数学建模活动研究报告例子

合集下载

数学建模实验报告

数学建模实验报告

湖南城市学院数学与计算科学学院《数学建模》实验报告专业:学号:姓名:指导教师:成绩:年月日目录实验一 初等模型........................................................................ 错误!未定义书签。

实验二 优化模型........................................................................ 错误!未定义书签。

实验三 微分方程模型................................................................ 错误!未定义书签。

实验四 稳定性模型.................................................................... 错误!未定义书签。

实验五 差分方程模型................................................................ 错误!未定义书签。

实验六 离散模型........................................................................ 错误!未定义书签。

实验七 数据处理........................................................................ 错误!未定义书签。

实验八 回归分析模型................................................................ 错误!未定义书签。

实验一 初等模型实验目的:掌握数学建模的基本步骤,会用初等数学知识分析和解决实际问题。

实验内容:A 、B 两题选作一题,撰写实验报告,包括问题分析、模型假设、模型构建、模型求解和结果分析与解释五个步骤。

数学建模实验报告

数学建模实验报告

数学建模实验报告1.流⽔问题问题描述:⼀如下图所⽰的容器装满⽔,上底⾯半径为r=1m,⾼度为H=5m,在下地⾯有⼀⾯积为B0.001m2的⼩圆孔,现在让⽔从⼩孔流出,问⽔什么时候能流完?解题分析:这个问题我们可以采⽤计算机模拟,⼩孔处的⽔流速度为V=sqrt[2*g*h],单位时间从⼩孔流出的⽔的体积为V*B,再根据⼏何关系,求出⽔⾯的⾼度H,时间按每秒步进,记录点(H,t)并画出过⽔⾯⾼度随时间的变化图,当⽔⾯⾼度⼩于0.001m 时,可以近似认为⽔流完了。

程序代码:Methamatic程序代码:运⾏结果:(5)结果分析:计算机仿真可以很直观的表现出所求量之间的关系,从图中我们可以很⽅便的求出要求的值。

但在实际编写程序中,由于是初次接触methamatic 语⾔,对其并不是很熟悉,加上个⼈能⼒有限,所以结果可能不太精确,还请见谅。

2.库存问题问题描述某企业对于某种材料的⽉需求量为随机变量,具有如下表概率分布:每次订货费为500元,每⽉每吨保管费为50元,每⽉每吨货物缺货费为1500元,每吨材料的购价为1000元。

该企业欲采⽤周期性盘点的),(S s 策略来控制库存量,求最佳的s ,S 值。

(注:),(S s 策略指的是若发现存货量少于s 时⽴即订货,将存货补充到S ,使得经济效益最佳。

)问题分析:⽤10000个⽉进⾏模拟,随机产⽣每个⽉需求量的概率,利⽤计算机编程,将各种S 和s 的取值都遍历⼀遍,把每种S,s的组合对应的每⽉花费保存在数组cost数组⾥,并计算出平均⽉花费average,并⽤类answer来记录,最终求出对应的S和s。

程序代码:C++程序代码:#include#include#include#include#define Monthnumber 10000int Need(float x){int ned = 0;//求每个⽉的需求量if(x < 0.05)ned = 50;else if(x < 0.15)ned = 60;else if(x < 0.30)ned = 70;else if(x < 0.55)ned = 80;else if(x < 0.75)ned = 90;else if(x < 0.85)ned = 100;else if(x < 0.95)ned = 110;else ned = 120;return ned;}class A{public:int pS;int ps;float aver;};int main(){A answer;answer.aver=10000000;//int cost[Monthnumber+1]={0}; float average=0;int i;float x;int store[Monthnumber];//srand((int)time(0));for(int n=6;n<=12;n++){// int n=11;int S=10*n;for(int k=5;k{// int k=5;int s=k*10;average=0;int cost[Monthnumber+1]={0};for(i=1;i<=Monthnumber;i++){store[i-1]=S;srand(time(0));x=(float)rand()/RAND_MAX; //产⽣随机数//cout<<" "<//cout<int need=Need(x);if(need>=store[i-1]){cost[i]= 1000*S + (need - store[i-1])*1500 + 500;store[i]=S;}else if(need>=store[i-1]-s){cost[i]=1000*(need+S-store[i-1]) + 50*(store[i-1]-need) + 500; store[i]=S;}else{cost[i]=(store[i-1]-need)*50;store[i]=store[i-1]-need;}average=cost[i]+average;}average=average/Monthnumber;cout<<"n="<cout<<"花费最少时s应该为:"<cout<<"平均每⽉最少花费为:"<}运⾏结果:结果分析:⽤计算机模拟的结果和⽤数学分析的结果有⼀定的差异,由于计算机模拟时采⽤的是随机模型⽽我⽤time函数和rand函数产⽣真随机数,所以在每次的结果上会有所差异,但对于⼀般的⽣产要求亦可以满。

