全国数学建模大赛历年题目分析报告以及参赛成功方法
《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2016年全国大学生数学建模竞赛B题解题分析与总结》篇一一、引言2016年全国大学生数学建模竞赛B题,是一道涉及复杂系统分析与优化的实际问题。
该题目要求参赛者运用数学建模的方法,对给定的问题进行深入分析,并寻求最优解决方案。
本文将对B 题的解题过程进行详细分析,并总结经验教训。
二、题目概述B题主要围绕某大型网络公司的员工分配问题展开。
公司需根据员工的能力、需求以及项目的要求,合理分配员工到各个项目组,以实现公司整体效益的最大化。
该问题涉及到多目标决策、优化算法以及复杂系统分析等多个方面。
三、解题分析1. 问题理解:首先,我们需要对题目进行深入理解,明确问题的背景、目标和约束条件。
在这个阶段,我们需要对员工的能力、需求以及项目的要求进行详细的分析,为后续的建模打下基础。
2. 数学建模:根据问题的特点,我们选择建立多目标决策模型。
模型中,我们将员工的能力、需求以及项目的要求作为决策变量,以公司整体效益作为目标函数。
同时,我们还需要考虑各种约束条件,如员工数量的限制、项目需求的满足等。
3. 算法设计:在建立模型后,我们需要设计合适的算法来求解模型。
在这个阶段,我们选择了遗传算法和模拟退火算法进行求解。
遗传算法能够在大范围内搜索最优解,而模拟退火算法则能够在局部范围内进行精细搜索,两种算法的结合能够更好地求解该问题。
4. 求解与优化:在算法设计完成后,我们开始进行求解与优化。
首先,我们使用遗传算法对模型进行粗略求解,得到一组初步的解决方案。
然后,我们使用模拟退火算法对初步解决方案进行优化,以得到更优的解决方案。
在优化过程中,我们还需要不断调整模型的参数和算法的参数,以获得更好的求解效果。
5. 结果分析:在得到求解结果后,我们需要对结果进行分析。
首先,我们需要对结果进行验证,确保结果的正确性和有效性。
然后,我们需要对结果进行敏感性分析,分析各种因素对结果的影响程度。
最后,我们需要提出一些管理建议和改进措施,以帮助公司更好地解决实际问题。
数学建模竞赛成功经验分享与案例分析

数学建模竞赛成功经验分享与案例分析在数学建模竞赛中,取得成功并非易事。
除了扎实的数学基础和分析能力外,团队合作与沟通、解题思维的总结与拓展、时间管理等方面的因素同样重要。
本文将分享一些数学建模竞赛的成功经验,并分析一些经典的案例。
一、团队合作与沟通在数学建模竞赛中,团队合作和沟通是关键。
合理分工,高效协作可以提高团队整体的工作效率。
团队成员之间需要及时沟通与交流,将个人的想法和观点分享出来,以便找到最佳的解决方案。
同时,团队需要制定明确的计划与目标,并进行有效的组织与调度。
案例分析:在某数学建模竞赛中,一支团队面对一个复杂的实际问题,团队成员通过深入讨论,在共同努力下确定了问题的解决思路,并把该思路转化为数学模型。
通过团队成员之间的合作与沟通,大大提高了解题的效率,并且最终获得了竞赛的好成绩。
二、解题思维的总结与拓展数学建模竞赛中的问题往往是实际问题,需要将问题进行数学化建模,设定适当的假设和变量,确定合适的求解方法。
有效的解题思维总结与拓展是成功的关键。
案例分析:在一场数学建模竞赛中,一支团队面对一个涉及交通拥堵的问题。
他们通过总结以往的经验,提出了一种创新的解题思路:将交通拥堵问题看作流体力学问题,并借鉴计算机模拟技术进行仿真实验。
这种新颖的思路帮助他们从一个全新的角度解决问题,并在竞赛中获得好成绩。
三、时间管理数学建模竞赛的时间限制通常较为紧张,在有限的时间内完成解题过程是一项挑战。
因此,良好的时间管理能力对于竞赛中的成功非常重要。
合理规划时间,掌握解题进度,合理分配时间用于建模、求解和分析是必备的能力。
案例分析:在一场数学建模竞赛中,一支团队遇到了一个非常复杂的优化问题。
