数学建模报告模板

合集下载

数学建模基础实验报告(3篇)

数学建模基础实验报告(3篇)

第1篇一、实验目的本次实验旨在让学生掌握数学建模的基本步骤,学会运用数学知识分析和解决实际问题。

通过本次实验,培养学生主动探索、努力进取的学风,增强学生的应用意识和创新能力,为今后从事科研工作打下初步的基础。

二、实验内容本次实验选取了一道实际问题进行建模与分析,具体如下:题目:某公司想用全行业的销售额作为自变量来预测公司的销售量。

表中给出了1977—1981年公司的销售额和行业销售额的分季度数据(单位:百万元)。

1. 数据准备:将数据整理成表格形式,并输入到计算机中。

2. 数据分析:观察数据分布情况,初步判断是否适合使用线性回归模型进行拟合。

3. 模型建立:利用统计软件(如MATLAB、SPSS等)进行线性回归分析,建立公司销售额对全行业的回归模型。

4. 模型检验:对模型进行检验,包括残差分析、DW检验等,以判断模型的拟合效果。

5. 结果分析:分析模型的拟合效果,并对公司销售量的预测进行评估。

三、实验步骤1. 数据准备将数据整理成表格形式,包括年份、季度、公司销售额和行业销售额。

将数据输入到计算机中,为后续分析做准备。

2. 数据分析观察数据分布情况,绘制散点图,初步判断是否适合使用线性回归模型进行拟合。

3. 模型建立利用统计软件进行线性回归分析,建立公司销售额对全行业的回归模型。

具体步骤如下:(1)选择合适的统计软件,如MATLAB。

(2)输入数据,进行数据预处理。

(3)编写线性回归分析程序,计算回归系数。

(4)输出回归系数、截距等参数。

4. 模型检验对模型进行检验,包括残差分析、DW检验等。

(1)残差分析:计算残差,绘制残差图,观察残差的分布情况。

(2)DW检验:计算DW值,判断随机误差项是否存在自相关性。

5. 结果分析分析模型的拟合效果,并对公司销售量的预测进行评估。

四、实验结果与分析1. 数据分析通过绘制散点图,观察数据分布情况,初步判断数据适合使用线性回归模型进行拟合。

2. 模型建立利用MATLAB进行线性回归分析,得到回归模型如下:公司销售额 = 0.9656 行业销售额 + 0.01143. 模型检验(1)残差分析:绘制残差图,观察残差的分布情况,发现残差基本呈随机分布,说明模型拟合效果较好。

数学建模实验报告

数学建模实验报告

数学建模实验报告一、实验目的1.通过具体的题目实例, 使学生理解数学建模的基本思想和方法, 掌握数学建模分析和解决的基本过程。

2、培养学生主动探索、努力进取的的学风, 增强学生的应用意识和创新能力, 为今后从事科研工作打下初步的基础。

二、实验题目(一)题目一1.题目: 电梯问题有r个人在一楼进入电梯, 楼上有n层。

设每个乘客在任何一层楼出电梯的概率相同, 试建立一个概率模型, 求直到电梯中的乘客下完时, 电梯需停次数的数学期望。

2.问题分析(1)由于每位乘客在任何一层楼出电梯的概率相同, 且各种可能的情况众多且复杂, 难于推导。

所以选择采用计算机模拟的方法, 求得近似结果。

(2)通过增加试验次数, 使近似解越来越接近真实情况。

3.模型建立建立一个n*r的二维随机矩阵, 该矩阵每列元素中只有一个为1, 其余都为0, 这代表每个乘客在对应的楼层下电梯(因为每个乘客只会在某一层下, 故没列只有一个1)。

而每行中1的个数代表在该楼层下的乘客的人数。

再建立一个有n个元素的一位数组, 数组中只有0和1,其中1代表该层有人下, 0代表该层没人下。

例如:给定n=8;r=6(楼8层, 乘了6个人),则建立的二维随机矩阵及与之相关的应建立的一维数组为:m =0 0 1 0 0 01 0 0 0 0 00 0 0 0 0 00 1 0 0 0 00 0 0 0 0 00 0 0 0 0 10 0 0 0 1 00 0 0 1 0 0c = 1 1 0 1 0 1 1 14.解决方法(MATLAB程序代码):n=10;r=10;d=1000;a=0;for l=1:dm=full(sparse(randint(1,r,[1,n]),1:r,1,n,r));c=zeros(n,1);for i=1:nfor j=1:rif m(i,j)==1c(j)=1;break;endcontinue;endends=0;for x=1:nif c(x)==1s=s+1;endcontinue;enda=a+s;enda/d5.实验结果ans = 6.5150 那么, 当楼高11层, 乘坐10人时, 电梯需停次数的数学期望为6.5150。