数学建模基础实验报告(3篇)

数学建模基础实验报告(3篇)

第1篇一、实验目的本次实验旨在让学生掌握数学建模的基本步骤,学会运用数学知识分析和解决实际问题。

通过本次实验,培养学生主动探索、努力进取的学风,增强学生的应用意识和创新能力,为今后从事科研工作打下初步的基础。

二、实验内容本次实验选取了一道实际问题进行建模与分析,具体如下:题目:某公司想用全行业的销售额作为自变量来预测公司的销售量。

表中给出了1977—1981年公司的销售额和行业销售额的分季度数据(单位:百万元)。

1. 数据准备:将数据整理成表格形式,并输入到计算机中。

2. 数据分析:观察数据分布情况,初步判断是否适合使用线性回归模型进行拟合。

3. 模型建立:利用统计软件(如MATLAB、SPSS等)进行线性回归分析,建立公司销售额对全行业的回归模型。

4. 模型检验:对模型进行检验,包括残差分析、DW检验等,以判断模型的拟合效果。

5. 结果分析:分析模型的拟合效果,并对公司销售量的预测进行评估。

三、实验步骤1. 数据准备将数据整理成表格形式,包括年份、季度、公司销售额和行业销售额。

将数据输入到计算机中,为后续分析做准备。

2. 数据分析观察数据分布情况,绘制散点图,初步判断是否适合使用线性回归模型进行拟合。

3. 模型建立利用统计软件进行线性回归分析,建立公司销售额对全行业的回归模型。

具体步骤如下:(1)选择合适的统计软件,如MATLAB。

(2)输入数据,进行数据预处理。

(3)编写线性回归分析程序,计算回归系数。

(4)输出回归系数、截距等参数。

4. 模型检验对模型进行检验,包括残差分析、DW检验等。

(1)残差分析:计算残差,绘制残差图,观察残差的分布情况。

(2)DW检验:计算DW值,判断随机误差项是否存在自相关性。

5. 结果分析分析模型的拟合效果,并对公司销售量的预测进行评估。

四、实验结果与分析1. 数据分析通过绘制散点图,观察数据分布情况,初步判断数据适合使用线性回归模型进行拟合。

2. 模型建立利用MATLAB进行线性回归分析,得到回归模型如下:公司销售额 = 0.9656 行业销售额 + 0.01143. 模型检验(1)残差分析:绘制残差图,观察残差的分布情况,发现残差基本呈随机分布,说明模型拟合效果较好。

数学建模实验报告

数学建模实验报告

数学建模实验报告一、实验目的1.通过具体的题目实例, 使学生理解数学建模的基本思想和方法, 掌握数学建模分析和解决的基本过程。

2、培养学生主动探索、努力进取的的学风, 增强学生的应用意识和创新能力, 为今后从事科研工作打下初步的基础。

二、实验题目(一)题目一1.题目: 电梯问题有r个人在一楼进入电梯, 楼上有n层。

设每个乘客在任何一层楼出电梯的概率相同, 试建立一个概率模型, 求直到电梯中的乘客下完时, 电梯需停次数的数学期望。

2.问题分析(1)由于每位乘客在任何一层楼出电梯的概率相同, 且各种可能的情况众多且复杂, 难于推导。

所以选择采用计算机模拟的方法, 求得近似结果。

(2)通过增加试验次数, 使近似解越来越接近真实情况。

3.模型建立建立一个n*r的二维随机矩阵, 该矩阵每列元素中只有一个为1, 其余都为0, 这代表每个乘客在对应的楼层下电梯(因为每个乘客只会在某一层下, 故没列只有一个1)。