经过初步分析后,他们立刻制定了详细的时间安排,明确每个环节所需的时间,并进行了合理分配。
这使得他们能够在有限时间内完成建模和求解,最终取得较好的成绩。
综上所述,数学建模竞赛的成功需要团队合作与沟通、解题思维的总结与拓展、以及良好的时间管理能力。
《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2016年全国大学生数学建模竞赛B题解题分析与总结》篇一一、引言全国大学生数学建模竞赛(CUMCM)是衡量各高校数学类学科学生学习与实践能力的标志性竞赛之一。
其中,B题以真实问题的复杂性吸引了广大参赛选手的关注。
本文将对B题的具体题目内容、解题过程、常见方法和误区进行分析,并结合实例对竞赛结果进行总结,以期为其他参赛同学提供一定的参考。
二、题目分析B题通常关注某一实际领域的复杂问题,涉及多个因素的综合考量。
其要求参赛者通过建立数学模型,解决实际问题。
具体问题包括某个地区的旅游经济预测和资源合理配置。
针对此问题,首先需要对旅游业的各项数据进行详细分析,然后构建适当的数学模型,并使用合适的数学工具和软件进行计算和模拟。
三、解题过程1. 数据收集与分析:收集该地区的历史旅游数据,包括游客数量、消费水平、旅游景点分布等。
同时,分析该地区的经济、文化、交通等影响旅游业的因素。
2. 模型构建:根据收集的数据和实际情况,选择合适的数学模型进行建模。
常见的模型包括时间序列预测模型(如ARIMA 模型)、多元回归模型等。
3. 模型求解与验证:利用数学软件(如MATLAB、SPSS等)对模型进行求解,并对模型的预测结果进行验证。
验证方法包括与历史数据进行对比、进行敏感性分析等。
4. 资源合理配置:根据预测结果和实际情况,制定合理的资源分配方案,如旅游景点的开发策略、交通设施的优化配置等。
四、常见方法与误区1. 常见方法:在建模过程中,应选择合适的数学模型和方法。
对于时间序列预测问题,常用的有ARIMA模型、指数平滑法等;对于多元回归问题,则需要考虑各因素之间的相互关系。
同时,还应充分利用计算机技术进行数据分析和模拟。
2. 误区提示:在建模过程中,要避免陷入一些常见的误区。
例如,过分追求模型的复杂性和精确度而忽视模型的实用性和可解释性;忽视数据的预处理和清洗工作;忽略模型的验证和修正等。
五、实例分析以某次B题竞赛的优秀解决方案为例,详细分析其解题过程和关键点。
《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2016年全国大学生数学建模竞赛B题解题分析与总结》篇一一、引言2016年全国大学生数学建模竞赛(CUMCM)是面向全国各高校学生的大型数学建模类比赛。
在众多赛题中,B题以其复杂的实际问题背景和深入的应用数学知识引起了广泛关注。
本文旨在针对B题的解题过程进行详细分析,并做出相应的总结。
二、题目概述B题主要描述了一个实际生活中遇到的问题:基于网络平台的交通流量预测。
题目要求参赛者根据历史交通流量数据,分析交通流量的变化规律,并建立数学模型进行预测。
三、解题分析1. 数据收集与预处理首先,我们需要收集相关的历史交通流量数据。
这些数据可能包括时间、地点、交通流量等信息。
收集到的原始数据需要进行清洗和预处理,例如去除异常值、缺失值等,以获得更为准确的数据。
2. 建立数学模型根据数据的特点和问题需求,我们选择合适的数学模型进行建模。
考虑到交通流量与时间的关系较为密切,我们可以选择时间序列分析模型,如ARIMA模型等。
此外,考虑到不同地点之间的交通流量可能存在相互影响,我们还可以引入空间相关性分析,如空间自回归模型等。
3. 模型优化与验证建立数学模型后,我们需要对模型进行优化和验证。
这包括调整模型的参数、对模型进行诊断分析等。
我们可以通过对比模型的预测值与实际值,计算误差指标(如均方误差、平均绝对误差等)来评估模型的性能。
同时,我们还可以使用交叉验证等方法来验证模型的稳定性。
