1,3JIA Hu-Sheng 1,4,*WANG Hua 1,3,*LIU Xu-Guang 5(1Key Laboratory of Interface Science and Engineering in Advanced Materials,Ministry of Education,Taiyuan University ofTechnology,Taiyuan 030024,P .R.China ;2School of Physical Science and Electronics,Shanxi Datong University,Datong 037009,Shanxi Province,P .R.China ;3Research Center of Advanced Materials Science and Technology,Taiyuan University of Technology,Taiyuan 030024,P .R.China ;4College of Materials Science and Engineering,Taiyuan University of Technology,Taiyuan 030024,P .R.China ;5College of Chemistry and Chemical Engineering,Taiyuan University of Technology,Taiyuan 030024,P .R.China )Abstract:Levofloxacin (LOFX)is a well-known and inexpensive antimicrobial drug that can be easily synthesized and purified.We report the first application of LOFX to an organic light emitting diode (OLED).Its thermal and photophysical properties were thoroughly investigated using thermogravimetric analysis (TGA),UV-Vis absorption spectra,emission spectra,and cyclic voltammetry.LOFX has HOMO and LUMO energies552MIAO Yan-Qin et al.:Antimicrobial Drug Levofloxacin Applied to an Organic Light-Emitting Diode No.31IntroductionOrganic light-emitting diodes(OLEDs)have attracted attention because of applications to full-color flat-panel displays,lighting, and sensor.1-7The fabrication cost is one of the important factors for the mass-production OLED anic materials, which are less-expensive and established in the synthesis and purification technologies,are preferable for the mass production of OLED devices.In our research to find such a material,beyond the field of chemical compounds for conventional light emitting semiconductors,we have extended our attention to a field of medicament and noticed a blue fluorescence emitting antimi-crobial medicament,levofloxacin.Levofloxacin C18H20FN3O4((S)-9-fluoro-2,3-dihydro-3-methyl-10-(4-methylpiperazin-1-yl)-oxo-7H-pyrido[1,2,3-de]-1,4-ben-zoxazine-6-carboxylic acid,called LOFX hereafter)is an oral broad spectrum antibiotic of the fluoroquinolone drug,which is widely used in the treatment of certain bacterial infections in-cluding pneumonia,urinary tract infections,and abdominal in-fections.8-12A blue emission has been reported for LOFX.13The molecular structure is shown in Fig.1.Gunasekaran et al.14have reported that the intense absorption bands from LOFX were observed at323,281,and255nm.The absorption bands which appeared below323nm were confirmed from the photoluminescence excitation(PLE)spectra of LOFX in solution,which contain the330and286nm PLE bands corre-sponding to the323and281nm absorption bands,respectively.13 Here,the286nm band is attributed toπ-π*transition,while the 330nm band to the n-π*transition.14Although the infrared vibrational,UV-Vis absorption,photolu-minescence(PL),and PLE spectra have been reported for LOFX,13,14the optical properties have not fully established yet.Its application to OLED has never been examined.In the present paper,we report the detailed optical properties of LOFX and the possibility of application to OLED materials.Here,we investigate the physical properties(spectroscopic properties,electronic energy levels,and thermal stability)of LOFX,and fabricate three types of OLEDs,which are named as blue-light Device series-B,electron-only Device series-E,and green-light Device series-G,to examine whether LOFX is useful as OLED materials such as blue emitter and electron transporter. Molecular structures of all materials involved in this paper are shown in Fig.1.Schematic device structures and the energy levels of functional materials used in this work are shown in Fig.2.2Experimental detailsLOFX was purchased from J&K Chemical and other materials