数学建模实验报告

数学建模实验报告

数学建模实验报告实验报告:数学建模引言:数学建模是一门独特且灵活的学科,它将现实问题转化为数学模型,并利用数学工具和方法来分析和解决这些问题。

通过实践和研究,我们可以发现数学建模在各个领域都有广泛的应用,如物理学、生物学、经济学等。

本实验报告旨在介绍数学建模的基本理论与方法,并展示一个实际问题的建模与求解过程。

一、数学建模的基本理论与方法1.1模型的建立数学建模的第一步是建立数学模型。

一个好的模型应具备以下要素:准确描述问题的前提条件,明确问题的目标,确定可变参数和约束条件,考虑问题的实际需求。

1.2模型的求解模型的求解是数学建模的核心环节。

根据模型的形式和要求,我们可以选择适合的求解方法,如数值方法(如微积分、线性代数等)和符号计算方法(如差分方程、偏微分方程等)等。

1.3模型的分析与验证在模型求解的基础上,我们需要对模型进行分析和验证。

分析主要是从数学角度研究模型的性质和规律,验证则是将模型的结果与实际数据进行比对,以评估模型的准确性和可靠性。

二、实际问题的建模与求解考虑以下实际问题:公司准备推出一款新产品,为了提高产品的市场竞争力,他们决定在一部分商品上采用价格优惠的策略。

为了确定优惠的程度,他们需要建立一个数学模型来分析不同优惠方案的效果,并选择最优的方案。

2.1模型的建立首先,我们需要明确问题的前提条件和目标。

假设该产品的市场价格为P,成本价格为C,单位销售量为Q。

我们的目标是最大化销售利润。

于是,我们可以建立以下数学模型:利润函数:利润=销售额-成本利润=(P-D)*Q-C其中D为优惠的价格折扣。

2.2模型的求解为了确定最优的优惠方案,我们需要将问题转化为一个数学优化问题。

我们可以选用辅助函数法或拉格朗日乘子法来求解最优值。

在这里,我们选择辅助函数法。

我们将利润函数分别对P和D求偏导数,并令其等于0,得到以下方程组:d(利润)/dP=Q-2D=0d(利润)/dD=P-C=0解这个方程组可以求得最优解P=C,D=Q/22.3模型的分析与验证在分析这个模型之前,我们需要验证模型的准确性。

大学数学建模实习报告完整版(内含题、代码、彩图)

大学数学建模实习报告完整版(内含题、代码、彩图)