4. 模型应用与结果展示最后,我们将建立的数学模型应用于实际问题中,对未来的交通流量进行预测。
我们将预测结果以图表等形式进行展示,方便评委和观众理解。
同时,我们还可以对结果进行解释和讨论,说明模型的优点和局限性。
四、总结通过本文总结:经过详细的分析与探讨,针对2016年全国大学生数学建模竞赛B题,我们采取了有效的解决策略。
从数据收集与预处理到模型建立与优化,每一步都紧密联系实际,充分考虑了交通流量数据的特性和问题需求。
在建模过程中,我们选择了合适的时间序列分析模型和空间相关性分析模型,旨在捕捉交通流量的变化规律。
《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2016年全国大学生数学建模竞赛B题解题分析与总结》篇一一、引言全国大学生数学建模竞赛是具有广泛影响力的学术竞赛活动,旨在培养大学生的创新能力、实践能力和团队协作精神。
本文将针对2016年竞赛中的B题进行详细的解题分析与总结,以期为参赛者提供有益的参考。
二、题目概述B题主要涉及城市空气质量预测问题。
题目要求参赛者根据历史数据,建立数学模型预测未来一段时间内某城市的空气质量指数(AQI)。
此题重点考察参赛者的数据处理能力、模型构建能力以及预测精度。
三、解题分析1. 数据收集与预处理首先,我们需要收集该城市的历史空气质量数据,包括但不限于PM2.5、PM10、SO2、NO2等污染物的浓度数据,以及气象数据(如温度、湿度、风速等)。
对收集到的数据进行清洗,去除异常值和缺失值,并进行归一化处理,以便进行后续分析。
2. 模型构建根据数据的特性,我们选择时间序列分析方法进行建模。
具体而言,可以采用自回归积分滑动平均模型(ARIMA)或其变体如SARIMA等。
这些模型能够较好地捕捉时间序列数据的变化规律,并预测未来趋势。
在建模过程中,我们需要通过交叉验证等方法确定模型的参数。
3. 模型验证与优化建立初步模型后,我们需要用验证集对模型进行验证,计算预测值与实际值之间的误差。
根据误差情况,对模型进行优化,如调整参数、引入其他影响因素等。
同时,我们还可以尝试使用其他模型进行对比,如神经网络、支持向量机等,以找到最优的预测模型。
四、模型应用与结果分析经过优化后的模型可以用于预测未来一段时间内该城市的空气质量指数。
我们可以通过绘制预测曲线、计算预测值的置信区间等方式对预测结果进行分析。
同时,我们还可以根据预测结果提出相应的空气质量改善措施和建议。
五、总结与展望通过对2016年全国大学生数学建模竞赛B题的分析与求解,我们掌握了空气质量预测的基本方法和技巧。
在未来的学习和工作中,我们可以将所学知识应用到更广泛的领域,如气候变化预测、经济预测等。
《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2016年全国大学生数学建模竞赛B题解题分析与总结》篇一一、引言2016年全国大学生数学建模竞赛B题,以其独特的实际应用背景和复杂的数学建模需求,吸引了众多参赛者的关注。
本文旨在分析该题目的解题思路、方法及过程,并总结经验教训,以期为后续参赛者提供参考。
二、题目概述B题主要围绕“空气质量预测与治理”展开,要求参赛者建立数学模型,对某城市的空气质量进行预测,并探讨治理措施的效果。
题目既涉及数学建模的理论知识,又具有实际应用价值。
三、解题分析1. 数据收集与预处理在解题过程中,首先需要收集该城市的历史空气质量数据,包括PM2.5、PM10、SO2、NO2等主要污染物的浓度数据,以及气象数据、交通流量等影响因素数据。
对收集到的数据进行清洗、整理和标准化处理,以便进行后续的建模分析。
2. 模型选择与建立根据题目要求和数据特点,可以选择时间序列分析模型、多元线性回归模型、神经网络模型等。
在建立模型时,需要考虑各种影响因素的相互作用,以及模型的预测精度和泛化能力。
同时,还需要对模型进行参数估计和假设检验,以确保模型的可靠性。