involved in devices were purchased from Luminescence Tech-nology Corp.The purity of all materials is>98%and directly used without further purification.The thermogravimetry analysis(TGA)of LOFX was performed in a NETZSCH STA409C TGA system at a ramping rate of10°C∙min-1under an argon flow of10mL∙min-1from room temperature to600°C.The differential scanning calorimetry(DSC)of LOFX was performed in a NETZSCH STA409C TGA system at a ramping rate of10°C∙min-1under an argon flow rate of10mL∙min-1from room temperature to300°C.The UV-Vis absorption spectrum of LOFX aqueous solution(10-5mol∙L-1)was recorded by Hitachi U3900UV-Vis spectrophotometer.The photoluminescence spectrum of LOFX solid powder was measured by Cary Eclipse fluorescence spectrophotometer.The photoluminescence quantum yield(PLQY)of LOFX was measured by a FluoroMax-4fluo-rescence spectrophotometer equipped with an integrating sphere. To examine the highest occupied molecular orbital(HOMO)and the lowest unoccupied molecular orbital(LUMO)energies,the cyclic voltammetry(CV)curve was measured with Autolab/PG STAT302electrochemical workstation in a three-electrode cell containing tetrabutyl perchloric acid amine(TBAP)(0.1mol∙L-1in the mixed solution of acetonitrile and methylene chloride(2:1, molar ratio))as an electrolyte at the scan speed of50mV∙s-1.A platinum wire,a platinum electrode,and a calomel electrode were used as a working electrode,a counter electrode,and a reference electrode,respectively.of-6.2and-3.2eV,respectively,and high molecule decomposition temperature(T d)of327°C.An OLED with a LOFX emitter shows electroluminescence(EL)at452nm and maximum luminance of2315cd∙A-1,which can be used in a white OLED.T o investigate the electron transporting ability of LOFX,an electron-carrier only OLED was made.In addition,a green OLED based on Ir(ppy)3(fac-tris(2-phenylpyridine)iridium)with electron transporting layer of LOFX was made,comparing with that with electron transporting layer of tris(8-hydroxyquinoline)aluminum(Alq3).The former exhibited higher device efficiencies than that of the latter.The results show that LOFX has a higher electron transport ability than Alq3.Key Words:Organic light-emitting diode;Levofloxacin;Blue-light emitting material;Electrontransport material;Electroluminescence spectrum;ElectroluminescenceperformanceFig.1Molecular structures of materials involved in this paper553Acta Phys.-Chim.Sin .2015V ol.31OLEDs with the emission area of 3mm×3mm were fabricated on the pre-patterned indium tin oxide (ITO)glass substrate with sheet resistance of 15Ω∙□-1.ITO substrates were cleaned by ultra-sonication in baths of detergent water,deionized water,and ac-etone for 15min successively,and then blown dry nitrogen and treated with UV ozone for 8min,respectively.Then,the sub-strates were transferred into a vacuum chamber for sequential deposition of all organic functional layers by thermal evaporation below a vacuum of 5×10-4Pa.The deposition rate for organic materials,LiF,and Al were about 0.1,0.01,and 0.6nm ∙s -1,re-spectively.The device performances of OLEDs were character-ized by Keithley 2400source meter combined with Photo Re-search PR655spectrometer simultaneously.All measurements were performed at room temperature in ambient atmosphere without device encapsulation.3Results and discussion3.1Physical properties of LOFXFig.3shows the UV-Vis absorption and PL spectra of LOFX in deionized water.Absorption begins from about 400nm,giving an absorption band with peak at 302nm and a sideband at about 330nm.Much intense band continues from about 230nm.An intense PL band with peak at 445nm is observed.Our absorption spec-trum of LOFX in solution is consistent with the PLE