食品酶工程论文

食品酶工程论文
食品酶工程论文

湖南农业大学课程论文

学院:食品科技学院班级:XXXX级食科3班姓名: X X X 学号:XXXXXXXXXXXX 课程论文题目:淀粉酶在食品行业的用途

课程名称:食品酶工程

评阅成绩:

评阅意见:

成绩评定教师签名:

日期:年月日

淀粉酶在食品行业的应用

学生:X X X

(食品科技学院XXXX级食科3班,学号XXXXXXXXXXXXX)

摘要:酶工程是现代生物工程的一个分支,是当今最具有发展前景的学科之一。酶工程工业在我国起步虽晚,但发展很快,从六十年代中期起步,至今短短的三十多年,已初步建成了完整的酶工业,产品已被广泛用于味精、淀粉糖、酿造、啤酒、食品、纺织、洗涤剂、有机酸以及医药等行业。酶制剂的应用,促进了这些行业的发展,反过来人们也逐步认识了酶制剂,促进了酶工业自身的发展。

淀粉酶为重要的酶制剂,是酶制剂中用途最广、用量最大的一种。在食品加工工业中,它用于面包生产中的面团改良;啤酒生产中供糖化及分解未分解的淀粉;婴幼儿食品中用于谷类原料的预处理;酒精生产中用于糖化和分解淀粉;果汁加工中用于淀粉的分解和提高过滤速度。还广泛用于糖浆制造、饴糖生产、蔬菜加工、粉状糊精生产、葡萄糖制造业中。在医药工业可用作辅助消化药。另外,还可用于纺织印染工业。

关键词:淀粉酶食品应用

一、淀粉酶在焙烤食品中的应用

随着人民生活水平的日益提高和食品工业的不断发展,人们对面粉的品种和品质提出了愈来愈高的要求。面粉生产企业为适应市场新的需求,近年来陆续开发生产了各类专用面粉,在生产面包、馒头等制作发酵食品的专用面粉时,除面粉的面筋、灰分、粗细度、粉质曲线稳定时间等常规质量指标外,面粉工作者越来越关注面粉的α—淀粉酶活性。理论与实践表明:面粉的α—淀粉酶活性,直接影响到面粉的发酵力和发酵食品的质量,特别是低糖主食面包。一般情况下,正常季节收获的小麦加工的面粉中α—淀粉酶的含量普遍不足,国外面粉生产企业通常的做法是在生产这类面粉时,添加麦芽粉或真菌α—淀粉酶,用来提高面粉中α—淀粉酶的活性,以改善和提高发酵食品的质量。

麦芽粉是在适当的温度和水分下使大麦或小麦发芽、干燥后加工成粉。其酶活性较低,添加量为面粉的0.2~0.4%,因粘性较大,在实际应用中混合均匀较为困难。而真菌α—淀粉酶是一种高浓度、高活性、易流动的粉末,其酶活性为

麦芽粉的40~50倍,添加量小,操作方便。在美国、英国、加拿大等大多数欧美国家中,真菌α—淀粉酶已完全代替麦芽粉作为面粉α—淀粉酶的增补剂,广泛地添加在面包专用面粉中。近年来,在我国面粉生产企业中,真菌α—淀粉酶已逐步得到推广与应用,并取得了良好的经济与社会效益。

真菌α-淀粉酶对热不稳定,在烘烤的过程中易失活,与葡萄糖淀粉酶可以共同控制产品还原糖的含量,进而影响产品的质量,如颜色等。α-淀粉酶可降低产品黏度,改善产品的加工性能,最终使产品松软,体积增大。焙烤过程中,淀粉胶凝,蛋白质变性形成刚性结构并释放水到淀粉凝胶中去。如果α-淀粉酶活力过高,烘烤过程前期过量淀粉水解,则会导致面包黏性增强,体积较小。真菌α-淀粉酶在75℃时失活,所以不会产生上述情况,会使面包的货架期延长两倍。面包制作中,α-淀粉酶的加入、调粉时间及醒发时间会对面包质量及货架期有一定的影响。研究结果表明:酶的加入会增大面包体积,但加入α-淀粉酶似乎对降低调粉时间和醒发时间无影响。α-淀粉酶不能水解完整的淀粉颗粒。酵母发酵的过程中也依赖于β-淀粉酶产生的还原糖,进而通过美拉德反应产生良好的风味和色泽。

面粉中添加α-淀粉酶可调节麦芽糖的生成量,使二氧化碳产生和面团气体保持力相平衡。添加蛋白酶可促进面筋软化,增加延伸性,减少揉面时间和动力,改善发酵效果。用蛋白酶强化的面粉制通心粉制通心面条,延伸性好,风味佳。用β-淀粉酶强化面粉可防止糕点老化。糕点馅心常以淀粉为填料,添加β-淀粉酶可以改善馅心风味。糕点制作使用转化酶可使蔗糖水解为转化糖,从而防止糖浆析晶。面包制作中适当添加脂肪酶可增进面包的香味,这是因为脂肪酶可使乳脂中微量的醇酸或酮酸的甘油酯分解,从而生成δ-内脂或甲酮等香味物质。

来自米曲霉的α-淀粉酶,可在焙烤、淀粉工业、酒精酿造和果汁工业中按生产需要适量使用。来自淀粉液化杆菌的α-淀粉酶,可在淀粉、酒精、焙烤制品、酿造生产中,按生产需要适量使用。来自地衣芽孢杆菌的α-淀粉酶,可在酿造、酒精、淀粉生产中,按生产需要适量使用。来自枯草芽孢杆菌的α-淀粉酶,可在淀粉、焙烤生产中,按生产需要适量使用。

二、淀粉酶在啤酒行业的用途

啤酒是一种具有独特的苦味和香味﹐营养成分丰富的饮料﹐它含有各种人体所需的氨基酸及多种维生素如维生素B﹐菸酸﹐泛酸以及矿物质等。啤酒的原料为大麦﹑酿造用水﹑酒花﹑酵母以及淀粉质辅助原料(玉米﹑大米﹑大麦﹑小麦等)和糖类辅助原料等。

啤酒生产过程是一个产酶、用酶及灭酶的过程,啤酒酿造中的很多工艺条件都是依据酶的特性来决定的。将现代酶技术与传统啤酒酿造技术相结合,不仅对稳定和提高啤酒质量有益,而且对降低生产成本、弥补麦芽质量缺陷、增加花色品种、增加效益都大有好处。

酶制剂种类很多,功效不一,使用在啤酒生产过程中的工序也不一样,目前啤酒生产常用酶制剂有耐高温α-淀粉酶、糖化酶、蛋白酶、复合酶、α-乙酰乳酸脱羧酶、溶菌酶等。

啤酒制作中的α-淀粉酶,只可作用于淀粉分子内任意α-键,且从分子链的内部进行,故又称内淀粉酶,属于内切酶。在水溶液中α-淀粉酶能使淀粉分子迅速液化,产生较小分子的糊精,故也被称为液化酶。α-淀粉酶作用于直链淀粉,分解产物为6~7个葡萄糖单位的短链糊精及少量的麦芽糖和葡萄糖,糊精还可以进一步水解。按理论最终产物为87%的α-麦芽糖和13%的葡萄糖。α-淀粉酶作用于支链淀粉只能任意水解α-1,4键,但不能分解α-1,6键也不能绕过α-1,6键。作用接近α-1,6键时速度放慢,其分解产物为α-界限糊精、麦芽糖和葡萄糖。常用的α-淀粉酶有耐高温α-淀粉酶, 真菌α-淀粉酶。