3. 模型应用与验证将建立的模型应用于实际数据,进行空气质量预测。
通过对比预测值与实际值的差异,评估模型的预测精度和效果。
此外,还需要探讨治理措施对空气质量的影响,评估治理措施的效果。
四、解题方法与技巧1. 多角度综合分析在建模过程中,需要从多个角度综合分析问题。
既要考虑空气质量的主要影响因素,又要考虑各因素之间的相互作用;既要关注模型的预测精度,又要考虑模型的泛化能力。
只有综合考虑各种因素,才能建立更加准确、可靠的数学模型。
2. 合理选择模型与方法根据问题的特点和数据的特点,选择合适的模型与方法。
不同的模型与方法有不同的适用范围和优缺点,需要根据实际情况进行选择和调整。
同时,还需要对所选模型与方法进行充分的了解和掌握,以确保建模过程的顺利进行。
3. 注意数据的处理与分析数据是建模的基础,数据的处理与分析对建模的结果具有重要影响。
《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2016年全国大学生数学建模竞赛B题解题分析与总结》篇一一、引言2016年全国大学生数学建模竞赛(以下简称国赛)是中国大学最为盛大的数学建模比赛,汇集了来自全国各高校顶尖的数学建模团队。
在本次比赛中,B题题目独特且挑战性强,使得各队参赛选手展现出了超凡的建模和解决实际问题的能力。
本文旨在深入探讨该题的解题思路与总结,以便于为其他数学建模爱好者提供借鉴和参考。
二、B题概述题目B涉及到了金融领域的风险管理问题,主要考察了参赛选手在金融领域的数学建模和解决问题的能力。
具体来说,题目要求通过构建数学模型来分析不同类型股票之间的价格关系,以及在给定市场条件下如何确定风险阈值并有效地控制投资风险。
三、解题思路(一)明确问题在分析B题时,我们首先明确了题目的要求和目的,确定了对金融领域相关概念和理论的研究方向。
我们认识到这是一个典型的金融风险管理问题,需要运用数学建模的方法来分析股票价格之间的关系以及风险控制策略。
(二)数据收集与处理在收集了相关股票的历史数据后,我们进行了数据清洗和预处理工作,以确保数据的准确性和可靠性。
这包括剔除异常数据、填补缺失值、对数据进行归一化处理等。
(三)构建模型针对题目要求,我们选择了合适的方法和模型来分析股票价格之间的关系。
首先,我们使用相关性分析来探究不同股票之间的价格关系;其次,我们运用回归分析来建立股票价格与风险之间的数学模型;最后,我们利用蒙特卡洛模拟等方法来模拟市场环境并确定风险阈值。
(四)模型验证与优化在构建了数学模型后,我们通过实际数据对模型进行了验证和优化。
我们比较了模型的预测结果与实际市场数据,不断调整模型参数以优化模型的性能。
四、解题方法与技巧(一)熟悉金融领域相关知识在解决B题时,我们需要对金融领域的相关知识有充分的了解,包括股票价格的形成机制、风险控制策略等。
这有助于我们更好地理解题目要求并选择合适的建模方法。
(二)合理选择数学建模方法针对不同的金融问题,我们需要选择合适的数学建模方法。
数学建模国赛最主要的方法和技巧

数学建模国赛最主要的方法和技巧【最新版2篇】篇1 目录一、数学建模国赛的主要方法和技巧1.赛题类型及建模方案2.选题技巧3.组队及分工4.论文写作与表达篇1正文数学建模国赛是一项重要的数学竞赛,它要求参赛者运用数学方法解决实际问题。
要想在这项比赛中取得好成绩,掌握一些方法和技巧是必不可少的。
本文将详细地介绍数学建模国赛的主要方法和技巧。
首先,赛题类型及建模方案是参赛者需要关注的重要方面。
数学建模赛题类型总体来说主要分为评价类、预测类和优化类三种。
其中,优化类问题是最常见的赛题类型,几乎每年国赛美赛等均有出题。
要解决这类问题,参赛者需要掌握一定的优化方法,如线性规划、非线性规划、动态规划等。
对于预测类问题,参赛者需要熟悉时间序列分析、回归分析等预测方法。
评价类问题则需要参赛者熟练运用统计分析、数据挖掘等方法。
其次,选题技巧对参赛者来说也非常重要。