spectrum of LOFX in aqueous solution by Polishchuk et al .13,although our PL spectrum is shifted from 485.3nm 13to 445nm.However,our absorption spectrum is not consistent with the absorption spec-trum by Gunasekaran et al .14who observed an absorption band at 400nm.It seems that the 400nm band is due to an aggregate.The thermal stability is an important factor for organic elec-troluminescent materials.Fig.4(a)shows the TG and differential thermogravimetry (DTG)curves of LOFX,and Fig.4(b)shows the DSC curves of LOFX.In TG curve,a 5%weight loss was ob-served at 327°C,indicating a high decomposition temperature (T d )and good thermal stability of LOFX.Meanwhile,in DSC curve,LOFX exhibited a high glass transition termperature (T g )of 161°C.The high T g and T d values render LOFX an OLED material capable of forming stable amorphous films through vacuum thermal evaporation and upon heating.15Fig.2Schematic device structures of Device series-B,Device series-E,and Device series-G,and theenergy levels of functional materials used in these devicesThe doping concentration is in mass fraction (w).Fig.3UV-Vis absorption and PL spectra of LOFX in deionized water solution excited at 360nm,compared with theelectroluminescence (EL)spectrum554MIAO Yan-Qin et al .:Antimicrobial Drug Levofloxacin Applied to an Organic Light-Emitting DiodeNo.3Fig.5shows the CV curve of LOFX.From the CV curve,two oxidation peaks at about 1.0and 1.5V can be observed.The oxidation peaks at about 1.0V and the onset oxidation potential at about 0.8V should be ascribed to the oxidation of acetonitrile.And the oxidation peak at about 1.5V and onset oxidation po-tential at about 1.4V should be assigned to the oxidation ofLOFX.There is an empirical equation E HOMO =-(E oxonset +4.8)(eV),where E oxonset stands for the onset potential for oxidation,the po-tential of saturated calomel electrode (SCE)relative to the vacuum level is 4.8eV .16,17Therefore,the HOMO level is -6.2eV for LOFX.From the absorption spectrum of LOFX (see Fig.3),the wavelength of absorption edge (λedge )is above 414nm.The optical gap (E g )was obtained according to the following equation:E g =1240/λedge .18So,the E g of LOFX is 3.0eV ,and E LUMO =E g +E HOMO ,is -3.2eV .Here,the LUMO level of LOFX is lower than that of Alq 3(-3.0eV)but higher than the work function of Al (-4.1eV),indicating that LOFX has an electron transport characteristic.3.2LOFX as blue-light emitting material in OLEDFrom above experimental results,it can be seen that LOFX expresses remarkable blue fluorescence effect,indicates that LOFX has potential application in OLED.Further,we measured the fluorescence quantum yield of LOFX solid powders,pure LOFX film,and CBP doped with 1%LOFX film (in mass frac-tion).The results indicate that CBP doped with 1%LOFX film shows a high PLQY of 12.53%,is higher than those of LOFX solid powders (5.54%)and pure LOFX film (6.25%).It is ex-pected that LOFX is doped into host material to structure high performance device.For identifying it,a series of blue light OLED (Device series-B)(see Fig.2)are fabricated using LOFX as blue emitter with the device configuration of indium tin oxide (ITO)/NPB (40nm)/CBP (10nm)/CBP:w LOFX (30nm)/Bphen (40nm)/LiF (1nm)/Al (200nm),where the concentrations (in w ,mass fraction)of LOFX are changed as 0.5%,0.8%,1.0%,and 2.0%.Here,NPB is N ,N ′-bis-(naphthyl)-N ,N ′-diphenyl-1,1′-bi -phenyl-4,4′-diamine,which is used as hole transport layer (HTL);CBP is 4,4'-bis(carbazol-9-yl)biphenyl,which is used as the ex-citon-block layer;Bphen is 4,7-diphenyl-1,10-phenanthroline,which is used as electron transport layer (ETL).The layer of CBP doped with 1.0%LOFX is a light emitting layer (EML),while LiF and