而每行中1的个数代表在该楼层下的乘客的人数。

再建立一个有n个元素的一位数组, 数组中只有0和1,其中1代表该层有人下, 0代表该层没人下。

例如:给定n=8;r=6(楼8层, 乘了6个人),则建立的二维随机矩阵及与之相关的应建立的一维数组为:m =0 0 1 0 0 01 0 0 0 0 00 0 0 0 0 00 1 0 0 0 00 0 0 0 0 00 0 0 0 0 10 0 0 0 1 00 0 0 1 0 0c = 1 1 0 1 0 1 1 14.解决方法(MATLAB程序代码):n=10;r=10;d=1000;a=0;for l=1:dm=full(sparse(randint(1,r,[1,n]),1:r,1,n,r));c=zeros(n,1);for i=1:nfor j=1:rif m(i,j)==1c(j)=1;break;endcontinue;endends=0;for x=1:nif c(x)==1s=s+1;endcontinue;enda=a+s;enda/d5.实验结果ans = 6.5150 那么, 当楼高11层, 乘坐10人时, 电梯需停次数的数学期望为6.5150。

数学建模优秀实验报告

数学建模优秀实验报告

一、实验背景与目的随着科学技术的不断发展,数学建模作为一种解决复杂问题的有力工具,在各个领域都得到了广泛应用。

本实验旨在通过数学建模的方法,解决实际问题,提高学生的数学思维能力和解决实际问题的能力。

二、实验内容与步骤1. 实验内容本实验选取了一道具有代表性的实际问题——某城市交通拥堵问题。

通过对该问题的分析,建立数学模型,并利用MATLAB软件进行求解,为政府部门提供决策依据。

2. 实验步骤(1)问题分析首先,对某城市交通拥堵问题进行分析,了解问题的背景、目标及影响因素。

通过查阅相关资料,得知该城市交通拥堵的主要原因是道路容量不足、交通信号灯配时不当、公共交通发展滞后等因素。

(2)模型假设为简化问题,对实际交通系统进行以下假设:1)道路容量恒定,不考虑道路拓宽、扩建等因素;2)交通信号灯配时固定,不考虑实时调整;3)公共交通系统运行正常,不考虑公交车运行时间波动;4)车辆行驶速度恒定,不考虑车辆速度波动。

(3)模型构建根据以上假设,构建以下数学模型:1)道路容量模型:C = f(t),其中C为道路容量,t为时间;2)交通流量模型:Q = f(t),其中Q为交通流量;3)拥堵指数模型:I = f(Q, C),其中I为拥堵指数。

(4)模型求解利用MATLAB软件,对所构建的数学模型进行求解。

通过编程实现以下功能:1)计算道路容量C与时间t的关系;2)计算交通流量Q与时间t的关系;3)计算拥堵指数I与交通流量Q、道路容量C的关系。

(5)结果分析与解释根据求解结果,分析拥堵指数与时间、交通流量、道路容量之间的关系。

针对不同时间段、不同交通流量和不同道路容量,提出相应的解决方案,为政府部门提供决策依据。

三、实验结果与分析1. 结果展示通过MATLAB软件求解,得到以下结果:(1)道路容量C与时间t的关系曲线;(2)交通流量Q与时间t的关系曲线;(3)拥堵指数I与交通流量Q、道路容量C的关系曲线。

2. 结果分析根据求解结果,可以得出以下结论:(1)在高峰时段,道路容量C与时间t的关系曲线呈现下降趋势,说明道路容量在高峰时段不足;(2)在高峰时段,交通流量Q与时间t的关系曲线呈现上升趋势,说明交通流量在高峰时段较大;(3)在高峰时段,拥堵指数I与交通流量Q、道路容量C的关系曲线呈现上升趋势,说明拥堵指数在高峰时段较大。