在竞赛中,选题的成功与否往往决定了参赛者能否取得好成绩。
选题不能仅仅根据自己的兴趣或能力去选,而应该分析选这个题的利弊后决定。
选题时要注意找寻题目中的关键信息,判断题目的难易程度,以及预测题目的竞争激烈程度。
再者,组队及分工也是参赛者需要注意的方面。
一个好的团队可以提高参赛者的整体实力。
组队时,最好选择与自己专业相近、兴趣相投的同学,这样可以减少沟通障碍,提高团队协作效率。
在分工方面,参赛者应根据各自特长进行合理分工,确保团队整体实力的最大化。
最后,论文写作与表达也是参赛者需要关注的重要方面。
参赛者需要在规定时间内完成论文的撰写,并将解决方案清晰地表达出来。
为此,参赛者需要提前做好充分的准备,熟悉各类数学方法的应用,掌握论文写作的技巧。
在撰写论文时,参赛者应注意条理清晰、论据充分,确保论文的质量。
总之,数学建模国赛是一项需要综合运用数学方法和技巧的竞赛。
参赛者要想取得好成绩,就需要掌握以上所提到的方法和技巧。
篇2 目录一、数学建模国赛的主要方法和技巧1.评价类赛题的建模方法2.预测类赛题的建模方法3.优化类赛题的建模方法4.选题的技巧5.组队和分工的技巧篇2正文数学建模国赛是一项重要的数学竞赛,它要求参赛者运用数学知识和技能来解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国数学建模大赛历年题目分析以及参赛成功方法数学建模竞赛的赛题分析1. CUMCM历年赛题简析2. “彩票中的数学”问题3. 长江水质的评估、预测与控制问题4. 煤矿瓦斯和煤尘的监测与控制问题5. 其他几个数学建模的问题数学建模竞赛的规模越来越大,水平越来越高;竞赛的水平主要体现在赛题水平;赛题的水平主要体现:(1)综合性、实用性、创新性、即时性等;(2)多种解题方法的创造性、灵活性、开放性等;(3)海量数据的复杂性、数学模型的多样性、求解结果的不唯一性等。
纵览16年的本科组32个题目(专科组13个),从问题的实际意义、解决问题的方法和题型三个方面作一些简单的分析。
一、CUMCM历年赛题的简析1. CUMCM 的历年赛题浏览:1992年:(A)作物生长的施肥效果问题(北理工:叶其孝)(B)化学试验室的实验数据分解问题(复旦:谭永基)1993年:(A)通讯中非线性交调的频率设计问题(北大:谢衷洁)(B)足球甲级联赛排名问题(清华:蔡大用)1994年:(A)山区修建公路的设计造价问题(西电大:何大可)(B)锁具的制造、销售和装箱问题(复旦:谭永基等)1995年:(A)飞机的安全飞行管理调度问题(复旦:谭永基等)(B)天车与冶炼炉的作业调度问题(浙大:刘祥官等)一、CUMCM历年赛题的简析1. CUMCM 的历年赛题浏览:1996年:(A)最优捕鱼策略问题(北师大:刘来福)(B)节水洗衣机的程序设计问题(重大:付鹂)1997年:(A)零件参数优化设计问题(清华:姜启源)(B)金刚石截断切割问题(复旦:谭永基等)1998年:(A)投资的收益和风险问题(浙大:陈淑平)(B)灾情的巡视路线问题(上海海运学院:丁颂康)1999年:(A)自动化机床控制管理问题(北大:孙山泽)(B)地质堪探钻井布局问题(郑州大学:林诒勋)(C)煤矸石堆积问题(太原理工大学:贾晓峰)一、CUMCM历年赛题的简析1. CUMCM 的历年赛题浏览:2000年:(A)DNA序列的分类问题(北工大:孟大志)(B)钢管的订购和运输问题(武大:费甫生)(C)飞越北极问题(复旦:谭永基)(D)空洞探测问题(东北电力学院:关信)2001年:(A)三维血管的重建问题(浙大:汪国昭)(B)公交车的优化调度问题(清华:谭泽光)(C)基金使用计划问题(东南大学:陈恩水)2002年:(A)汽车车灯的优化设计问题(复旦:谭永基等)(B)彩票中的数学问题(信息工程大学:韩中庚)(D) 球队的赛程安排问题(清华大学:姜启源)一、CUMCM历年赛题的简析1. CUMCM 