啤酒生产中常用的耐高温α-淀粉酶一般由地衣芽孢杆菌产生,pH在5.0~7.0内较稳定,尤以pH=6.0为佳,作用淀粉的最适温度为90℃。中温α-淀粉酶也应用到啤酒生产中。单独使用耐高温α-淀粉酶比单独使用中温α-淀粉酶麦芽糊精收率高,透光率也较大,但黏度较高,将两者结合起来使用则可互相弥补不足,得到很好的效果。在啤酒生产中,α-淀粉酶它会分解淀粉,水解成麦芽糖,麦芽糖又在酵母本身分泌的麦芽糖酶作用下,水解成葡萄糖供酵母利用,从而可提高麦芽汁的可发酵性。而且在糖化过程中,糊化时应用α-淀粉酶,其用量应控制在6单位/克大米就可以达到最佳效果,加量太大,则容易在糖化过程中造成α、β-淀粉酶比例失调,麦汁中非还原糖含量高,造成发酵度低,最终使啤酒口感不爽,有甜腻味。

三、淀粉酶在柠檬酸中的用途

高温α-淀粉酶是诸多酶类中的普通一员,近年来它已被广泛应用于淀粉制糖的诸多行业,特别是我国柠檬酸行业应用最多。

耐高温α-淀粉酶的通性,即它是由活细胞产生的生物催化剂,它和其他催化剂相比,具有专一性、高效率和反应条件温和特点,同时酶本身又是蛋白质,它具有蛋白质一般通用性,如紫外线、热、表面活性剂、重金属盐及酸碱变性剂等也会使酶失活。

耐高温α一淀粉酶的作用底物是淀粉,它在适宜的条件下,可以在淀粉分子内部任意切割α-1,4键,而使淀粉迅速降解,失去粘性,变成麦芽糖、葡萄糖和糊精等,这个过程通常被称之为淀粉的液化。淀粉液化能否合格,是柠檬酸行业的一个重要技术关键。

近年来,耐高温α-淀粉酶问世,绝大多数柠檬酸厂立即以耐高温α-淀粉酶取代中温淀粉酶,其理由是,因为以薯干粉为原料大容量发酵,投料时间长,升温慢,特别是当遇蒸汽不足时,升温更缓,料液pH逐步下降,当酶加入后,底物pH已降至中温α-淀粉酶的适应pH以外,使中温α-淀粉酶由于淀粉酶失活,液化难以彻底而影响发酵。耐高温α-淀粉酶由于适应pH范围宽就不受影响,即使底物pH降至pH5,液化仍能正常进行,不影响发酵失活。因此使用耐高温α-淀粉酶按柠檬酸行业的常规操作,就可以保证液化彻底,发酵成功。

四、结论

α-淀粉酶已经成为工业应用中最为重要的酶之一,并且大量的微生物可以用以高效生产淀粉酶,但是酶的大规模商业化生产仍然局限于几种特定的真菌和细菌中。对于高效的α-淀粉酶的需求越来越多,这可以通过对现有酶的化学改良或者通白质工艺改良得到。得益于现代生物技术的发展,α-淀粉酶在制药方面的重要性日益凸显。当然,食品和淀粉工业仍然是主要市场,α-淀粉酶在这些领域的需求仍然是最大的。

参考文献:

[1] 王文君. 食品化学. 中国农业出版社. 第七章酶.第226页

[2] 徐彩凤. 酶工程. 中国轻工业出版社. 第36页

[3] 郭勇、郑穗平 . 酶学. 华南理工大学出版社. 第112页

[4] 罗贵明. 酶工程. 化学工业出版社. 第76页

酶工程技术在食品中的应用

酶工程技术在食品中的应用 生物工程是现代科技的一项高新技术,酶工程是生物工程中最重要的组成部分。自从1906年人类发现了用于液化淀粉生产乙醇的细菌淀粉酶以来,经过几十年的发展,酶制剂已经广泛地应用于食品加工、纺织、洗涤剂、饲料、医药等行业,给这些行业带来了新的生机和活力。酶是具有生物催化能力的蛋白质,其催化反应具有高效性和专一性。国际生物化学联合会把酶分成六大类---氧化还原酶类、转移酶类、水解酶类、裂合酶类、异构酶类、合成酶类。本文将简要介绍几种常用于食品加工中的酶的特性及其作用机理。简而言之,酶工程就是将酶或者微生物细胞,动植物细胞,细胞器等在一定的生物反应装置中,利用酶所具有的生物催化功能,借助工程手段将相应的原料转化成有用物质并应用于社会生活的一门科学技术。它包括酶制剂的制备,酶的固定化,酶的修饰与改造及酶反应器等方面内容。酶工程的应用,主要集中于食品工业,轻工业以及医药工业中。 一、酶工程技术简介 1.酶制剂的生产来源 酶制剂的生产酶的来源主要有植物、动物和微生物。最早人们多从植物、动物组织中提取,例如从动物胰脏和麦芽中提取淀粉酶、从动物胃膜,胰脏、木瓜、菠萝中提取蛋白酶。它们大多数由微生物生产,这是因为微生物种类多,几乎所有酶都能从微生物中找到,而且它的生产不受季节、气候限制;由于微生物容易培养,繁殖快,产量高,故可在短时间内廉价地大量生产。近年来,随着基因工程技术的迅速发展,又为酶产量的提高和新酶种的开发开辟了新的途径。基因工程技术的最大贡献在于,它能按照人们的意愿构建新的物种,或者赋予新的功能。虽然目前基因工程

还未形成大规模的产业,但是它作为一种改良菌种,提高产酶能力,改变酶性能的手段,已受到了人们的极大关注。例如利用改良的过氧化物酶能够在高温和酸性条件下脱甲基和烷基,生产一些食品特有的香气因子。基因工程菌生产a一淀粉酶是目前人们研究最多的课题,美国CPC国际公司的Moffet研究中心,已成功地采用基因工程菌生产了a一淀粉酶,并已获得美国食品药品管理局(FDA)的批准。此外,运用基因工程技术,提高葡萄搞异构酶,纤维素酶,糖化酶等酶活力的研究也取得了一定的成绩。 2.酶的纯化 酶的纯化属于一种后处理工艺,包括粗制工艺与精制工艺,对超酶液进行浓缩精制是生产高质量酶制剂的重要环节,目前采用的技术主要有沉淀法,吸附法和色谱法,分子筛分法,陈结法,减压浓缩法和电泳法等。 3.酶的固定化技术 酶的固定化是指用物理或化学手段,把酶束缚在一定的区域内,使其在一定的范围内起催化作用。固定化技术是酶工程的关键技术之一,自从1969年世界上第一次使用固相酶技术以来,至今已有30多年的历史。应用固定化葡萄糖异构酶生产高果糖浆是现代酶工程在工业生产中最成功、规模最大的应用。固定化酶可用于处理液态食品,价格昂贵的酶经固定化后,可以提高稳定性,降低成本,延长使用寿命,实现连续化和自动控制,减少精制过程中沉淀,过滤等操作费用。