实验过程:练习题目:(后附有涉及每一类选题详细代码及答案)MATLAB实验训练题1.建立一个命令M文件:求数60、70、80,权数分别为1.1、1.3、1.2的加权平均数.2.编写函数M文件SQRT.M:函数xxf=)(在889.567=x与处的近似值(保留有效数四位).0368.03.用MA TALB计算baba−22的值,其中89.42.3=ba,=.4.用MA TALB计算函数21cossin)(xxxxf−=在3π=x处的值.5.用MA TALB计算函数)1ln(arctan)(++=xxxf在23.1=x处的值.6.用MA TALB计算函数xxf x ln32)(⋅.=在1.2−=x处的值.7.用蓝色、点连线、叉号绘制函数xy2=在上步长为0.1的图象.][0,28.用紫色、叉号、实连线绘制函数10ln+=xy在]15,20[−−上步长为0.2的图象.9.用红色、加号连线、虚线绘制函数⎟.⎞⎜.⎛−22sinπxy在][,1010−上步长为0.2的图象.10.用紫红色、圆圈、点连线绘制函数⎟.⎞⎜.⎛+=32sinπxy在][π0,4上步长为0.2的图象.11.在同一坐标系中,用分别青色、叉号、实连线与红色、星号、虚连线绘制xy3cos=与xy cos3=的图象.12.在同一坐标系中绘制函数,,这三条曲线的图形,并要求用两种方法加各种标注.2xy=3xy=4xy=13.作曲面的3维图象.⎪.⎪⎨.===tztytx sin214.作环面在⎪.⎪⎨.=+=+=uzvuyvux sinsin)cos1(cos)cos1()2,0()2,0(ππ×上的3维图象.15.求极限xx x cos12sinlim0−+→16.求极限xx21031lim⎟.⎞⎜.⎛+→17.求极限31coslim xxx x++∞→18.求极限xx xx211lim⎟.⎞⎜.⎛−+∞→19.求极限xxx x sin2cos1lim0−→20.求极限xxx x−.+→11lim021.求极限212lim22+−+∞→xxxx x+22.求函数的导数xxy arctan)12(5+−23.求函数21tan xxxy+=的导数24.求函数的导数xey x tan3−=25.求函数2sinln22xxyπ+=在1=x的导数26.求函数xxy+−=11的二阶导数27.求函数5423)1()23()1(xxxy++−的导数28.在区间(–1,5)内求函数35)1()(xxxf−的最值.29.在区间(–∞,+∞)内求函数的最值.143)(34+−xxxf30.求不定积分∫−dxxx)sin23(ln31.求不定积分∫xdxe x2sin32.求不定积分∫+dxxxx1arctan33.求不定积分∫−−dxexx x2)cos2(34.计算定积分dxxe x∫+−10)23(35.计算定积分xdxx arccos)1(102∫+36.计算定积分dxxx∫+10)1ln(cos37.计算广义积分dxxx∫∞+∞−++221238.计算广义积分dxex x∫∞+−02答案:一:3、>> s y m s a b>> a = 2 . 3 ; b = 4 . 8 9 ;>> s q r t ( a ^ 2 + b ^ 2 ) / a b s ( a - b ) a n s =2 . 0 8 6 45、>> s y m s x y>> x = 1 . 2 3 ;>> y = a t a n ( x ) + s q r t ( l o g ( x + 1 ) )y =1 . 7 8 3 78、>> x = - 2 0 : 0 . 2 : - 1 5 ; y = l o g ( a b s ( x + 1 0 ) ) ; p l o t ( x , y , ' m x - ' )11>>x = 0 : 0 . 1 : 2 * p i ; y 1 = c o s ( 3 * s q r t ( x ) ) ; >> y 2 = 3 * c o s ( s q r t ( x ) ) ;>> p l o t ( x , y 1 , ' c x - ' , x , y 2 , ' r * - - ' )14、>> s>> u>>x>> z16、>> s y m s x>>l i m i t ( ( 1 / 3 ) ^ ( 1 / ( 2 * x ) ) , x , 0 , ' r i g h t ' ) a n s =23.>> s y m s x y>> y = x * t a n ( x ) / ( 1 + x ^ 2 ) ;>> d i f f ( y )a n s =t a n ( x ) / ( 1 + x ^ 2 ) + x * ( 1 + t a n ( x ) ^ 2 ) / ( 1 + x ^ 2 ) - 2 * x ^ 2 * t a n ( x ) / ( 1 + x ^ 2 ) ^ 228、>> f = ' ( x - 1 ) ^ 3 . * s q r t ( x ^ 5 ) ' ;>> [ x , y ] = f m i n b n d ( f , - 1 , 5 )x =0 . 4 5 4 5y =- 0 . 0 2 2 6>> f = ' - ( x - 1 ) ^ 3 . * s q r t ( x ^ 5 ) ' ; >> [ x , y ] = f m i n b n d ( f , - 1 , 5 )x =5y =- 3 . 5 7 7 7 e + 0 0 331、>> s y m s x y>> y = e x p ( x ) * ( s i n ( x ) ) ^ 2 ;>> i n t ( y )a n s =1 / 5 * ( s i n ( x ) -2 * c o s ( x ) ) * e x p ( x ) * s i n ( x ) + 2 / 5 * e x p ( x )二:1、问题分析商品价格是由成本决定的,成本可分为生产成本、包装成本和其他成本。

数学建模实验报告1、层次分析法

数学建模实验报告1、层次分析法

数学建模实验报告1、层次分析法第一篇:数学建模实验报告1、层次分析法数学建模实验报告一、实验要求柴静的纪录片《穹顶之下》从独立媒体人的角度调查了席卷全国多个省份的雾霾的成因,提出解决的方法有:关停重污染的钢铁厂、提高汽柴油品质、淘汰排放不达标汽车、提高洗煤率等,请仔细观看该纪录片,根据雾霾的成因,选择你认为治理雾霾确实可行的几个方案,并用AHP方法给出这几个主要方案的重要性排序。