Al are used as electron injection layer (EIL)and cathode,respectively.Fig.6(a)shows the luminance -voltage (L -V )curves of Device series-B with different doping concentrations of LOFX in CBP .As doping concentrations increase from 0.5%to 1%,the maximum luminance of Device series-B increases from 1593cd ∙m -2at 0.5%to 2315cd ∙m -2at 1%.When doping concentration is 2%,the maximum luminance of Device series-B lowers to 736.8cd ∙m -2.Lower doping concentrations limit radioactive recombination on dopant sites and induce in inadequate utilization of excited energy origined form CBP .On the contrary,higher doping concentrations result in serious concentration quenching of LOFX.19So,the optimum doping concentration of LOFX in CBP is determined to be 1.0%.The Device series-B (w =1.0%)exhibited a turn-on volt-age,defined as the voltage measured at 1cd ∙m -2,of around 4.5V and a maximum luminance of 2315cd ∙m -2driven by voltage of 7.5V .Fig.6(b)shows the EL spectra of Device series-B (w =1.0%)driven by various bias voltages,inset is the photograph of Device series-B (w =1.0%)under voltage of 8V .An EL band with emission peak at 452nm due to LOFX is observed clearly when driven voltage is above 6V .The EL band red-shifted by 7nm from the PL band (Fig.3)observed in solution owing to a solid state effect.20From Fig.6(b),it can be seen that no obvious EL band shift was observed by changing the operating voltage.The Device series-B (w =1.0%)emitted a pure blue light withcom-Fig.4(a)TG and DTG curves of LOFX;(b)DSC curve ofLOFXFig.5CV curve of LOFX555Acta Phys.-Chim.Sin .2015V ol.31mission international de l ′eclairage (CIE)1931coordinates coo-rdinates of (0.17,0.14)at 7-10V ,which is close to the National Television System Committee (NTSC)blue standard.21These EL performances indicate that LOFX as blue emitter is useful for OLEDs.3.3LOFX as electron transport material in OLEDFurther,we investigate if LOFX is useful as electron trans-porting material in OLEDs.To check this point,we investigated the current density -voltage characteristic by fabricating an electron-carrier-only OLED (called Device E-2)with structure of ITO/Bphen (30nm)/LOFX (30nm)/Bphen (30nm)/LiF (1nm)/Al (200nm)(see Fig.2).We compare its characteristics with another electron-carrier-only OLED (called Device E-1)based on Alq 3,which is well-known as good electron transporting material.Device E-1has the quite similar layer structure as Device E-2,i.e.,ITO/Bphen (30nm)/Alq 3(30nm)/Bphen (30nm)/LiF (1nm)/Al (200nm)(see Fig.2).The current densities of these two devices are plotted against applied voltage in Fig.7.Device E-2with LOFX has higher current density than Device E-1with Alq 3at the same driving voltage.Device E-2has much lower turn-on voltage than Device E-1.From these results,LOFX is confirmed its su-periority to Alq 3in electron-transporting capability.To further check the electron-transporting superiority of LOFX to Alq 3,we fabricate two green-emitting OLEDs with Ir(ppy)3((fac-tris(2-phenylpyridine)iridium)emitter (Devices G-1and G-2).Devices G-1and G-2have the same structure except ETL layer,i.e.,ITO/NPB (40nm)/BP:Ir(ppy)3(8%,30nm)/Bphen (10nm)/Alq 3or LOFX (20nm)/Bphen (10nm)/LiF (1nm)/Al (200nm)(see Fig.2),respectively,where NPB is used as HTL,CBP:Ir(ppy)3complex)as EML,and Bphen adjacent to LiF as EIL.Fig.8(a,b,c,d)show the luminance -voltage,current density -voltage,current efficiency -current density,and power efficiency -voltage characteristics of Device G-1with Alq 3and G-2with LOFX,respectively.For Devices G-1and G-2,the turn-on volt-ages are 3.5and 4.0V ,the high luminance of 36267cd ∙m -2at 7.5V and 36600cd ∙m -2at 8.5V ,the maximum current efficiency of 15cd ∙A -1at 47.5mA ∙cm -2and 17.7cd ∙A -1at 16.7mA ∙cm -2,the maximum power efficiency of 8.86lm ∙W -1at 4.5V and 9.96lm ∙W -1at 5.5V ,respectively.The current efficiency is higher at low current densities of 8-200mA ∙cm -2in Device G-2than that in Device G-1(Fig.8(a,c)),and the maximum power efficiency is also higher in Device G-2than that in Device G-1(Fig.8(d)).One of the reasons of higher efficiency of Device G-2than Device G-1is higher electron transport of LOFX than Alq 3.Another reason is that Device G-2blocks holes more efficiently than Alq 3because LOFX has lower HOMO level (-6.2eV)than Alq 3(-5.8eV).Regarding the low operational voltage,Alq 3is superior to LOFX.This is understood by higher electron injection barrier (0.2eV)at LOFX/Bphen interface relative to the barrier (0eV)at Alq 3/Bphen interface,leading to more difficulty to enter electrons from cathode to EML in Device G-2than that in Device G-1.The maximum current efficiency of Device G-2with LOFX is superior to Device G-1with Alq 3.However the efficiency of 17.7cd ∙A -1is smaller than the conventional efficiencies of OLEDs with phosphorescence Ir(ppy)3.For example,Baldo et al .22ob-tained 28cd ∙A -1using an OLED with EML of CBP doped with 6%Ir(ppy)3.To find this reason,we examine the EL spectra of Device G-2carefully by semi-log plotting.As seen in Fig.9,a small EL band appears at about 445nm besides the 510nm EL band due to Ir(ppy)3.We compare the PL spectrum of NPB neat film with the EL spectra (Fig.9).NPB gives PL band with peak at about 445nm,which coincides with the weak band.Therefore the 445nm EL band is attributable to NPB.This indicates that electronsfromFig.6(a)Luminance -voltage (L -V )curves of Device series-B with different doping concentrations of LOFX in CBP;(b)EL spectra of Device series-B (w =1.0%)at various voltageswith CIE coordinatesinset in figure (b):the photograph of Device series-B (w =1.0%)at 8VFig.7Current density -voltage curves of Device E-1and Device E-2556MIAO Yan-Qin et al .:Antimicrobial Drug Levofloxacin Applied to an Organic Light-Emitting DiodeNo.3cathode are leaked to the NPB layer.This leakage is understood from the energy level diagram of Device G-2which shows that the energy gap (0.2eV)of LUMO energy between CBP of EML and NPB of HTL is small (Fig.2).Device G-2is more enhanced the roll-off effect than Device G-1.This is understood as follows.Better electron transportation leads to higher triplet-triplet annihilation and roll-off.23-25It is suggested that the electron injection to EML is better to LOFX layer than to Alq 3layer because of better electron transportation in LOFX layer than in Alq 3layer as mentioned above.This leads to higher electron accumulation in EML with phosphorescent Ir(ppy)3emitter of Device G-2at high current densities than in EML of Device G-1,resulting in stronger roll-off for Device G-2than for Device G-1.In this way,the superior of LOFX electron transportation to Alq 3is confirmed from the roll-off.4ConclusionsTo investigate whether LOFX,well-known as an antimicrobial medicament,is useful as OLED materials such as blue emitter and electron transporter,we have studied the spectroscopic properties,electronic energy levels,thermal stability,electroluminescence,and OLED characteristics.LOFX shows a blue PL band at 446nm,HOMO and LUMO energies of -6.2and -3.2eV ,respec-tively,and high molecule decomposition temperature (T d )at 327°C.The blue OLED with LOFX emitter shows a pure blue emission with a peak at 452nm and a maximum luminance of 2315cd ∙m -2.Further,LOFX is found to be higher in electron-transporting ability than Alq 3,which was obtained using the electron-transport-only device.In the case that LOFX is used as ETL in green emitting