食品酶工程论文

湖南农业大学课程论文 学院:食品科技学院班级:XXXX级食科3班姓名: X X X 学号:XXXXXXXXXXXX 课程论文题目:淀粉酶在食品行业的用途 课程名称:食品酶工程 评阅成绩: 评阅意见: 成绩评定教师签名: 日期:年月日

淀粉酶在食品行业的应用 学生:X X X (食品科技学院XXXX级食科3班,学号XXXXXXXXXXXXX) 摘要:酶工程是现代生物工程的一个分支,是当今最具有发展前景的学科之一。酶工程工业在我国起步虽晚,但发展很快,从六十年代中期起步,至今短短的三十多年,已初步建成了完整的酶工业,产品已被广泛用于味精、淀粉糖、酿造、啤酒、食品、纺织、洗涤剂、有机酸以及医药等行业。酶制剂的应用,促进了这些行业的发展,反过来人们也逐步认识了酶制剂,促进了酶工业自身的发展。 淀粉酶为重要的酶制剂,是酶制剂中用途最广、用量最大的一种。在食品加工工业中,它用于面包生产中的面团改良;啤酒生产中供糖化及分解未分解的淀粉;婴幼儿食品中用于谷类原料的预处理;酒精生产中用于糖化和分解淀粉;果汁加工中用于淀粉的分解和提高过滤速度。还广泛用于糖浆制造、饴糖生产、蔬菜加工、粉状糊精生产、葡萄糖制造业中。在医药工业可用作辅助消化药。另外,还可用于纺织印染工业。 关键词:淀粉酶食品应用 一、淀粉酶在焙烤食品中的应用 随着人民生活水平的日益提高和食品工业的不断发展,人们对面粉的品种和品质提出了愈来愈高的要求。面粉生产企业为适应市场新的需求,近年来陆续开发生产了各类专用面粉,在生产面包、馒头等制作发酵食品的专用面粉时,除面粉的面筋、灰分、粗细度、粉质曲线稳定时间等常规质量指标外,面粉工作者越来越关注面粉的α—淀粉酶活性。理论与实践表明:面粉的α—淀粉酶活性,直接影响到面粉的发酵力和发酵食品的质量,特别是低糖主食面包。一般情况下,正常季节收获的小麦加工的面粉中α—淀粉酶的含量普遍不足,国外面粉生产企业通常的做法是在生产这类面粉时,添加麦芽粉或真菌α—淀粉酶,用来提高面粉中α—淀粉酶的活性,以改善和提高发酵食品的质量。 麦芽粉是在适当的温度和水分下使大麦或小麦发芽、干燥后加工成粉。其酶活性较低,添加量为面粉的0.2~0.4%,因粘性较大,在实际应用中混合均匀较为困难。而真菌α—淀粉酶是一种高浓度、高活性、易流动的粉末,其酶活性为

酶工程实验大纲

湖北大学 酶工程实验 (0818800193)实验教学大纲 (第2版) 生命科学学院 生化教研室 2014年7月

前言 课程名称:酶工程实验实验学时:16学时 适用专业:生物工程课程性质:必修 一、实验课程简介 酶工程是生物工程的主要内容之一,是现代酶学和生物工程学相互结合而发展起来的一门新的技术学科。它将酶学、微生物学的基本原理与化工、发酵等工程技术有机结合起来,并随着酶学研究的迅速发展,特别是酶的广泛应用而在国民生产生活中日益发挥着越来越重要的作用。酶工程实验课是生物工程等本科实验教学的一个重要组成部分,通过实验教学可以加强学生对酶工程基本知识和基本理论的理解,掌握现代酶学与相关技术的有关的基本的实验原理与技能。在实验过程中要求学生自己动手,分析思考并完成实验报告。酶工程实验性质有基础性、综合性、设计(创新)性三层次。 二、课程目的 本实验课程主要根据酶工程的三大块内容即酶的生产、酶的改性与酶的应用来设计安排实验,通过这些实验内容,使学生深入理解酶工程课程的基本知识;巩固和加深所学的基本理论;掌握酶工程中基本的操作技能。同时,通过实验培养学生独立观察、思考和分析问题、解决问题和提出问题的能力,养成实事求是、严肃认真的科学态度,以及敢于创新的开拓精神;并在实验中进一步提高学生的科学素养。 三、考核方式及成绩评定标准 考核内容包括实验过程中的操作情况,实验记录及结果的准确性,实验报告的书写及结果分析,思考题的回答情况,仪器设备的使用情况及遵守实验室规章制度的情况等,根据这些方面进行成绩评判和记录,综合给出实验总成绩。 四、实验指导书及主要参考书 1.魏群:生物工程技术实验指导,高等教育出版社,2002年8月。 2.禹邦超:酶工程(附实验),华中师范大学出版社,2007年8月 五、实验项目

酶工程发展概况及应用前景

酶工程发展概况及应用前景 【摘要】酶的生产和应用的技术过程称为酶工程。其主要任务是通过预先设计,经人工操作而获得大量所需的酶,并利用各种方法使酶发挥其最大的催化功能。本文意在阐述近年来酶工程在分子水平的研究进展,展示酶工程在医药、农业、食品、环境保护等领域的应用进展,并对其未来前景进行了展望。 【关键词】酶工程;概况;应用;前景 酶工程,从定义上来说,是酶制剂在工业上的大规模应用,主要由酶的生产、酶的分离纯化、酶的固定化和生物反应器四个部分组成。简而言之,酶工程就是将酶或者微生物细胞,动植物细胞,细胞器等在一定的生物反应装置中,利用酶所具有的生物催化功能,借助工程手段将相应的原料转化成有用物质并应用于社会生活的一门科学技术。它包括酶制剂的制备,酶的固定化,酶的修饰与改造及酶的反应器等方面内容。 酶工程的前景 酶因其反应的专一性,高效性和温和性的特点,已和生物工程,信息科学和材料科学构成了当今的三大前沿科学。而作为生物工程的重要组成部分,将在未来的发展中,在世界科技和经济发展中起着主导和支柱作用。而工业用酶日益广泛地应用于化学,医药,纺织,农业,日化,食品,能源,化妆品以及环保等行业。据报道,到2003年,欧洲工业用酶的市场增加至9亿美元,年增长率达百分之十;而2000年的中国,酶制剂总产量达272吨,同比增长8.8%,可谓发展迅速,前景十分广阔。 酶工程的发展 酶工程的发展,是一部科学的成长史。在二次世界大战后,酶工程发展成为新的工业领域—酶工程工业。酶工程的发展历史从那时算起, 至今已经三十多个年头了。六十年代以后, 由于固定化酶、固定化细胞及固定化活细胞的崛起, 使酶制剂的应用技术面貌一新。七十年代以后,伴随着第二代酶——固定化酶及其相关技术的产生,酶工程才算真正登上了历史舞台。固定化酶正日益成为工业生产的主力军,在化工医药、轻工食品、环境保护等领域发挥着巨大的作用。几十年来酶制剂的品种和应用不断扩大。不仅如此,还产生了威力更大的第三代酶,它是包括辅助因子再生系统在内的固定化多酶系统,它正在成为酶工程应用的主角。近年来, 国际上酶工程技术发展迅速, 硕果累累,主要有基因工程、蛋白质工程、人工合成酶、模拟酶、核酸酶、抗体酶、酶的定向固定化技术、酶化学技术、非水酶学、糖生物学、糖基转移酶、极端环境微生物和不可培养微生物的新品种等。 酶工程的应用 酶工程的发展日新月异,现举几个例子更加形象地说明酶工程地应用: 酶工程在污染处理中的作用:可利用过氧化物酶和聚酚氧化酶处理含酚废水和造纸废水,如辣根过氧化物酶,木质素过氧化物酶,植物来源的过氧化物酶;酪氨酸酶,漆酶等;可利用氰化物酶和氰化物水合酶处理含氰废水;利用蛋白酶,淀粉酶处理食品加工废水;并且,可以通过设计复合代谢途径,拓宽氧化酶的专一性等基因工程的运用,提高微生物的降解速率;拓宽底物的专一性;维持低浓度下的代谢活性;改善有机污染物降解过程中的生物催化稳定性等。酶在废物处理及资源化过程中正在发挥重要作用, 利用基因工程和蛋白质工程扩展酶的代谢途经, 是治理难降解有毒污染物的重要方法。