数学建模实验报告11详解

数学建模实验报告11详解

《数学建模实验》实验报告学号: 姓名:一只小船渡过宽为d 的河流,目标是起点A 正对着的另一岸B 点,已知河水流速v 1与船在静水中的速度v 2之比为k .1.建立小船航线的方程,求其解析解;2.设d =100m,v 1=1m/s,v 2=2m/s ,用数值解法求渡河所需时间、任意时刻小船的位置及航行曲线,作图,并与解析解比较。

一、问题重述我们建立数学模型的任务有:1.由已给定的船速、水速以及河宽求出渡河的轨迹方程;2.已知船速、水速、河宽,求在任意时刻船的位置以及渡船所需要的时间。

二、问题分析此题是一道小船渡河物理应用题,为典型的常微分方程模型,问题中船速、水速、河宽已经给定,由速度、时间、位移的关系,我们容易得到小船的轨迹方程,同时小船的起点和终点已经确定,给我们的常微分方程模型提供了初始条件。

三、模型假设1.假设小船与河水的速度恒为定值21v v 、,不考虑人为因素及各种自然原因;2.小船行驶的路线为连续曲线,起点为A ,终点为B ;3.船在行驶过程中始终向着B 点前进,即船速2v 始终指向B ;4.该段河流为理想直段,水速1v 与河岸始终保持平行。

四、模型建立68.7000 -0.0000 100.000068.8000 -0.0000 100.000068.9000 -0.0000 100.000069.0000 -0.0000 100.0000我们看到,在=t 66.6s 时,小船到达对岸B 。

接下来我们给出小船的t y t x --,图像以及小船的轨迹以及与解析法的比较图像如下图:由第三个图,我们可以看出数值解与解析解图像几乎重合,差别不大。

六、附录:(1)建立m文件boat1.mfunction dx=boat1(t,x)v1=1;v2=2;d=100;dx=[v1-v2*x(1)/sqrt(x(1)^2+(d-x(2))^2);v2*(d-x(2))/sqrt((d-x(2))^2+x(1)^ 2)];end(2)主程序如下:tt=0:0.1:100;x0=[0,0];[t,x]=ode23s(@boat1,tt,x0);%用龙格-库塔方法计算微分;[t,x]figure(1)plot(t,x),gridtitle('xy分位移-时间曲线图');legend('x-t','y-t')figure(2)plot(x(:,1),x(:,2))title('小船轨迹图');Y=0:0.1:100;d=100;v1=1;v2=2;k=v1/v2;X=0.5*d*((1-Y./d).^(1-k)-(1-Y./d).^(1+k));figure(3)plot(X,Y,'r',x(1:100:end,1),x(1:100:end,2),'g')。

数学建模的实验报告

数学建模的实验报告

一、问题路灯照明问题。

在一条20m宽的道路两侧,分别安装了一只2kw和一只3kw的路灯,它们离地面的高度分别为5m和6m。

在漆黑的夜晚,当两只路灯开启时,两只路灯连线的路面上最暗的点和最亮的点在哪里?如果3kw的路灯的高度可以在3m到9m之间变化,如何路面上最暗点的亮度最大?如果两只路灯的高度均可以在3m到9m之间变化,结果又如何?二、数学模型已知P1为2kw的路灯,P2为3kw的路灯,以地面为X轴,路灯P1为Y轴,建立平面直角坐标系。

其中,P1、P2高度分别为h1、h2,水平距离为S=20m。

设有一点Q(x,0),P1、P2分别与其相距R1、R2。

如下图示。

经查阅资料得,光照强度公式为:,设光照强度k=1。

则,两个路灯在Q点的光照强度分别为:2 111 1sin RapI=2222 2sin RapI=其中:R12=h12+x2 R22=h22+(S-x)2则Q点的光照强度I x=I1+I2分别按照题目中的不同要求,带入不同数值,求导,令导数为零,求得极值,进一步分析对比,求得最值。