二、前期准备1、理解层次分析法(AHP)的原理、作用,掌握其使用方法。

2、观看两遍柴静所拍摄的纪录片《穹顶之下》,选出我认为可较为有效地治理雾霾的几个方法,初步确定各方法的有效性(即权重)。

3、初步拟定三个方案,每个方案中各个治理方法的权重不同。

三、思路&分析1、根据纪录片《穹顶之下》和个人的经验判断给出各个记录雾霾的方法对于治理雾霾的判断矩阵,以及三个不同方案对于五大措施的判断矩阵。

2、了解了AHP的原理后,不难发现MATLAB在其中的作用主要是将判断矩阵转化为因素的权重矩阵。

当然矩阵要通过一致性检验,得到的权重才足够可靠。

3、分别得到准则层对目标层、方案层对准则层的权重之后,进行层次总排序及一致性检验。

得到组合权向量(方案层对目标层)即可确定适用方案。

四、实验过程1、确定层次结构2、构造判断矩阵(1)五大措施对于治理雾霾(准则层对目标层)的判断矩阵(2)三个方案对于五大措施(方案层对准则层)的判断矩阵3、层次单排序及一致性检验该部分在MATLAB中实现,每次进行一致性检验和权向量计算时,步骤相同,输入、输出参数一致。

(虽然输入的矩阵阶数可能不同,但可以不把矩阵阶数作为参数输入,而通过 [n,n]=size(A)来算得阶数。

)因此考虑将这个部分定义为一个函数judge,输入一个矩阵A,打印一致性检验结果和权向量计算结果,并返回权向量、一致性指标CI、平均随机一致性指标RI。

将此脚本存为judge.m,在另一脚本ahp.m 中调用。

数学建模实验报告模板

数学建模实验报告模板
>> xi=-1.45:0.02:7;
>>yi=interp1(x,y,xi);
>>plot(x,y,'ro',xi,yi)
>>subplot(2,3,1)
>>yi=interp1(x,y,xi,');
>>plot(x,y,'ro',xi,yi)
多项式拟合:
>>x=[-0.56 -1.26 0.23 0.48 1.46 4 5.365 7.898];
>>y=[-1.13 -5.55 -5.14 3.23 1.236 2.786 13.15 12.99];
>> p=polyfit(x,y,2)
>>xi=-0.2:0.01:0.3;
>>yi=polyval(p,xi);
p =
-0.0332 2.2294 -1.7495
>> subplot(2,3,3)
二、实验内容
分别用多项式拟合与三次样条插值来处理同一组数据,并附上对比效果图(要求单窗口多子图的形式生成对比图片)
3、实验截图
三、主要代码
三次样条:
>>x=[-0.56 -1.26 0.23 0.48 1.46 4 5.365 7.898];
>>y=[-1.13 -5.55 -5.14 3.23 1.236 2.786 13.15 12.99];
>>yi=polyval(p,xi);
>>plot(x,y,'o',xi,yi,'r')
五、实验心得总结

数学建模实验报告模板

数学建模实验报告模板

数学建模实验报告一、摘要(写出本次作业建模的大致思路、方法及主要结果)根据微积分中熟知的有限覆盖定理,必然存在最小的覆盖,这样就为节约用水而建立优化模型提供了理论依据。

然而我们更需要的是对实际问题有具体指导的结论。

我们假设每个喷水龙头的喷水面积都是固定不变的,要使用水最少,只需浇灌的重复面积最小。

因此我们需要建立这样一个模型,既要使绿地全部被均匀地浇到,又要达到节约水资源的目的;而只有在被重复浇到的绿地面积达到最小时,才能使喷浇节约用水.我们假设在绿地区内可以放置 n 个龙头,每个龙头最大的喷射半径为R 。

记绿地区域的面积为,第i 个龙头的喷射半径为i r ,喷射角度为i α,它所形成的区域为t S ,则绿地受水的总面积(实际上的圆覆盖)为nt t=1S=S ∑,从而得到如下优化模型问题:目标函数: S S n t t t=1S=Min{S }α∑ 约束条件: t t t 1S S;r R n=⊇≤;为了解决和简化问题,更能表达“覆盖”的含义,我们以S K=S代替文献[1,2]中的S S 来作为有效覆盖率来刻画和评价模型的优劣,就有:1≥K 。