食品酶工程专业文献综述

食品酶工程专业文献综述 题目:纤维素酶在食品工业中的应用 姓名:阿迪拉?阿迪力 学院:食品科学与药学学院 专业:食品科学与工程 班级:食品科学与工程092班 学号:094031201

纤维素酶在食品工业中的应用 摘要:纤维素酶是酶的一种,在分解纤维素时起生物催化作用。是可以将纤维素分解成多糖或单糖的蛋白质或RNA。由于纤维素酶在饲料、酒精、纺织和食品等领域具有巨大的市场潜力,已被国内外业内人士看好。自从1906年在蜗牛消化道中发现纤维素酶以来,纤维素的微生物降解问题引起了业界足够的关注。美国最早研究了军用纤维素材料微生物降解的防护问题,后来发现纤维素经微生物降解后,可产生经济、丰富的生产原料,在扩大食品工业原料和植物原料的综合利用,提高原料利用率,净化环境和开辟新能源等方面,具有十分重要的意义,且有望解决自然界不断产生的固体废物问题。本文介绍了纤维素酶的来源、制备方法,重点论述了纤维素酶在食品加工、发酵,以及其他方面的应用,展望了该酶在食品工业中的潜在应用价值。 关键字:纤维素酶、食品工业、应用 Cellulose Application in Food Industry Abstract: Cellulose is a kind of enzyme , In the decomposition of cellulose it plays Bio-catalysis effect. Cellulose can be broken down into Polysaccharide or Monosaccharide Protein or DNA. Since cellulose have has great market potential in the feed, alcohol, textiles and food and other areas, have been optimistic about the industry at home and abroad. Since 1906, cellulose has been found in the snail’s digestive, microbial degradation of cellulose has attracted enough attention to the industry. United States was first studied the question of protection military microbial degradation of cellulosic materials, after cellulose degradation by microorganisms was found, can produce economic, abundant raw materials, in the aspect of expand the food industry raw materials and plant materials, improve raw material utilization, cleaning up the environment and open up new energy have great significance. This article describes the sources of cellulose, preparation methods, Focuses on the cellulose in food processing, fermentation, and other applications, Prospects of this enzyme’s potential applications in the food industry. Keywords: Cellulose, food industry, the application 前言 纤维素酶是一种重要的酶产品,是一种复合酶,主要由外切β-葡聚糖酶、内切β-葡聚糖酶和β-葡萄糖苷酶等组成,还有很高活力的木聚糖酶活力。在分解纤维素时起生物催化作用。是可以将纤维素分解成多糖或单糖的蛋白质或RNA。【1】广泛存在于自然界的生物体中。细菌、真菌、动物体内等都能产生纤维素酶。一般用于生产的纤维素酶来自于真菌,比较典型的有木酶属、曲霉属和青霉属。 纤维素酶种类繁多,广泛存在于自然界的生物体中,不同来源的纤维素酶其结构和功能相差很大。由于真菌纤维素酶产量高、活性大,故在畜牧业和饲料工业中应用的纤维素酶主要是真菌纤维素酶。【2】 纤维素酶在食品行业和环境行业均有广泛应用。在进行酒精发酵时,纤维素酶的添加可以增加原料的利用率,并对酒质有所提升。由于纤维素酶难以提纯,实际应用时一般还含有半纤维素酶和其他相关的酶,如淀粉酶、蛋白酶等。 由于纤维素酶在饲料、酒精、纺织和食品等领域具有巨大的市场潜力,已被国内外业内人士看好,将是继糖化酶、淀粉酶和蛋白酶之后的第四大工业酶种,甚至在中国完全有可能成为第一大酶种,因此纤维素酶是酶制剂工业中的一个新的增长点。【3】

酶工程技术论文 酶工程技术

酶工程技术论文酶工程技术 发达国家所掌握的酶工程技术比较熟练,近些年来人们加快了对新酶源的开发,使功能性食品添加剂得到了迅速的发展。下面小编给大家分享一些酶工程技术论文,大家快来跟小编一起欣赏吧。酶工程技术论文篇一 酶工程技术在食品添加剂生产中的应用 摘要:近些年来,由于固定化细胞技术、固定化酶反应器的推广与使用,使得食品新产品得到了开发,食品的品种数量与质量都得到了明显的提高,这为食品工业带来了巨大的经济效益。本文就酶工程技术在食品添加剂中的应用情况作进一步的说明。 关键词:酶工程食品添加剂 引言 利用酶和细胞或者是细胞器所具有的催化功能为人类提供服务,生产所需产品的技术统称为酶工程技术。作为生物工程的一个重要组成部分,酶工程技术被广泛地应用在食品添加剂的生产中。 一、开发新的酶源 发达国家所掌握的酶工程技术比较熟练,近些年来人们加快了对新酶源的开发,使功能性食品添加剂得到了迅速的发展。我国对于这方面的研究起步比较晚,但是随着近几年的探究与摸索也取得了明显的进步。比如说,华南理工大学利用微生物发酵的技术可以产生一种特定的酶,这种酶具有很强的催化的作用,它可以进行两步酶法催化分子果糖转移反应而产生低聚果糖,这是一项巨大的突破;其次比较有名的就是江苏化工学院自制出了选择性优良以及非常廉价的糖化酶和胰淀粉酶,它们经过一系列的催化作用可以生产出低糖度、低热量、高粘度且不会被微生物发酵的麦芽糖醇。 脂肪酶是大家比较熟悉的一种水解酶,它是一种只能在异相系统或者不溶性系统的油-水界面上来进行水解的酶。但是由于脂肪酶的不稳定性、酶的来源较少、提纯比较困难的种种原因使得它长期以来得不到充足的发展。但是近年来随着细胞工程、固定化技术以及基因工程的兴起,人们逐渐解开了脂肪酶的神秘面纱,对于脂肪酶的研究也取得了飞跃式的发展,其中甘油胆汁及其衍生物在食品行业中是应用最广泛的,它改善了食品工业中面包的质量与口感,它可以诱导或快速形成巧克力面包的香味,为国内外食品的发展奠定了良好的基础。 二、固定化酶技术与细胞技术的发展 通常所谓的固定化技术就是通过一系列的物理或者化学的方法将酶或者是细胞固定在水溶性或者是非水溶性的膜状、颗粒状、管状的载体上,在这样的情况下能明显的提高酶对热度以及对酸碱度的稳定性;而且利用固定化技术在连续反应的过程中不会造成流失的现象,利用非常简单的方法就可以进行回收再生,为生产的可持续化、节约能耗、降低生产成本提供了技术上的支持。早在70年代,中国科学院生物研究所就对固定化酶或者固定化细胞技术开始了长时间的研究,现在许多的科研单位、高等学校和大型企业已经掌握了固定化酶技术,并取得了明显的效果,现在固定化酶和细胞技术已经广泛地应用于食品添加剂中。 固定化酶技术在甜味剂的生产中采用固定化葡萄糖异构酶在生物反应器中的连续生产,可以制造出葡萄糖浆,这项技术在整个的酶工程工业生产中是最成功的,同时也是应用范围最广的;利用酶技术方法可以将便宜的无水马来酸制作成酒石酸,现在的市场上几乎都是运用这种方法来生产酒石酸,因为它具有操作过程简单、酒石酸纯度高、经济效益高的特点。利用固定化酶和细胞技术还可以生产营养强化剂,营养强化剂主要包括氨基酸、维生素和一些微量的元素,L-天门冬安是最早应用固定化细胞在工业上大规模生产的氨基酸,这项技术随着时间的推移以及科学界的研究已经使它得到了充足的发展,它可以连续数周进行生产,这种方法转化效率极高,对生成的产物易分离,同时产物的纯度也很高。