三、算法与编程1.当h1=5m,h2=6m时:symptoms x yx=0:0.1:20;y=10./sqrt((25.+x.^2)^3)+18./sqrt((36.+(20-x).^2).^3);plot(x,y)grid on;在图中的0-20米范围内可得到路灯在路面照明的最亮点和最暗点①对Ix求导:syms xf=10./sqrt((25.+x.^2)^3)+18./sqrt((36.+(20-x).^2).^3)②运用MATLAB求出极值点s=solve('(-30*x)/((25+x^2)^(5/2))+(54*(20-x))/((36+(20-x)^2)^(5/2))');s1=vpa(s,8)s1 =.28489970e-18.5383043+11.615790*i19.9766969.33829918.5383043-11.615790*i③根据实际要求,x应为正实数,选择19.9767、9.3383、0.02849三个数值,通过MATLAB计算出相应的I值:syms xI=10/(25+x^2)^(3/2)+18/(36+(20-x)^2)^(3/2);subs(I,x,19.9767)subs(I,x,9.3383)subs(I,x,0.02849)ans =0.0845ans =0.0182ans =0.820综上,在19.3米时有最亮点;在9.33米时有最暗点2.当h1=5m,3m<h2<9m时:①对h2求偏导,并令其为0:②运用MATLAB求出极值点solve('3/((h^2+(20-x)^2)^(3/2))-3*(3*h^2)/((h^2+(20-x)^2)^(5/2))=0')ans =20+2^(1/2)*h20-2^(1/2)*h③对x求偏导,并令其为0:④通过MATLAB,将步骤②中计算出的关于h2的表达式带入上式,并求出h2的值;solve('-30*(20-2^(1/2)*h)/((25+(20-2^(1/2)*h)^2)^(5/2))+9*h*(20-(20-2^(1/2)*h))/((h^2+(20-(20-2^(1/2)*h))^2)^(5/2))=0')ans =7.4223928896768612557104509932965⑤通过MATLAB,利用已求得的h2,计算得到x,并进一步计算得到Ih=7.42239;x=20-2^(1/2)*hI=10/((25+x^2)^(3/2))+(3*h)/((h^2+(20-x)^2)^(3/2)) x =9.5032I =0.01863.当h1,h2均在3m-9m之间时:①同上,通过MATLAB求解下面的方程组:solve('p1/(h1^2+x^2)^(3/2)-3*p1*h1^2/(h1^2+x^2)^(5/ 2)')solve('3/((h^2+(20-x)^2)^(3/2))-3*(3*h^2)/((h^2+(20 -x)^2)^(5/2))=0')ans =2^(1/2)*h1-2^(1/2)*h1ans =20+2^(1/2)*h20-2^(1/2)*h②根据实际,选择x=h1,x=20-h2,带入第三个式中,得:③利用MATLAB,求得x值:s=solve('1/((20-x)^3)=2/(3*(x^3))');s1=vpa(s,6)s1 =9.325307.33738+17.0093*i7.33738-17.0093*i④按照实际需求,选择x=9.32525⑤带入求解I,并比较得到亮度最大的最暗点h1=(1/sqrt(2))*9.32525h2=(1/sqrt(2))*(20-9.32525)h1 =6.5939h2 =7.5482四、计算结果1.当h1=5m,h2=6m时:x=9.33m时,为最暗点,I=0.01824393;x=19.97m时,为最亮点,I=0.08447655。

数字应用建模实验报告(3篇)

数字应用建模实验报告(3篇)