的历年赛题浏览2003年:(A)SARS的传播问题(集体)(B)露天矿生产的车辆安排问题(吉林大:方沛辰)(D)抢渡长江问题(华中农大:殷建肃)2004年:(A)奥运会临时超市网点设计问题(北工大:孟大志)(B)电力市场的输电阻塞管理问题(浙大:刘康生)(C)酒后开车问题(清华大学:姜启源)(D)公务员的招聘问题(信息工程大学:韩中庚)2005年:(A)长江水质的评价与预测问题(信息工大:韩中庚)(B)DVD在线租赁问题(清华大学:谢金星等)(C) 雨量预报方法的评价问题(复旦:谭永基)一、CUMCM历年赛题的简析1. CUMCM 的历年赛题浏览2006年:(A)出版社的资源管理问题(北工大:孟大志)(B)艾滋病疗法的评价及预测问题(天大:边馥萍)(C)易拉罐形状和尺寸的设计问题(北理工:叶其孝)(D)煤矿瓦斯和煤尘的监测与控制问题(信息工程大学:韩中庚)2007年:(A)中国人口增长预测问题(清华大学:唐云)(B)“乘公交,看奥运”问题(吉大:方沛辰,国防科大:吴孟达)(C)“手机套餐”优惠几何问题(信息工程大学:韩中庚)(D)体能测试时间的安排问题(首都师大:刘雨林)一、CUMCM历年赛题的简析一、CUMCM历年赛题的简析1. CUMCM 的历年赛题浏览2001年夏令营三个题:(A)三峡工程高坡开挖优化设计(三峡大学:李建林等)(B)城市交通拥阻的分析与治理(北京理工大学:叶其孝)(C)乳房癌的诊断问题(复旦大学:谭永基)2006年夏令营三个题:(A)教材出版业的市场调查、评估和预测方法问题(北工大:孟大志)(B)铁路大提速下的京沪线列车调度问题(信息工程大学:韩中庚)(C)旅游需求的预测预报问题(北京理工:叶其孝)2、从问题的实际意义分析32个问题从实际意义分析大体上可分为:工业、农业、工程设计、交通运输、经济管理、生物医学和社会事业等七个大类。
工业类:电子通信、机械加工与制造、机械设计与控制等行业,共有8个题,占25%。
农业类:1个题,占3.1%。
工程设计类: 3个题,占9.4%。
交通运输类:4个题,占12.5%经济管理类:5个题,占15.6%生物医学类:5个题,占15.6%社会事业类: 6个题,占18.8%有的问题属于交叉的,或者是边缘的。
一、CUMCM历年赛题的简析3、从问题的解决方法上分析从问题的解决方法上分析,涉及到的数学建模方法:几何理论、组合概率、统计(回归)分析、优化方法(规划)、图论与网络优化、层次分析、插值与拟合、差分方法、微分方程、排队论、模糊数学、随机决策、多目标决策、随机模拟、灰色系统理论、神经网络、时间序列、综合评价、机理分析等方法。
一、CUMCM历年赛题的简析用的最多的方法是优化方法和概率统计的方法.用到优化方法的共有22个题,占总数的68.8%,其中整数规划4个,线性规划6个,非线性规划14个,多目标规划6个。
用到概率统计方法的有16个题,占50%,平均每年至少有一个题目用到概率统计的方法。
用到图论与网络优化方法的问题有6个;用到层次分析方法的问题有3个;3、从问题的解决方法上分析一、CUMCM历年赛题的简析用到插值拟合的问题有6个;用到神经网络的4个;用灰色系统理论的4个;用到时间序列分析的至少2个;用到综合评价方法的至少3个;机理分析方法和随机模拟都多次用到;其他的方法都至少用到一次。
大部分题目都可以用两种以上的方法来解决,即综合性较强的题目有26个,占81.3%。
3、从问题的解决方法上分析一、CUMCM历年赛题的简析4、从问题的题型上分析(1)“即时性”较强的问题有11个,占34.4%:1993B:足球队排名问题;1998B:灾情巡视路线问题;2000A:DNA序列分类问题;2000B:钢管订购与运输问题;2001B:公交车的调度问题;2002B:彩票中的数学问题;2003A:SARS的传播问题;2004A:奥运会临时超市网点设计问题2004B:电力市场的输电阻塞管理问题2005A: 长江水质的评价和预测问题2007B: “乘公交,看奥运”问题一、CUMCM历年赛题的简析什么叫即时性呀?