酶工程实验试题及答案

1、酶的固定化方法:吸附法、包埋法、共价结合法、热处理法 2、提取酶的有机溶剂有:甲醇、乙醇、丙醇、丙酮、异丙醇、 3、酶生产的主要方式:固体发酵、液体深层通气发酵、固定化细胞或固定化原生质体发酵 4、酶的抽提剂有:稀酸、稀碱、稀盐、稀有机溶剂等 5、测定酶蛋白含量的方法: 凯氏定氮法、双缩尿法、Folin 酚法、紫外法、色素结合法、BCA法、胶体金测定法 6、影响酶活力的主要因素:温度、PH、底物浓度、酶浓度、抑制剂、激活剂 7、包埋固定化酶的凝胶有:聚丙烯酰胺、聚丙烯醇、光敏树脂、琼脂、明胶、海藻酸钙 8、酶的回收率:是指直接测定的固定化酶的活力占固定化之前的活力的百分比。 9、纯化倍数:就是经过纯化后得到的比活力与纯化前比活力之间的比值。 10、盐析的原理:蛋白质溶液在一定浓度范围内,加入无机盐,随着盐浓度增大,蛋白质的溶解度增大,但当盐浓度增到一定限度后,蛋白质将从溶液中析出。 11、在酶的反应过程中如何确保酶的最适反应温度和最适pH值。 保证最适温度的方法:通过发酵罐的热交换设施,控制冷源或热源流量;通过曲室的通风和加热设备控制。保证最适pH的方法:加酸或加碱,加碳源或氮源物质。 12、在发酵产酶过程中的准备工作: 收集筛选菌种,菌种保藏,细胞活化,扩大培养,培养基的配置,对发酵条件的控制。 13、为什么在测酶活实验中要连续不断的测酶活和酶蛋白含量 因为酶的活性会受温度和PH值的影响 14、终止酶反应的方法: 1、迅速升高温度; 2、加入强酸、强碱、尿素、乙醇等变性剂; 3、加入酶抑制剂; 4、调节反应液pH值。 15、固定化的优点: 1、可反复使用,稳定性高; 2、易与底物和产物分开,便于分离纯化; 3、可实现连续生产,提高效率。 16、培养基的成分:碳源、氮源、无机盐、生长因素、水。 17、菌种保藏方法: 1、斜面低温保藏法 2、液体石蜡油保藏法 3、砂土管保藏法 4、真空冷冻干燥法 5、液氮超低温保藏法。 18、发酵产酶的操作过程:配置培养基、分装、灭菌(112℃—115℃,20min)、孢子悬液(将无菌水加入斜面培养基)、接种、培养(32℃,180r/min,培养72h) 19、测定酶活的方法: 1、在一定时间内,让适量的底物与酶在最适合条件下; 2、加入酶抑制剂或升高温度等方法快速终止酶反应; 3、加一定量的显色剂与底物反应,测定液体的吸光度; 4、根据吸光度值计算出酶活 20、壳聚糖酶如何筛选:采用透明圈法,透明圈法直观、方便、根据壳聚糖不溶于水,以壳聚糖为唯一碳源,培养基浑浊。如果有该酶存在,即可降解壳聚糖为壳寡糖,壳寡糖容易被分解吸收,所以形成透明圈,从而可筛选出产生壳聚糖酶的菌株21、产壳聚糖酶初筛平板有什么现象,为什么 会出现透明圈,其原因是根据壳聚糖不溶于水,以壳聚糖为唯一碳源,培养基浑浊。如果有该酶存在,即可降解壳聚糖为壳寡糖,壳寡糖容易被分解吸收,所以形成透明圈 22、酶反应器: 分批式搅拌罐反应器、连续流搅拌罐反应器、填充床反应器、流化床反应器、模型反应器、鼓泡塔反应器 23、对产酶的菌种的要求是: 1、产酶量高;2、繁殖快,发酵周期短;3、产酶稳定性好,不易退化,不易被感染;4、能够利用廉价的原料,容易培养和管理;5、安全可靠,非致病菌。 24、在使用离心机时应注意事项 25、尿酶提取过程中为什么要在冰浴中进行 在冰浴中进行可以使尿酶处于低温条件下,低温能降低酶的活性,但不破坏酶的活性,在适合的温度下可恢复酶的活力 26、填充床的制备及应用的要点 装柱——平衡——应用——检测 装柱:均匀、无裂缝、无气泡、平整;平衡:1—2倍柱床体积缓冲液;应用:3%尿素溶液; 检测:定性:纳氏试剂(黄色或棕红色沉淀)——定量:取20ml流出液,用0.05mol/L标准HCL滴定(加2—3滴混合指示剂)

酶的应用与发展论文

酶的应用与发展论文集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

摘要:生物工程是现代科技的一项高新技术,是当今最有发展前景的学科之一。而酶工程是生物工程的重要组成部分,酶作为生物催化剂,它广泛应用于食品、酿造、淀粉糖、制革、纺织、印刷、医药、石油化工等20多个领域。它可提高产品品质、改进产品工艺、降低劳动强度、节约原料和能源、保护环境,并产生巨大的经济效益和社会效益。关键字:酶工程酶的固定化酶的应用前景 从世界范围而言,酶制剂总量的55%是水解酶,主要用于焙烤食品、酿酒、淀粉加工、酒精和纺织等工业;35%是蛋白酶,主要用于洗涤剂、制革和乳品工业;其余是药用酶制剂、试剂级酶制剂和工具酶。 1酶工程 酶工程技术是利用酶和细胞或细胞器所具有的催化功能来生产人类所需产品的技术,包括酶的研制与生产,酶和细胞或细胞器的固定化技术,酶分子的修饰改造,以及生物传感器。 酶的生产 酶的生产是各种生物技术优化与组合的过程,分为生物提取法、生物合成法和化学合成法三种,其中生物提取法是最早采用而沿用至今的方法,它是指采用各种提取、分离、纯化技术从动物、植物、器官、细胞或微生物细胞中将酶提取出来;生物合成法是20世纪60年代以来酶生产的主要方法,是指利用微生物细胞、植物细胞或动物细胞的生命活动而获得人们所需酶的技术过程;而化学合成法因其成本高,且只能合成那些已经弄清楚化学结构的酶,所以难以进行工业化生产,至今仍处在实验室研究的阶段。