OLED with Ir(ppy)3,the maximum current density of 17.7cd ∙A -1and the maximum power efficiency of 9.96lm ∙W -1are obtained,which are higher than 15.0cd ∙A -1and 8.86lm ∙W -1in the OLED with ETL of Alq 3.The current efficiency is lower than the conventional efficiency of OLEDs with Ir(ppy)3.This is attributed to leakage of electrons from EML to HTL of NPB in the present OLED device.From the EL performances,it is suggested that LOFX can act as a desired bifunctional material:not only a pure blue emitter,but also a excellent electron transport material in OLED devices,which is useful forOLEDs.Fig.8(a)Current density -voltage curves,(b)luminance -voltage characteristic,(c)current efficiency -current density curves,and(d)power efficiency -voltage curves of Devices G-1andG-2Fig.9Semi-log plotted EL spectra of Device G-2at various voltages,compared with the PL spectrum of NPBneat film excited at 350nm557Acta Phys.-Chim.Sin.2015V ol.31References(1)Kido,J.;Kimura,M.;Nagai,K.Science1995,267,1332.doi:10.1126/science.267.5202.1332(2)D′Andrade,B.W.;Forrest,S.R.Adv.Mater.2004,16,1585.(3)Yu,S.J.;Suo,F.;Li,W.Z.;Lin,H.;Li,L.;Jiang,Y.D.ActaPhys.-Chim.Sin.2007,23,1821.[于胜军,锁钒,黎威志,林慧,李璐,蒋亚东.物理化学学报,2007,23,1821.]doi:10.3866/PKU.WHXB20071132(4)Shinar,J.;Shinar,R.J.Phys.D:Appl.Phys.2008,41,133001/1.doi:10.1088/0022-3727/41/13/133001(5)Reineke,S.;Lindner,F.;Schwartz,G.;Seidler,N.;Walzer,K.;Lüssem,B.;Leo,K.Nature2009,459,234.doi:10.1038/nature08003(6)Xiao,L.X.;Hu,S.Y.;Kong,S.;Chen,Z.J.;Qu,B.;Gong,Q.H.Acta Phys.-Chim.Sin.2011,27,977.[肖立新,胡双元,孔胜,陈志坚,曲波,龚旗煌.物理化学学报,2011,27,977.]doi:10.3866/PKU.WHXB20110325(7)Chang,Y.L.;Song,Y.;Wang,Z.B.;Helander,M.G.;Qiu,J.;Chai,L.;Liu,Z.W.;Scholes,G.D.;Lu,Z.H.Adv.Funct.Mater.2013,23,705.doi:10.1002/adfm.v23.6(8)Nelson,J.M.;Chiller,T.M.;Powers,J.H.;Angulo,F.J.Clin.Infect.Dis.2007,44,977.doi:10.1086/512369(9)Mandell,L.A.;Wunderink,R.G.;Anzueto,A.Clin.Infect.Dis.2007,44,S27.(10)Solomkin,J.S.;Mazuski,J.E.;Bradley,J.S.Clin.Infect.Dis.2010,50,133.doi:10.1086/648977(11)Chien,S.C.;Wong,F.A.;Fowler,C.L.;Callery-D′Amico,S.V.;Williams,R.R.;Nayak,R.;Chow,A.T.Antimicrob.AgentsChemother.1998,42,4885.(12)Zhang,J.L.;Yang,X.Z.;Han,Y.;Li,W.;Wang,J.K.FluidPhase Equilib.2012,335,1.doi:10.1016/j.fluid.2012.05.027 (13)Polishchuk,A.V.;Karaseva,E.T.;proskurina,N.A.;Karasev,V.E.High Energy Chem.2008,42,459.doi:10.1134/S0018143908060076(14)Gunasekaran,S.;Rajalakshmi,K.;Kumaresan,S.Spectroc.Acta Pt.A-Molec.Biomolec.Spectr.2013,112,351.doi:10.1016/j.saa.2013.04.074(15)Lin,M.S.;Chi,L.C.;Chang,H.W.;Huang,Y.H.;Tien,K.C.;Chen,C.C.;Chang,C.H.;Wu,C.C.;Chaskar,A.;Chou,S.H.;Ting,H.C.;Wong,K.T.;Liu,Y.H.;Chi,Y.J.Chem.Mater.2012,22,870.doi:10.1039/c1jm13323c(16)Pomrnerehne,J.;Vestweber,H.;Gun,W.;Muhrt,R.F.;Basler,H.;Porsch,M.;Daub,J.Adv.Mater.1995,7,551.(17)Zhuang,J.Y.;Su,W.M.;Li,W.F.;Zhou,Y.Y.;Shen,Q.;Zhou,.Electron.2012,13,2210.doi:10.1016/j.orgel.2012.06.025(18)Bredas,J.L.;Silbey,R.;Boudreaux,D.S.;Chance,R.R.J.Am.Chem.Soc.1983,105,6555.doi:10.1021/ja00360a004 (19)Lüssem,B.;Riede,M.;Leo,K.Phys.Status Solidi A2013,210,9.doi:10.1002/pssa.v210.1(20)Bulovic,V.;Deshpande,R.;Thompson,M.E.;Forrest,S.R.Chem.Phys.Lett.1999,308,317.doi:10.1016/S0009-2614(99) 00580-1(21)Kang,G.W.;Ahn,Y.J.;Lim,J.T.;Lee,C.H.Synth.Met.2003,137,987.(22)Baldo,M.;Lamansky,S.;Burrows,P.E.;Thompson,M.E.;Forrest,S.R.Appl.Phys.Lett.1999,75,4.doi:10.1063/1.124258(23)Baldo,M.A.;Adachi,C.;Forrest,S.R.Phys.Rev.B2000,62,10967.doi:10.1103/PhysRevB.62.10967(24)Ern,V.;Merrifield,R.E.Phys.Rev.Lett.1968,21,609.doi:10.1103/PhysRevLett.21.609(25)Kondakova,M.E.;Deaton,J.C.;Pawlik,T.D.;Giesen,D.J.;Kondakov,D.Y.;Young,R.H.;Royster,T.L.;Comfort,D.L.;Shore,J.D.J.Appl.Phys.2010,107,014515/1.doi:10.1063/1.3275053558。

相关文档
最新文档