K 越接近1,模型就越好,因此用水也就越节约。

我们针对4种不同的几何形状绿地区域的覆盖进行讨论,从而得到了关于它们的有效覆盖率的计算结果。

二、问题重述(写出本次作业的具体内容)城市公共绿地的浇灌是一个长期大量的用水项目。

随着现代城市人们生活质量的提高,美化城市和建设绿色家园的需要,城市绿化带正在扩大,用水量随之不断增大.因此,城市绿化用水的节约是一个十分重要的问题。

目前,对于绿地的浇灌用水主要有移动水车浇灌和安装固定喷水龙头旋转喷浇两种方式。

移动水车主要用于道路两侧狭长绿地的浇灌,固定喷水龙头主要用于公园、校区、广场等观赏性绿地。

观赏性绿地的草根很短,根系寻水性能差,不能蓄水,因此,喷水龙头的喷浇区域要保证对绿地的全面覆盖。

根据观察,绿地喷水龙头分布和喷射半径的设定较大随意性.那么,对于任意绿地,喷浇龙头到底以什么方案设置才最节约用水呢?请建立数学模型分析。

数学建模实验报告

数学建模实验报告

一.圆钢原材料每根长5.5米,现需要ABC三种圆钢材料,长度分别为3.1米,2.1米,1.2米,数量分别为100根,200根,400根,试安排下料方式,使所需圆钢原材料的总数最少。

数学分析:对于一个圆钢原材料的切割方案其实是可以预测的,不外乎有下列的五种分配方案A(3.3)B(2.1)C(1.2)X1 1 1 0X2 1 0 1X3 0 2 1X4 0 1 2X5 0 0 4我们要求的所需要圆钢原材料总数最少其少就是要X1--X5的和最少,可以建立以下的模型:数学模型min=x1+x2+x3+x4+x5X1+x2<=100X1+2*x3+x4<=200X2+x3+2*x4+4*x5<=500在LINGO下的代码为model:min=x1+x2+x3+x4+x5;x1+x2>=100;x1+2*x3+x4>=200;2*x2+x3+2*x4+4*x5>=400;@gin(x1);@gin(x2); @gin(x3);@gin(x4); @gin(x5);End在lingo下的结果为由实验结果可知最小值min=225综述:原材料的总数最少为225二.建设费用问题。

某农场拟修建一批半球壳顶的圆筒形谷仓,计划每座谷仓的容积为200立方米,圆筒半径不得超过3米,高度不得超过10米。

按照造价分析材料,半球壳顶的造价为每平方米150元,圆筒仓壁的建筑的建筑行人为每平方米120元,地坪造价为每平方米50元,试求造价最小的谷仓尺寸应为多少?数学分析:我们只要求出每个面的面积,再乘以对应的造价,就可以得到最后的造价。

数学模型:min=50*pi*R^2+120*2*pi*R*H+150*2*pi*R^2R<=3;H+R<=10;Pi*R^2*H+*pi*R^3*=200Lingo代码min=50*3.14*r*r+120*2*3.14*r*h+150*2*3.14*r*r;r<=3;h+r<=10;3.14*r*r*h+4/3*3.14*r*r*r*(1/2)=200;实验结果为由LINGO产生的结果可知道谷仓尺寸行人最小的为R=3米H=5.07米最小的造价为21369元三. 问题住宅小区服务中心选址:某地新建一个生活住宅区,共有20栋住宅楼。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模报告模板
数学建模报告模板
一、问题描述
1.1 问题背景
在这一部分,对问题的背景进行简要介绍,包括问题的来源、研究的目的等。

1.2 问题的要求
在这一部分,对问题的具体要求进行详细描述,包括需要解决的具体问题、要求的输出等。

二、问题分析
2.1 分析假设
在这一部分,对问题的假设进行说明,包括对问题的简化以及对问题相关的条件进行假设。

2.2 问题模型的建立
在这一部分,对问题的数学模型进行建立,可包括数学符号的定义、变量的表示以及数学关系的表达等。

2.3 模型求解
在这一部分,对问题的数学模型进行求解,可包括使用数学软件进行计算、推导数学公式以及进行数值实验等。

三、结果分析
在这一部分,对模型求解的结果进行分析,包括对结果的解释以及与问题要求的比较等。

四、模型评价
在这一部分,对模型的优缺点进行评价,包括模型的适用范围、假设的合理性以及对问题解决的程度等。

五、结论与展望
在这一部分,对问题的解决进行总结,并对未来进一步研究和改进的方向进行展望。

六、参考文献
在这一部分,列出在报告中引用的参考文献。

注:以上为数学建模报告的基本结构,具体内容可以根据实际情况进行调整和修改。

相关文档
最新文档