酶的纯化 酶的纯化属于一种后处理工艺,包括粗制工艺与精制工艺,对超酶液进行浓缩精制是生产高质量酶制剂的重要环节。其提纯手段一般是依据酶的分析大小、形状、电荷性质、溶解度、专一结合位点等性质而建立。要得到纯酶,一般需要将各种方法联合使用。最常用的纯化方法有根据溶解度特性的沉淀法;根据电荷极性的离子交换层析、等电点聚焦电泳等;根据大小或重量的离心分离、透析、超滤等;根据亲和部位的亲和层析、共价层析等。 酶的固定化技术 酶的固定化技术是把从生物体内提取出来的酶,用人工方法固定在载体上,这是是酶工程的核心,它使酶工程提高到一个新水平。自从1969年世界上第一次使用固相酶技术以来,至今已有40多年的历史。由于固定化酶的运动被化学或物理的方法限制了,能将其从反应介质中回收,所以原则上能在批量操作或连续操作中重复使用酶。 固定化酶具有如下性质:酶的稳定性提高;最适pH值改变;酶的活性和催化底物有所变化;最适温度有所提高,对抑制剂和蛋白酶的敏感性降低;反应完成后可通过简单的方法回收,且酶活力降低不多,这样可使酶重复使用[3]。同时由于酶没有游离到产品中,便于产品的分离和纯化;实现批量或连续操作模型的可能,可进行于产业化、连续化、自动化生产。 2酶的应用现状 在食品业的应用

酶工程在食品方面的应用

浅谈酶工程及其在食品领域中的应用 摘要:酶工程是现代生物技术的重要组成部分。酶作为生物催化剂,具有高催化效率,专一性强,反应条件温和及酶活性可以调控。本文介绍了酶工程和酶在食品领域中的应用,并对酶工程技术研究应用前景做了整体展望。 关键词:酶工程,固定化,食品 1.酶和酶工程 1.1简述酶和酶工程 酶是由生物体产生的具有催化活性的蛋白质.它能特定地促成某个化学反应而本身却不参加反应,且具有反应率高、反应条件温和、反应产物污染小、能耗低、反应容易控制等特点.这些特点比传统的化学反应具有较大的优越性.【1】酶工程技术是现代五大生物工程技术之一,是利用酶或者微生物细胞、动植物细胞、细胞器等所具有的某些功能,借助于工程学手段来提供产品或服务于社会的一门科学技术。酶工程技术的应用范围很广,主要包括酶的分离和提取、各类酶的开发和生产、固定化技术的研发、酶反应器的研制等几个方面【2】 1.2酶的来源、提取、分离和纯化 酶的来源主要有植物、动物和微生物。最早人们多从植物、动物组织中提取,例如从动物胰脏和麦芽中提取淀粉酶、从动物胃膜,胰脏、木瓜、菠萝中提取蛋白酶。酶是蛋白质,因此一切蛋白质的分离原则都应该遵行。酶作为特殊的蛋白质,最重要的原则是纯化过程中一定要保持其活性。酶的分离纯化化学方法一般很据酶的分子量、等电点、疏水性等生化性质,选择相应的沉淀、盐析、层析方法。 1.3酶的生产 微生物种类多,几乎所有酶都能从微生物中找到,而且它的生产不受季节、气候限制;由于微生物容易培养,繁殖快,产量高,故酶大多有微生物生产。近年来,随着基因工程技术的迅速发展,又为酶产量的提高和新酶种的开发开辟了新的途径。例如利用改良的过氧化物酶能够在高温和酸性条件下脱甲基和烷基,生产一些食品特有的香气因子。此外,运用基因工程技术,提高葡萄搞异构酶,纤维素酶,糖化酶等酶活力的研究也取得了一定的成绩。【4】基因工程的克隆流程包括:目的基因的获得、将目的基因克隆到合适的质粒载体;、将重组质粒转染细胞和表达产物的检测。其中,目的基因的获得主要有三条途径:以含有目的的基因的生物DNA 中获得、以DNA作为目的基因和用化学方法合成目的基因。在宿主体系的选择方面,目前在食品级酶的生产中,原核生物一般选用枯草杆菌、地衣芽抱杆菌、乳酶链球菌、嗜热链球菌等。真核生物一般以酵母和哺乳动物细胞作宿主细胞。【16】 1.4 固定化酶 1.4.1固定化酶简介 酶的固定化是用固体材料将酶束缚或限制于一定区域内,进行特有的催化反应,并可回收及重复利用的技术。酶的化学本质是蛋白质,其最大弱点是不稳定性,对酸、碱、热及有机溶液容易发生酶蛋白的变性作用,从而降低或失去活性。而且酶往往在溶液中进行反应,反应以后会残留在溶液系统中不易回收,造成最终产品生化分离提纯操作上的麻烦。加之酶反应只能分批进行,难于连续化、自动化操作。这大大地阻碍了酶工程的发展应用为克服上述缺点,要将游离酶固定化后进行应用。固定化酶技术是把从生物体内提取出来的酶,用人工方法固定在载体上。由于固定化酶的运动被化学或物理的方法限制了,能将其从反应介质中回收,所以它原则上能在批量操作或连续操作中重复使用酶。固定化酶技术是酶工程的核心,它使酶工程提高到一个新水平。【6】 1. 4.2吸附法 吸附法是通过非特异性物理吸附法或生物物质的特异吸附作用将酶吸附在炭、有机聚合物、玻璃、无机盐、金属氧化物或硅胶等材料上。该方法又分为物理吸附法和离子吸附法。

酶工程的应用及发展前景.

酶工程的应用及发展前景 生物技术一班 41208220 杨青青

酶工程的应用及发展前景 杨青青 (陕西师范大学生命科学学院生物技术专业1201班) 摘要:酶工程是现代生物技术的重要组成部分,它作为一项高新技术将为各工业的发展起重要推动作用。本文概要介绍了酶工程的概念,酶工程在农产品加工、医药工业、食品工业、污染治理工业、蛋白质高值化加工等方面的应用以及探讨了在各个工业中的发展前景。 关键词:酶工程、应用、发展前景 一、酶工程的概念 酶是由生物体产生的具有催化活性的蛋白质,它能特定的促成某个化学反应而本身却不参加反应,且具有反应率高、反应条件温和、反应产物污染小、能耗低、反应容易控制等特点。这些特点比传统的化学反应具有较大的优越性。酶的应用不仅可以增强产量,提高质量,降低原材料和能源消耗,改善劳动条件,降低成本,而且可以生产出用其他方法难得到的产品,促进新产品、新技术和新工艺迅速发展。随着现代生物技术的兴起,酶工程技术应运而生,并在制药、食品工业和农产品加工显示出强大的生命力。酶工程就是利用酶催化作用,