今年的即时性问题是什么?4、从问题的题型上分析(2)理论性较强的问题有12个,占37.5%:04A,94B, 95A,96A,97A,98B,99A,00B,01A,02A,03A,04B;(3)实用性较强的问题有17个,占53.1% :93A,94B, 95B,96B,98B,99B,00B,01A,01B,02B,03A,04B,05A,05B,06A,06B,07B;(4)算法要求强的问题有7个,占21.9% :95A,97B,99B,00A,00B,05B,07B;(5)数据量大的问题有13个,占40.6%:00A,00B,01A,01B,02B,03A,04A,04B,05A,05B.06A,06B,07B一、CUMCM历年赛题的简析5、近几年题目的特点(1)综合性:一题多解,方法融合,结果多样,学科交叉。
(2)开放性:题意的开放性,思路的开放性,方法的开放性,结果的开放性。
(3)实用性:问题和数据来自于实际,解决方法切合于实际,模型和结果可以应用于实际。
(4)即时性:国内外的大事,社会的热点,生活的焦点,近期发生和即将发生被关注的问题。
(5)数据结构的复杂性:数据的真实性,数据的海量性,数据的不完备性,数据的冗余性。
一、CUMCM历年赛题的简析6、近几年题目的剖析(1)2007A:中国人口的增长预测问题题型:属于社会事业问题,主要是利用人口发展方程(离散或连续)预测人口的增长,并分析人口的流动、老龄化等问题的影响。
特点:实用性强、要求分析细致,论文写作水平高。
方法:主题方法是差分方程,或微分方程,加随机模拟(特色)。
结果:不唯一。
一、CUMCM历年赛题的简析题型:属于交通运输管理问题,主要是为了“研制开发公交线路查询系统”研究问题,即包括换乘次数、最佳出行线路的选择模型和算法设计,要保证能满足各种不同乘客的需求。
特点:海量数据、数据结构复杂、综合性和实用性强、开放性较强。
方法:主题方法是优化,包括多目标规划、网络优化、优化求解算法的设计等。
结果:不唯一,但有一定的范围。
一、CUMCM历年赛题的简析(2)2007B:“乘公交,看奥运”问题题型:属于生产管理问题,包括生产资源开发利用和人力资源的合理分配问题,即要考虑经济效益,又要考虑社会效益。
特点:海量数据、数据不完备(冗余)、数据结构复杂、综合性和实用性强、开放性较强。
方法:主题方法是优化,包括线性规划、非线性规划、多目标规划、模糊优化和网络优化等。
结果:不唯一。
一、CUMCM历年赛题的简析(3)2006A:出版社的资源配置问题题型:属于生物医学的管理问题,包括过去治疗方法的评价与未来治疗效果的预测问题。
特点:大数据量、数据的残缺、数据结构较复杂综合性强、实用性和开放性也较强。
方法:主题方法统计回归拟合,其他方法包括线性插值、二次插值、二次和三次曲线拟合方法,结合优化模型实现。
有的用灰色预测、时间序列、模糊评价、神经网络等预测方法都有一定的问题。
结果:不唯一,也不是主要问题。
(4) 2006B:艾滋病疗法的评价及预测问题一、CUMCM历年赛题的简析(5) 2005A:长江水质的评价与预测问题题型:属于社会事业和管理问题,主要包括长江水质现状的评价、未来污染的发展趋势与控制措施等的问题。
特点:数据量大、数据冗余、结构复杂,即时性、综合性、实用性和开放性强。
方法:主题方法数据的处理、综合评价、微分方程、回归拟合、灰色关联分析与预测、时间序列和神经网络等。
结果:不唯一,有些结果在一定的范围和确定的趋势。
一、CUMCM历年赛题的简析(6) 2005B:DVD的在线租赁问题题型:属于经济管理问题,主要包括DVD的采购计划、客户在线订单的处理、DVD的合理分配,以及网站的科学管理等问题。
特点:海量数据、结构复杂,综合性、实用性和开放性强,算法要求强。
方法:主题方法概率统计、大规模随机整数规划(线性或非线性)、网络优化、随机决策分析等。
结果:不唯一,有些结果在一定的范围。