第1篇一、实验背景随着信息技术的飞速发展,数字建模在各个领域中的应用越来越广泛。

数字应用建模是将现实世界的复杂问题转化为数学模型,通过计算机模拟和分析,为决策提供科学依据。

本实验旨在通过数字应用建模的方法,解决实际问题,提高学生对数学建模的理解和应用能力。

二、实验目的1. 理解数字应用建模的基本原理和方法;2. 掌握数学建模软件的使用;3. 提高解决实际问题的能力;4. 培养团队合作精神和沟通能力。

三、实验内容1. 实验题目:某城市交通流量优化研究2. 实验背景:随着城市人口的增加,交通拥堵问题日益严重。

为了缓解交通压力,提高城市交通效率,本研究旨在通过数字应用建模方法,优化该城市的交通流量。

3. 实验步骤:(1)数据收集:收集该城市主要道路的实时交通流量数据、道路长度、交叉口数量、道路等级等数据。

(2)建立数学模型:根据交通流量数据,建立交通流量的数学模型,如线性回归模型、多元回归模型等。

(3)模型求解:利用数学建模软件(如MATLAB、Python等)对建立的数学模型进行求解,得到最优交通流量分布。

(4)结果分析:对求解结果进行分析,评估优化后的交通流量分布对缓解交通拥堵的影响。

(5)模型改进:根据分析结果,对模型进行改进,以提高模型的准确性和实用性。

4. 实验结果:(1)通过建立数学模型,得到优化后的交通流量分布。

(2)优化后的交通流量分布较原始分布,道路拥堵程度明显降低,交通效率得到提高。

(3)通过模型改进,进一步优化交通流量分布,提高模型的准确性和实用性。

四、实验总结1. 本实验通过数字应用建模方法,成功解决了某城市交通流量优化问题,提高了交通效率,为城市交通管理提供了科学依据。

2. 在实验过程中,学生掌握了数学建模的基本原理和方法,熟悉了数学建模软件的使用,提高了解决实际问题的能力。

3. 实验过程中,学生学会了团队合作和沟通,提高了自己的综合素质。

五、实验心得1. 数字应用建模是一种解决实际问题的有效方法,通过建立数学模型,可以将复杂问题转化为可操作的解决方案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模活动研究报告例子
数学建模活动研究报告
一、活动背景和目的
为了提高学生的数学建模能力和解决实际问题的能力,学校组织了一次数学建模活动。

本次活动的目的是使学生能够运用自己所学的数学知识和方法,对实际问题进行综合分析和解决,培养他们的创新思维和团队合作精神。

二、活动内容
本次活动的主题是“城市交通规划问题”。

学生们分成若干个小组,每个小组选取一个城市作为研究对象,通过对城市的交通情况进行调查和分析,提出合理的交通规划方案。

三、活动过程
1. 问题调研:学生们在老师的指导下利用各种资源,对自己所选的城市的交通情况进行了全面、深入的调研,了解了城市的道路规划、交通状况、交通流量等方面的情况。

2. 问题分析:学生们对所收集到的各种交通数据进行了整理和分析,分析了现有交通系统的优势和不足之处,探究了影响交通流动的关键因素,并提出了自己的观点和见解。

3. 模型建立:学生们根据问题的要求和自己的思考,建立了相
应的数学模型和计算过程,并利用计算机软件对模型进行了求解和分析。

4. 结果验证:学生们对模型的结果进行了验证和讨论,对未来可能出现的问题和不确定因素进行了预测和评估,并提出了相应的改进意见和方案。

5. 活动总结:学生们对整个活动进行了总结和评价,分享了自己在建模过程中的收获和困惑,提出了对学校未来数学建模活动的建议。

四、活动成果
本次活动的成果丰富多样,每个小组都提出了具体可行的交通规划方案,并通过数学模型得出了相应的数据和结论。

以某小组的成果为例,该小组选取了某城市作为研究对象,通过对该城市的交通情况进行调查和分析,提出了一套完整的交通规划方案。

他们首先分析了该城市目前交通系统的状况和问题,发现城市道路拥堵现象严重,并提出了在交通规划中要加强对公交车和地铁的建设和优化,同时提出鼓励市民选择非机动车出行等措施。

然后,他们建立了相关的数学模型,对交通流量、道路拥堵度等进行了量化分析,并利用计算机软件对模型进行求解和仿真。

最终,他们得出的结果显示,如果该城市按照他们的交通规划方案进行改造和优化,将能够有效缓解交通拥堵,提高交通效率,改善市民的出行体验。

五、活动效果
本次活动不仅提高了学生们的数学建模能力,还培养了他们的创新思维和团队合作精神。

学生们通过实际问题的分析和解决,不仅加深了对数学知识的理解和运用,还提高了自己的问题解决能力和创造力。

同时,活动还激发了学生的学习兴趣和动力,积极参与数学建模活动,展示了自己的才华和成果。

六、活动总结
本次数学建模活动是一次成功的实践,取得了良好的效果。

通过这次活动,学生们提高了数学建模能力,同时也意识到了数学在实际问题中的重要性和应用价值。

活动不仅提高了学生的综合素养和解决问题的能力,还培养了学生的创新思维和团队合作精神。

希望学校能够继续组织类似的数学建模活动,进一步激发学生的学习兴趣和创造力。

相关文档
最新文档