通过适当的反应器工业化的生产人类所需的产品或是达到某一目的,它是酶学理论与化工技术相结合而形成的一种新技术。酶工程包括自然酶的开发和利用、固定化酶、固定化细胞、多酶反应器(生物反应器)、酶传感器等。 二、酶工程的应用以及发展前景 1、酶工程在农产品加工上的应用与前景 以前,人们认为氨基酸是人体吸收蛋白质的主要途径。随着研究的发现,蛋白质经消化道中的酶水解后,主要以小肽的形式被吸收,比完全游离的氨基酸更易吸收利用。这一发现启发了科研工作者采用酶工程技术用蛋白质生产生物活性肽的新思路。生物活性肽是蛋白质中20种天然氨基酸以不同排列组合方式构成的从二肽到复杂的线性或环形结构的不同肽类的总称,是源于蛋白质的多功能化合物。活性肽具有多种人体代谢和生理调节功能。主要是通过酶法降解蛋白质而制得。 目前已经从大豆蛋白、玉米蛋白、牛奶蛋白、水产蛋白的酶解物中制得一系列功能各异的生物活性肽。因为各类蛋白质存在的差异性,所以在生产活性肽方面有略微的不同。不论哪种方法,都会用到一定的酶类水解蛋白质。比如:文献报道采用中性蛋白酶、木瓜蛋白酶水解大豆蛋白,配合活性炭的吸附处理、超滤、真空浓缩和喷雾干

酶工程论文

酶工程论文 酶的生产和应用的技术过程称为酶工程。其主要任务是通过预先设计,经人工操作而获得大量所需的酶,并利用各种方法使酶发挥其最大的催化功能。本文意在阐述近年来酶工程在分子水平的研究进展,展示酶工程在医药、农业、食品、环境保护等领域的应用进展,并对其未来前景进行了展望。 一、酶工程技术在医药工业中的应用 现代酶工程具有技术先进、投资小、工艺简单、能耗粮耗低、产品收率高、效率高、效益大和污染小等优点,成为化学、医药工业应用方面的主力军。以往采用化学合成、微生物发酵及生物材料提取等传统技术生产的药品,皆可通过现代酶工程生产,甚至可获得传统技术不可能得到的昂贵药品,如人胰岛素、McAb、IFN、6一APA、7一ACA及7一ADCA等固定化基因工程菌、工程细胞以及固定化技术与连续生物反应器的巧妙结合,将导致整个发酵工业和化学合成工业的根本性变革 1、应用酶工程生产抗生素 应用酶工程可以制备青霉素酞化酶、头抱菌素酞化酶、头抱菌素、头抱菌素酞化酶、青 2014下半年教师资格证统考大备战中学教师资格考试小学教师资格考试幼儿教师资格考试教师资格证面试霉素酞化酶、脱乙酸头抱菌素、头抱菌素乙酸醋酶,

近年来还进行固定化产黄青霉青霉素合成酶系细胞生产青霉素的研究,合成青霉索和头抱菌素前体物的最新工艺也采用酶工程的方法。 2、应用酶工程生产维生素 制造2一酮基一L—古龙糖酸【山梨糖脱氢酶及L一山梨糖醛氧化酶】、肌醇【肌醇合成酶】、L—肉毒碱【胆碱脂酶】、CoA 【CoA合成酶系】等。由山梨醇和葡萄糖生产维生素及丙烯酸胺的生产也采用酶工程的方法四。 二、酶工程技术在农业中的应用 由于酶制剂主要作为催化剂与添加剂使用,从而带动了许多产业的发展。应用酶工程对农产品进行深加工,是人们努力的一个方向。乳制品加工则需要用凝乳酶和乳糖酶。此外,酶工程在饲料加工领域也有重大应用。 1、酶工程应用于农产品的深加工 利用α-淀粉酶、葡萄糖淀粉酶和葡萄糖异构酶的催化功能,以玉米淀粉等为原料生产高果糖浆等。乳制品加工则需要用凝乳酶和乳糖酶。农副产品的加工和综合利用需要用纤维素酶、果胶酶和木质素酶。此外,从木瓜中提取的木瓜蛋白酶,提高活性和固定化以后,可以被用来酿制啤酒和制造果汁。

酶工程论文

酶分子定向进化的研究进展及应用 郭黄英 材料与化工学院生物工程 摘要:酶分子定向进化史模拟自然进化过程,具有适应面广、目的性强、效果显著等特点,可以在较短的时间内获得具有新的催化特性的酶突变体。定向进化可以显著提高酶活力,增强酶的稳定性,改变酶的底物专一性等,已经成为一种快速有效的改进酶的催化特性的手段。本文详细综述了酶分子定向进化的概念、过程、基本策略和核心技术,并列举了该技术在现实中的应用实例。 关键词:酶,定向进化,生物催化,应用 酶分子定向进化(enzyme molecular directed evolution)简称为酶定向进化,是模拟自然进化过程(随即突变和自然选择),在体外进行酶基因的人工随机突变,建立突变基因文库,在人工控制条件的特殊环境下,定向选择得到具有优良催化特性的酶的突变体的技术过程。 酶定向进化的基本过程包括随机突变、构建突变基因文库、定向选择等步骤 酶的定向进化技术在一定程度上弥补了定点突变技术的不足,极大地拓展了蛋白质工程学的研究和应用范围,特别是能够解决合理设计所不能解决的问题,为酶的结构与功能研究开辟了崭新的途径,并且正在工业、农业、食品业、环境保护和药物开发等领域逐渐显示其生命力。 1.酶分子定向进化的研究背景 酶作为催化剂,已在生产精细化学品、手性药物、食品添加剂等方面得到广泛应用。但随着酶催化应用范围的不断扩大和研究的逐步深入,研究者发现,酶催化的精确性和有效性常常不能很好地满足酶学研究和工业化应用的要求,而且天然酶的稳定性差、活性低等缺陷使得酶催化效率很低,还缺乏有商业价值的催化功能。因此对天然酶分子的改造显得十分重要。 1993年,美国科学家Arnold F H L3首先提出酶分子的定向进化的概念,并用于天然酶的改造和构建新的非天然酶。酶分子定向进化技术在一定程度上弥补了定点突变技术的不足,在过去几十年,定向进化已经成为作为生物催化剂的天然酶克服限制的重要工具,其对潜在的经济、环境、社会和医疗的影响是不可预计的,并且酶产品未来发展前景是无限的。 2. 酶分子定向进化的主要方法 2.1 易错PCR技术 易错PCR(error—prone PCR)技术是从酶的单一基因出发,在改变反应条件的情况下进行聚合酶链式反应(PCR),是扩增得到的基因出现碱基配对错误,从而引起基因突变的技术过程。在进行PCR扩增目的基因时,使碱基在一定程度上随机错配而引入多点突变,导致目的基因发生随机突变。通过构建突变库,筛选出所需的突变体;经一次突变的基因很难获得满意的结果,由此发展出连续易错PCR,即将一次PCR扩增得到的有益突变基因作为下一次PCR扩增的模板,连续反复地进行随机突变,使每一次获得的小突变累积进而产生重要

(整理)酶工程实验3

实验一过氧化氢酶米氏常数的测定 一、目的 了解米氏常数的意义,测定过氧化氢酶的米氏常数。 二、实验原理 H2O2被过氧化氢酶分解出H2O和O2,未分解的H2O2用KMNO4在酸性 环境中滴定,根据反应前后H2O2的浓度差可求出反应速度。 本实验以马铃薯提供过氧化氢酶,以1/ν~1/[S]作图求Km 三、实验器材 1.锥形瓶100~150ml(×6)。 2.吸管1.0ml(×2)、0.5ml(×2)、2.0ml(×2)、5ml(×2)、10.0ml(×1)。 3.温度计(0~100℃)。 4.微量滴定管5ml(×1)。 5.容量瓶1000ml(×1)。 四、实验试剂 1、0.02mol/L磷酸缓冲液(Ph7.0) 取磷酸二氢钾 0.68g,加0.1mol/L氢氧化钠溶液 29.1ml,用水稀释至100ml,即得。 2、酶液:称取马铃薯5g,加上述缓冲液10ml,匀浆,过滤。 3、0.02mol/L KMnO4:称取KMnO4(AR)3.2g,加蒸馏水1000ml,煮沸15min, 2d后过滤,棕色瓶保存。 4、0.004mol/L KMnO4:准确称取恒重草酸钠0.2g,加250ml冷沸水及10ml 浓硫酸,搅拌溶解,用0.02ml/L的KMnO4滴定至微红色,水浴,加 热至65℃,继续滴定至溶液微红色并30s不褪,算出KMnO4的准确 浓度稀释成0.004mol/L即可。 5、0.05 mol/L H2O2:取30% H2O2 23ml加入1000ml容量瓶中,加蒸馏水至刻

度(约0.2mol/L),用标准KMnO4(0.004mol/L)标定其准确浓度,稀释 成0.05mol/L(标定前稀释4倍,取2.0ml,加25% H2SO42.0ml,用0.004mol/L KMnO4滴定至微红色)。 6、25% H2SO4 五、操作 取锥形瓶6只,按下表顺序加入试剂: 表一过氧化氢酶米氏常数的测定 先加好0.05mol/L H2O2及蒸馏水,加酶液后立即混合,依次记录各瓶的起始反应时间。各瓶时间达5min时立即加 2.0ml25%硫酸终止反应,充分混匀。用 0.004mol/L KMnO4滴定各瓶中剩余的H2O2至微红色,记录消耗的KMnO4体积。 六、计算 分别求出各瓶的底物浓度[S]和反应速度v。 [S]=c1V1/10 式中[S]:底物物质的量浓度(mol/L); c1:H2O2物质的量浓度(mol/L); V1:H2O2体积(ml); 10:反应的总体积(ml); υ:反应速度(m mol/min); c2:KMnO4物质的量浓度(mol/L); V2:KMnO4体积(ml); 以1/υ对1/[S]作图求出Km。

酶工程与食品产业复习题

酶工程与食品产业复习题 一名词解释 1.酶工程:又叫酶技术,是酶制剂的大规模生产和应用的技术。 2. 别构酶;调节物与酶分子的调节中心结合后,引起酶分子的构象发生变化,从而改变催化中心对底物的亲和力,这种影响被称为别构效应,具有别构效应的酶叫别构酶 3. 诱导酶:有些酶在通常的情况下不合成或很少合成,当加入诱导物后就会大量合成,这样的酶叫诱导酶 4. 固定化酶:通过物理的或化学的方法,将酶束缚于水不溶的载体上,或将酶束缚于一定的空间内,限制酶分子的自由流动,但能使酶发挥催化作用的酶. 5. 修饰酶:在体外用一定的化学方法将酶和一些试剂进行共价连接后而形成的酶 6. 非水酶学:通常酶发挥催化作用都是在水相中进行的,研究酶在有机相中的催化机理的学科即为非水酶学. 7. 抗体酶:是一种具有催化作用的免疫球蛋白,属于化学人工酶 8. 交联型固定化酶:借助双功能试剂使酶分子之间发生交联作用,制成网状结构的固定化酶的方法。常用的双功能试剂有戊二醛、己二胺、顺丁烯二酸酐、双偶氮苯等。其中应用最广泛的是戊二醛。 二填空题(每空1分,共计30分) 1.决定酶催化活性的因素有两个方面,一是,二是 。 2.求Km最常用的方法是。

3.多底物酶促反应的动力学机制可分为两大类,一类是,另一类是 。 4.可逆抑制作用可分为,,, 。 5.对生产酶的菌种来说,我们必须要考虑的条件有,一是看它是不是,二是能够利用廉价原料,发酵周期,产酶量,三是菌种不易,四是最好选用能产生酶的菌种,有利于酶的分离纯化,回收率高。 6.酶活力的测定方法可用反应法和反应法。 7.酶制剂有四种类型即酶制剂,酶制剂,酶制剂和 酶制剂。 8.通常酶的固定化方法有法,法, 法, 法。 9.酶分子的体外改造包括酶的修饰和修饰。 10.模拟酶的两种类型是酶和酶。 11.抗体酶的制备方法有法、法和 法。 12.Km值增加,其抑制剂属于抑制剂,Km不变,其抑制剂属于

酶制剂论文

固定化酶技术及其进展 姓名:蒋恋班级:08生物工程二班学号:20080804205 摘要:固定化酶便于运输和贮存,有利于自动化生产,是近十余年发展起来的酶应用技术,在工业生产、化学分析和医药等方面有诱人的应用前景。本文简要介绍了固定化酶技术的概念、制备方法(包括传统固定化技术、传统固定化技术的改进方法、新型固定化技术)及其在化学化工、食品行业、临床医药、生物传感器和环境科学等领域中的应用现状与存在的问题,展望了固定化酶技术在皮革行业中的研究与应用前景。 关键词:酶;固定化;技术;吸附 Immobilized enzyme technology and its progress Abstract:Immobilized enzyme is easy to transport, store and automatize production. It is a new application technique of enzyme in recent years. Immobilized enzymes have attractive application prospect in industrial production, chemical analysis, medicine and other aspects. The technology of immobilized enzyme was introduced in the paper. The concept, the traditional preparation methods and its modified methods, modern preparation methods of immobilized enzyme were presented. Key words:enzyme; immobilization; Technique; Absorption 酶的固定化( Immobilization of enzymes)是用固体材料将酶束缚或限制于一定区域内, 仍能进行其特有的催化反应,并可回收及重复利用的一类技术。与游离酶相比,固定化酶在保持其高效专一及温和的酶催化反应特性的同时, 又克服了游离酶的不足,呈现贮存稳定性高、分离回收容易、可多次重复使用、操作连续可控、工艺简便等一系列优点。目前,寻找适用的固定化方法,设计合成性能优异且可控的载体,应用工艺的优化研究等仍是研究热点。改进传统固定化方法和注重天然高分子载体改性是酶固定化研究的主要趋势, 进一步提高转化率和生产能力,是未来研究的重点。 1 固定化酶的传统制备技术 固定化酶的制备方法有物理法和化学法两大类。物理方法包括物理吸附法、包埋法、结晶法、分散法、离子结合法等。物理法固定酶的优点在于酶不参加化学反应 ,整体结构保持不变,酶的催化活性得到很好保留。但是 ,由于包埋物或半透膜具有一定的空间或立体阻碍作用,因此对一些反应不适用。化学法是将酶通过化学键连接到天然的或合成的高分子载体上,使用偶联剂通过酶表面的基团将酶交联起来 ,而形成相对分子量更大、不溶性的固定化酶的方法。传统的酶固定化方法大致可分为4 类:吸附法、包埋法、交联法、共价结合法。 1.1 吸附法 用于固定酶的最早又最简单的方法是吸附法,即将酶的缓冲水溶液同表面活性物质接触一段时间,一些酶分子将被吸附,洗掉未吸附的游离酶,即得到吸附固定化酶。根据非水溶性载体表面的特性,酶与载体间的吸附作用可能是:

相关文档
最新文档